首页 > 最新文献

Earthquake Science最新文献

英文 中文
CREDIT-X1local: A reference dataset for machine learning seismology from ChinArray in Southwest China CREDIT-X1local:来自中国西南地区 ChinArray 的机器学习地震学参考数据集
IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences Pub Date : 2024-02-29 DOI: 10.1016/j.eqs.2024.01.018
Lu Li , Weitao Wang , Ziye Yu , Yini Chen

High-quality datasets are critical for the development of advanced machine-learning algorithms in seismology. Here, we present an earthquake dataset based on the ChinArray Phase I records (X1). ChinArray Phase I was deployed in the southern north-south seismic zone (20° N–32° N, 95° E–110° E) in 2011–2013 using 355 portable broadband seismic stations. CREDIT-X1local, the first release of the ChinArray Reference Earthquake Dataset for Innovative Techniques (CREDIT), includes comprehensive information for the 105,455 local events that occurred in the southern north-south seismic zone during array observation, incorporating them into a single HDF5 file. Original 100-Hz sampled three-component waveforms are organized by event for stations within epicenter distances of 1,000 km, and records of ≥ 200 s are included for each waveform. Two types of phase labels are provided. The first includes manually picked labels for 5,999 events with magnitudes ≥ 2.0, providing 66,507 Pg, 42,310 Sg, 12,823 Pn, and 546 Sn phases. The second contains automatically labeled phases for 105,442 events with magnitudes of −1.6 to 7.6. These phases were picked using a recurrent neural network phase picker and screened using the corresponding travel time curves, resulting in 1,179,808 Pg, 884,281 Sg, 176,089 Pn, and 22,986 Sn phases. Additionally, first-motion polarities are included for 31,273 Pg phases. The event and station locations are provided, so that deep learning networks for both conventional phase picking and phase association can be trained and validated. The CREDIT-X1local dataset is the first million-scale dataset constructed from a dense seismic array, which is designed to support various multi-station deep-learning methods, high-precision focal mechanism inversion, and seismic tomography studies. Additionally, owing to the high seismicity in the southern north-south seismic zone in China, this dataset has great potential for future scientific discoveries.

高质量的数据集对于开发先进的地震学机器学习算法至关重要。在此,我们介绍基于 ChinArray 第一阶段记录(X1)的地震数据集。ChinArray 第一阶段于 2011-2013 年在南部南北地震带(北纬 20°-32°,东经 95°-110°)部署,使用了 355 个便携式宽带地震台。CREDIT-X1local是ChinArray创新技术参考地震数据集(CREDIT)的首次发布,包括阵列观测期间在南部南北地震带发生的105,455次本地事件的综合信息,并将其合并为一个HDF5文件。原始的 100 赫兹采样三分量波形按震中距离在 1,000 公里以内的台站事件分类,每个波形都包含≥ 200 秒的记录。提供两种相位标签。第一种包括人工挑选的 5999 个震级≥ 2.0 事件的标签,提供 66507 个 Pg、42310 个 Sg、12823 个 Pn 和 546 个 Sn 相位。第二个相位包含 105,442 个震级为-1.6 到 7.6 的事件的自动标记相位。这些相位使用递归神经网络相位拾取器拾取,并使用相应的移动时间曲线进行筛选,最终得到 1,179,808 个 Pg 相位、884,281 个 Sg 相位、176,089 个 Pn 相位和 22,986 个 Sn 相位。此外,还包括 31 273 个 Pg 相位的第一运动极性。提供了事件和站点位置,以便对用于传统相位拾取和相位关联的深度学习网络进行训练和验证。CREDIT-X1local 数据集是首个由密集地震阵列构建的百万级数据集,旨在支持各种多台站深度学习方法、高精度焦点机制反演和地震层析成像研究。此外,由于中国南部南北地震带地震活动频繁,该数据集对未来科学发现具有巨大潜力。
{"title":"CREDIT-X1local: A reference dataset for machine learning seismology from ChinArray in Southwest China","authors":"Lu Li ,&nbsp;Weitao Wang ,&nbsp;Ziye Yu ,&nbsp;Yini Chen","doi":"10.1016/j.eqs.2024.01.018","DOIUrl":"https://doi.org/10.1016/j.eqs.2024.01.018","url":null,"abstract":"<div><p>High-quality datasets are critical for the development of advanced machine-learning algorithms in seismology. Here, we present an earthquake dataset based on the ChinArray Phase I records (X1). ChinArray Phase I was deployed in the southern north-south seismic zone (20° N–32° N, 95° E–110° E) in 2011–2013 using 355 portable broadband seismic stations. CREDIT-X1local, the first release of the ChinArray Reference Earthquake Dataset for Innovative Techniques (CREDIT), includes comprehensive information for the 105,455 local events that occurred in the southern north-south seismic zone during array observation, incorporating them into a single HDF5 file. Original 100-Hz sampled three-component waveforms are organized by event for stations within epicenter distances of 1,000 km, and records of ≥ 200 s are included for each waveform. Two types of phase labels are provided. The first includes manually picked labels for 5,999 events with magnitudes ≥ 2.0, providing 66,507 Pg, 42,310 Sg, 12,823 Pn, and 546 Sn phases. The second contains automatically labeled phases for 105,442 events with magnitudes of −1.6 to 7.6. These phases were picked using a recurrent neural network phase picker and screened using the corresponding travel time curves, resulting in 1,179,808 Pg, 884,281 Sg, 176,089 Pn, and 22,986 Sn phases. Additionally, first-motion polarities are included for 31,273 Pg phases. The event and station locations are provided, so that deep learning networks for both conventional phase picking and phase association can be trained and validated. The CREDIT-X1local dataset is the first million-scale dataset constructed from a dense seismic array, which is designed to support various multi-station deep-learning methods, high-precision focal mechanism inversion, and seismic tomography studies. Additionally, owing to the high seismicity in the southern north-south seismic zone in China, this dataset has great potential for future scientific discoveries.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"37 2","pages":"Pages 139-157"},"PeriodicalIF":1.2,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674451924000223/pdfft?md5=8e02eb44f9bdbf58fbce3bd1a13349cf&pid=1-s2.0-S1674451924000223-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139993567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in seismological methods for characterizing fault zone structure 确定断层带结构特征的地震学方法的进展
IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences Pub Date : 2024-02-29 DOI: 10.1016/j.eqs.2024.01.019
Yan Cai , Jianping Wu , Yaning Liu , Shijie Gao

Large earthquakes frequently occur along complex fault systems. Understanding seismic rupture and long-term fault evolution requires constraining the geometric and material properties of fault zone structures. We provide a comprehensive overview of recent advancements in seismological methods used to study fault zone structures, including seismic tomography, fault zone seismic wave analysis, and seismicity analysis. Observational conditions limit our current ability to fully characterize fault zones, for example, insufficient imaging resolution to discern small-scale anomalies, incomplete capture of crucial fault zone seismic waves, and limited precision in event location accuracy. Dense seismic arrays can overcome these limitations and enable more detailed investigations of fault zone structures. Moreover, we present new insights into the structure of the Anninghe-Xiaojiang fault zone in the southeastern margin of the Qinghai-Xizang Plateau based on data collected from a dense seismic array. We found that utilizing a dense seismic array can identify small-scale features within fault zones, aiding in the interpretation of fault zone geometry and material properties.

大地震经常沿着复杂的断层系统发生。要了解地震破裂和断层的长期演化,需要对断层带结构的几何和材料特性进行约束。我们全面概述了用于研究断层带结构的地震学方法的最新进展,包括地震层析成像、断层带地震波分析和震度分析。观测条件限制了我们目前全面描述断层带特征的能力,例如,成像分辨率不足,无法辨别小尺度异常,无法完全捕捉关键的断层带地震波,以及事件定位精度有限。密集地震阵列可以克服这些限制,对断层带结构进行更详细的研究。此外,我们基于密集地震阵列采集的数据,对青藏高原东南缘安宁河-小江断裂带的结构提出了新的见解。我们发现,利用密集地震阵列可以识别断层带内的小尺度特征,有助于解释断层带的几何形状和物质属性。
{"title":"Advances in seismological methods for characterizing fault zone structure","authors":"Yan Cai ,&nbsp;Jianping Wu ,&nbsp;Yaning Liu ,&nbsp;Shijie Gao","doi":"10.1016/j.eqs.2024.01.019","DOIUrl":"https://doi.org/10.1016/j.eqs.2024.01.019","url":null,"abstract":"<div><p>Large earthquakes frequently occur along complex fault systems. Understanding seismic rupture and long-term fault evolution requires constraining the geometric and material properties of fault zone structures. We provide a comprehensive overview of recent advancements in seismological methods used to study fault zone structures, including seismic tomography, fault zone seismic wave analysis, and seismicity analysis. Observational conditions limit our current ability to fully characterize fault zones, for example, insufficient imaging resolution to discern small-scale anomalies, incomplete capture of crucial fault zone seismic waves, and limited precision in event location accuracy. Dense seismic arrays can overcome these limitations and enable more detailed investigations of fault zone structures. Moreover, we present new insights into the structure of the Anninghe-Xiaojiang fault zone in the southeastern margin of the Qinghai-Xizang Plateau based on data collected from a dense seismic array. We found that utilizing a dense seismic array can identify small-scale features within fault zones, aiding in the interpretation of fault zone geometry and material properties.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"37 2","pages":"Pages 122-138"},"PeriodicalIF":1.2,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674451924000235/pdfft?md5=157007a99f8ccc19826cb362aefaf71a&pid=1-s2.0-S1674451924000235-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139993564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractal analysis of major faults and fractal dimension of lineaments in the Indo-Gangetic Plain on a regional scale 印度洋-甘地平原主要断层的分形分析和区域尺度线形的分形维度
IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences Pub Date : 2024-02-29 DOI: 10.1016/j.eqs.2024.01.015
Vipin Chauhan, Jagabandhu Dixit

The Indo-Gangetic Plain (IGP) is one of the most seismically vulnerable areas due to its proximity to the Himalayas. Geographic information system (GIS)-based seismic characterization of the IGP was performed based on the degree of deformation and fractal dimension. The zone between the Main Boundary Thrust (MBT) and the Main Central Thrust (MCT) in the Himalayan Mountain Range (HMR) experienced large variations in earthquake magnitude, which were identified by Number-Size (NS) fractal modeling. The central IGP zone experienced only moderate to low mainshock levels. Fractal analysis of earthquake epicenters reveals a large scattering of earthquake epicenters in the HMR and central IGP zones. Similarly, the fault fractal analysis identifies the HMR, central IGP, and south-western IGP zones as having more faults. Overall, the seismicity of the study region is strong in the central IGP, south-western IGP, and HMR zones, moderate in the western and southern IGP, and low in the northern, eastern, and south-eastern IGP zones.

印度洋-恒河平原(IGP)毗邻喜马拉雅山脉,是最容易发生地震的地区之一。根据变形程度和分形维度,对印度洋-甘地平原进行了基于地理信息系统(GIS)的地震特征描述。喜马拉雅山脉(HMR)的主边界推力(MBT)和主中央推力(MCT)之间的区域经历了巨大的震级变化,这些变化是通过数量-尺寸(NS)分形建模确定的。IGP 中心地带仅经历了中等至较低的主震级别。对地震震中的分形分析表明,HMR 和 IGP 中心区的地震震中非常分散。同样,断层分形分析表明,HMR、IGP 中部和 IGP 西南部地带的断层较多。总体而言,研究区域的地震活动性在 IGP 中部、IGP 西南部和 HMR 区较强,在 IGP 西部和南部中等,在 IGP 北部、东部和东南部较低。
{"title":"Fractal analysis of major faults and fractal dimension of lineaments in the Indo-Gangetic Plain on a regional scale","authors":"Vipin Chauhan,&nbsp;Jagabandhu Dixit","doi":"10.1016/j.eqs.2024.01.015","DOIUrl":"https://doi.org/10.1016/j.eqs.2024.01.015","url":null,"abstract":"<div><p>The Indo-Gangetic Plain (IGP) is one of the most seismically vulnerable areas due to its proximity to the Himalayas. Geographic information system (GIS)-based seismic characterization of the IGP was performed based on the degree of deformation and fractal dimension. The zone between the Main Boundary Thrust (MBT) and the Main Central Thrust (MCT) in the Himalayan Mountain Range (HMR) experienced large variations in earthquake magnitude, which were identified by Number-Size (NS) fractal modeling. The central IGP zone experienced only moderate to low mainshock levels. Fractal analysis of earthquake epicenters reveals a large scattering of earthquake epicenters in the HMR and central IGP zones. Similarly, the fault fractal analysis identifies the HMR, central IGP, and south-western IGP zones as having more faults. Overall, the seismicity of the study region is strong in the central IGP, south-western IGP, and HMR zones, moderate in the western and southern IGP, and low in the northern, eastern, and south-eastern IGP zones.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"37 2","pages":"Pages 107-121"},"PeriodicalIF":1.2,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674451924000193/pdfft?md5=2b5ba5408714428e5ca9637a210c7ec7&pid=1-s2.0-S1674451924000193-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139993566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A modified stochastic finite-fault method for estimating strong ground motion: Validation and application 用于估算强地面运动的修正随机有限故障法:验证与应用
IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences Pub Date : 2024-02-01 DOI: 10.1016/j.eqs.2023.11.002
Xinjuan He, Hua Pan

We developed a modified stochastic finite-fault method for estimating strong ground motions. An adjustment to the dynamic corner frequency was introduced, which accounted for the effect of the location of the subfault relative to the hypocenter and rupture propagation direction, to account for the influence of the rupture propagation direction on the subfault dynamic corner frequency. By comparing the peak ground acceleration (PGA), pseudo-absolute response spectra acceleration (PSA, damping ratio of 5%), and duration, the results of the modified and existing methods were compared, demonstrating that our proposed adjustment to the dynamic corner frequency can accurately reflect the rupture directivity effect. We applied our modified method to simulate near-field strong motions within 150 km of the 2008 MW7.9 Wenchuan earthquake rupture. Our modified method performed well over a broad period range, particularly at 0.04–4 s. The total deviations of the stochastic finite-fault method (EXSIM) and the modified EXSIM were 0.1676 and 0.1494, respectively. The modified method can effectively account for the influence of the rupture propagation direction and provide more realistic ground motion estimations for earthquake disaster mitigation.

我们开发了一种用于估算强地面运动的修正随机有限断层法。我们引入了对动态角频率的调整,该调整考虑了子断层相对于次中心的位置和断裂传播方向的影响,以考虑断裂传播方向对子断层动态角频率的影响。通过比较峰值地面加速度(PGA)、伪绝对响应谱加速度(PSA,阻尼比为 5%)和持续时间,比较了修改后的方法和现有方法的结果,证明我们提出的动态角频率调整能准确反映破裂指向性效应。我们应用修改后的方法模拟了 2008 年 MW7.9 级汶川地震破裂 150 公里范围内的近场强震。随机有限断层法(EXSIM)和修正的 EXSIM 的总偏差分别为 0.1676 和 0.1494。修正后的方法可以有效地考虑破裂传播方向的影响,为地震减灾提供更真实的地面运动估算。
{"title":"A modified stochastic finite-fault method for estimating strong ground motion: Validation and application","authors":"Xinjuan He,&nbsp;Hua Pan","doi":"10.1016/j.eqs.2023.11.002","DOIUrl":"https://doi.org/10.1016/j.eqs.2023.11.002","url":null,"abstract":"<div><p>We developed a modified stochastic finite-fault method for estimating strong ground motions. An adjustment to the dynamic corner frequency was introduced, which accounted for the effect of the location of the subfault relative to the hypocenter and rupture propagation direction, to account for the influence of the rupture propagation direction on the subfault dynamic corner frequency. By comparing the peak ground acceleration (PGA), pseudo-absolute response spectra acceleration (PSA, damping ratio of 5%), and duration, the results of the modified and existing methods were compared, demonstrating that our proposed adjustment to the dynamic corner frequency can accurately reflect the rupture directivity effect. We applied our modified method to simulate near-field strong motions within 150 km of the 2008 <em>M</em><sub>W</sub>7.9 Wenchuan earthquake rupture. Our modified method performed well over a broad period range, particularly at 0.04–4 s. The total deviations of the stochastic finite-fault method (EXSIM) and the modified EXSIM were 0.1676 and 0.1494, respectively. The modified method can effectively account for the influence of the rupture propagation direction and provide more realistic ground motion estimations for earthquake disaster mitigation.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"37 1","pages":"Pages 36-50"},"PeriodicalIF":1.2,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674451923000575/pdfft?md5=85701b6a41e901723ca69c58be7207f0&pid=1-s2.0-S1674451923000575-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139652902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The accessible seismological dataset of a high-density 2D seismic array along Anninghe fault 安宁河断层沿线高密度二维地震阵列可获取的地震学数据集
IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences Pub Date : 2024-02-01 DOI: 10.1016/j.eqs.2023.11.001
Weifan Lu , Zeyan Zhao , Han Yue , Shiyong Zhou , Jianping Wu , Xiaodong Song

The scientific goal of the Anninghe seismic array is to investigate the detailed geometry of the Anninghe fault and the velocity structure of the fault zone. This 2D seismic array is composed of 161 stations forming sub-rectangular geometry along the Anninghe fault, which covers 50 km and 150 km in the fault normal and strike directions, respectively, with ∼ 5 km intervals. The data were collected between June 2020 and June 2021, with some level of temporal gaps. Two types of instruments, i.e. QS-05A and SmartSolo, are used in this array. Data quality and examples of seismograms are provided in this paper. After the data protection period ends (expected in June 2024), researchers can request a dataset from the National Earthquake Science Data Center.

安宁河地震台阵的科学目标是研究安宁河断层的详细几何形状和断层带的速度结构。该二维地震台阵由 161 个台站组成,沿安宁河断层呈次矩形分布,在断层法向和走向上的覆盖范围分别为 50 千米和 150 千米,台站间距为 5 千米。数据采集时间为 2020 年 6 月至 2021 年 6 月,有一定的时间间隔。该阵列使用了两种仪器,即 QS-05A 和 SmartSolo。本文提供了数据质量和地震图示例。数据保护期结束后(预计在 2024 年 6 月),研究人员可向国家地震科学数据中心申请数据集。
{"title":"The accessible seismological dataset of a high-density 2D seismic array along Anninghe fault","authors":"Weifan Lu ,&nbsp;Zeyan Zhao ,&nbsp;Han Yue ,&nbsp;Shiyong Zhou ,&nbsp;Jianping Wu ,&nbsp;Xiaodong Song","doi":"10.1016/j.eqs.2023.11.001","DOIUrl":"https://doi.org/10.1016/j.eqs.2023.11.001","url":null,"abstract":"<div><p>The scientific goal of the Anninghe seismic array is to investigate the detailed geometry of the Anninghe fault and the velocity structure of the fault zone. This 2D seismic array is composed of 161 stations forming sub-rectangular geometry along the Anninghe fault, which covers 50 km and 150 km in the fault normal and strike directions, respectively, with ∼ 5 km intervals. The data were collected between June 2020 and June 2021, with some level of temporal gaps. Two types of instruments, i.e. QS-05A and SmartSolo, are used in this array. Data quality and examples of seismograms are provided in this paper. After the data protection period ends (expected in June 2024), researchers can request a dataset from the National Earthquake Science Data Center.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"37 1","pages":"Pages 67-77"},"PeriodicalIF":1.2,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674451923000563/pdfft?md5=b25ae01b84436e2f54cce37d877a671e&pid=1-s2.0-S1674451923000563-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139652904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum to: A review of the wave gradiometry method for seismic imaging 勘误:地震成像波梯度测量法综述
IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences Pub Date : 2024-02-01 DOI: 10.1016/j.eqs.2023.12.002
Chuntao Liang , Feihuang Cao , Zhijin Liu , Yingna Chang
{"title":"Erratum to: A review of the wave gradiometry method for seismic imaging","authors":"Chuntao Liang ,&nbsp;Feihuang Cao ,&nbsp;Zhijin Liu ,&nbsp;Yingna Chang","doi":"10.1016/j.eqs.2023.12.002","DOIUrl":"https://doi.org/10.1016/j.eqs.2023.12.002","url":null,"abstract":"","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"37 1","pages":"Page 91"},"PeriodicalIF":1.2,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674451923000666/pdfft?md5=a14e28047ef4ae8f0ad46f5c470b9e9c&pid=1-s2.0-S1674451923000666-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139652906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The MW5.5 earthquake on August 6, 2023, in Pingyuan, Shandong, China: A rupture on a buried fault 2023 年 8 月 6 日,中国山东平原发生 MW5.5 级地震:埋藏断层上的断裂
IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences Pub Date : 2024-02-01 DOI: 10.1016/j.eqs.2023.10.001
Zhe Zhang, Lisheng Xu, Lihua Fang

On August 6, 2023, a magnitude MW5.5 earthquake struck Pingyuan County, Dezhou City, Shandong Province, China. This event was significant as no large earthquakes had been recorded in the region for over a century, and no active fault had been previously identified. This study collects 1309 P-wave arrival times and 866 S-wave arrival times from 74 seismic stations less than 200 km to the epicenter to constrain the spatial distribution of the mainshock and its 125 early aftershocks by the double difference earthquake relocation method, and selects 864 P-waveforms from 288 stations located within 800 km of the epicenter to constrain the focal mechanism solution of the mainshock through centroid moment tensor inversion. The relocation and the inversion indicate, the Pingyuan MW5.5 earthquake was caused by a rupture on a buried fault, likely an extensive segment of the Gaotang fault. This buried fault exhibited a dip of approximately 75° to the northwest, with a strike of 222°, similar to the Gaotang fault. The rupture initiated at the depth of 18.6 km and propagated upward and northeastward. However, the ground surface was not broken. The total duration of the rupture was ∼6.0 s, releasing the scalar moment of 2.5895 × 1017 N·m, equivalent to MW5.54. The moment rate reached the maximum only 1.4 seconds after the rupture initiation, and the 90% scalar moment was released in the first 4.6 s. In the first 1.4 seconds of the rupture process, the rupture velocity was estimated to be 2.6 km/s, slower than the local S-wave velocity. As the rupture neared its end, the rupture velocity decreased significantly. This study provides valuable insights into the seismic characteristics of the Pingyuan MW5.5 earthquake, shedding light on the previously unidentified buried fault responsible for the seismic activity in the region. Understanding the behavior of such faults is crucial for assessing seismic hazards and enhancing earthquake preparedness in the future.

2023 年 8 月 6 日,中国山东省德州市平原县发生 MW5.5 级地震。此次地震意义重大,因为该地区一个多世纪以来从未发生过大地震,此前也未发现活动断层。本研究收集了距震中不足 200 公里的 74 个地震台站的 1309 个 P 波到达时间和 866 个 S 波到达时间,通过双差分地震重定位方法约束了主震及其 125 个早期余震的空间分布,并从震中 800 公里范围内的 288 个台站中选择了 864 个 P 波形,通过中心点矩张量反演约束了主震的焦点机制解。搬迁和反演结果表明,平远 MW5.5 地震是由一条埋藏断层上的断裂引起的,该断层很可能是高塘断层的一个广泛地段。该埋藏断层向西北倾角约 75°,走向 222°,与高塘断层相似。断裂始于 18.6 千米深处,向上并向东北方向传播。然而,地表并未被破坏。断裂总持续时间为 6.0 秒,释放的标量力矩为 2.5895 × 1017 N-m,相当于 MW5.54。在断裂过程的前 1.4 秒,断裂速度估计为 2.6 km/s,慢于当地的 S 波速度。随着断裂接近尾声,断裂速度明显下降。这项研究为了解平远 MW5.5 地震的地震特征提供了有价值的见解,揭示了导致该地区地震活动的、之前尚未发现的埋藏断层。了解此类断层的行为对评估地震灾害和加强未来地震防备至关重要。
{"title":"The MW5.5 earthquake on August 6, 2023, in Pingyuan, Shandong, China: A rupture on a buried fault","authors":"Zhe Zhang,&nbsp;Lisheng Xu,&nbsp;Lihua Fang","doi":"10.1016/j.eqs.2023.10.001","DOIUrl":"https://doi.org/10.1016/j.eqs.2023.10.001","url":null,"abstract":"<div><p>On August 6, 2023, a magnitude <em>M</em><sub>W</sub>5.5 earthquake struck Pingyuan County, Dezhou City, Shandong Province, China. This event was significant as no large earthquakes had been recorded in the region for over a century, and no active fault had been previously identified. This study collects 1309 P-wave arrival times and 866 S-wave arrival times from 74 seismic stations less than 200 km to the epicenter to constrain the spatial distribution of the mainshock and its 125 early aftershocks by the double difference earthquake relocation method, and selects 864 P-waveforms from 288 stations located within 800 km of the epicenter to constrain the focal mechanism solution of the mainshock through centroid moment tensor inversion. The relocation and the inversion indicate, the Pingyuan <em>M</em><sub>W</sub>5.5 earthquake was caused by a rupture on a buried fault, likely an extensive segment of the Gaotang fault. This buried fault exhibited a dip of approximately 75° to the northwest, with a strike of 222°, similar to the Gaotang fault. The rupture initiated at the depth of 18.6 km and propagated upward and northeastward. However, the ground surface was not broken. The total duration of the rupture was ∼6.0 s, releasing the scalar moment of 2.5895 × 10<sup>17</sup> N·m, equivalent to <em>M</em><sub>W</sub>5.54. The moment rate reached the maximum only 1.4 seconds after the rupture initiation, and the 90% scalar moment was released in the first 4.6 s. In the first 1.4 seconds of the rupture process, the rupture velocity was estimated to be 2.6 km/s, slower than the local S-wave velocity. As the rupture neared its end, the rupture velocity decreased significantly. This study provides valuable insights into the seismic characteristics of the Pingyuan <em>M</em><sub>W</sub>5.5 earthquake, shedding light on the previously unidentified buried fault responsible for the seismic activity in the region. Understanding the behavior of such faults is crucial for assessing seismic hazards and enhancing earthquake preparedness in the future.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"37 1","pages":"Pages 1-12"},"PeriodicalIF":1.2,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674451923000526/pdfft?md5=155260214fcd397a0ac381cfd73a7c15&pid=1-s2.0-S1674451923000526-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139652912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the eigenvalues and eigendisplacement of the critical mode in horizontally layered media 论水平分层介质临界模式的特征值和特征位移
IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences Pub Date : 2024-02-01 DOI: 10.1016/j.eqs.2023.11.005
Shaotong Wang, Laiyu Lu

Wave propagation in horizontally layered media is a classical problem in seismic-wave theory. In semi-infinite space, a nondispersive Rayleigh wave mode exists, and the eigendisplacement decays exponentially with depth. In a layered model with increasing layer velocity, the phase velocity of the Rayleigh wave varies between the S-wave velocity of the bottom half-space and that of the classical Rayleigh wave propagated in a supposed half-space formed by the parameters of the top layer. If the phase velocity is the same as the P- or S-wave velocity of the layer, which is called the critical mode or critical phase velocity of surface waves, the general solution of the wave equation is not a homogeneous (expressed by trigonometric functions) or inhomogeneous (expressed by exponential functions) plane wave, but one whose amplitude changes linearly with depth (expressed by a linear function). Theories based on a general solution containing only trigonometric or exponential functions do not apply to the critical mode, owing to the singularity at the critical phase velocity. In this study, based on the classical framework of generalized reflection and transmission coefficients, the propagation of surface waves in horizontally layered media was studied by introducing a solution for the linear function at the critical phase velocity. Therefore, the eigenvalues and eigenfunctions of the critical mode can be calculated by solving a singular problem. The eigendisplacement characteristics associated with the critical phase velocity were investigated for different layered models. In contrast to the normal mode, the eigendisplacement associated with the critical phase velocity exhibits different characteristics. If the phase velocity is equal to the S-wave velocity in the bottom half-space, the eigendisplacement remains constant with increasing depth.

水平层介质中的波传播是地震波理论中的一个经典问题。在半无限空间中,存在一种非分散瑞利波模式,其等效位移随深度呈指数衰减。在层速度增加的分层模型中,瑞利波的相位速度介于底层半空间的 S 波速度和在由顶层参数构成的假定半空间中传播的经典瑞利波的相位速度之间。如果相位速度与该层的 P 波或 S 波速度相同,即表面波的临界模式或临界相位速度,则波方程的一般解不是均质(用三角函数表示)或不均质(用指数函数表示)平面波,而是振幅随深度线性变化(用线性函数表示)的波。基于只包含三角函数或指数函数的一般解的理论不适用于临界模式,因为临界相位速度处存在奇异性。在本研究中,基于广义反射系数和透射系数的经典框架,通过引入临界相速度处的线性函数解,研究了面波在水平层介质中的传播。因此,临界模式的特征值和特征函数可以通过求解奇异问题来计算。针对不同的分层模型,研究了与临界相速度相关的极位移特性。与正常模式相比,与临界相位速度相关的高根位移表现出不同的特征。如果相速度等于底部半空间的 S 波速度,则随着深度的增加,顶底位移保持不变。
{"title":"On the eigenvalues and eigendisplacement of the critical mode in horizontally layered media","authors":"Shaotong Wang,&nbsp;Laiyu Lu","doi":"10.1016/j.eqs.2023.11.005","DOIUrl":"https://doi.org/10.1016/j.eqs.2023.11.005","url":null,"abstract":"<div><p>Wave propagation in horizontally layered media is a classical problem in seismic-wave theory. In semi-infinite space, a nondispersive Rayleigh wave mode exists, and the eigendisplacement decays exponentially with depth. In a layered model with increasing layer velocity, the phase velocity of the Rayleigh wave varies between the S-wave velocity of the bottom half-space and that of the classical Rayleigh wave propagated in a supposed half-space formed by the parameters of the top layer. If the phase velocity is the same as the P- or S-wave velocity of the layer, which is called the critical mode or critical phase velocity of surface waves, the general solution of the wave equation is not a homogeneous (expressed by trigonometric functions) or inhomogeneous (expressed by exponential functions) plane wave, but one whose amplitude changes linearly with depth (expressed by a linear function). Theories based on a general solution containing only trigonometric or exponential functions do not apply to the critical mode, owing to the singularity at the critical phase velocity. In this study, based on the classical framework of generalized reflection and transmission coefficients, the propagation of surface waves in horizontally layered media was studied by introducing a solution for the linear function at the critical phase velocity. Therefore, the eigenvalues and eigenfunctions of the critical mode can be calculated by solving a singular problem. The eigendisplacement characteristics associated with the critical phase velocity were investigated for different layered models. In contrast to the normal mode, the eigendisplacement associated with the critical phase velocity exhibits different characteristics. If the phase velocity is equal to the S-wave velocity in the bottom half-space, the eigendisplacement remains constant with increasing depth.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"37 1","pages":"Pages 13-35"},"PeriodicalIF":1.2,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674451923000605/pdfft?md5=f9d8d8e04ad44779ff439bdf7b9ca64d&pid=1-s2.0-S1674451923000605-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139652901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intrinsic and scattering attenuations of the Sichuan-Yunnan region in China from S coda waves 中国四川-云南地区 S 尾波的本征和散射衰减
IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences Pub Date : 2024-02-01 DOI: 10.1016/j.eqs.2023.11.003
Tian Li , Lei Zhang , Xiaodong Song , Qincai Wang , Xinyu Jiang , Jinchuan Zhang , Hanlin Chen

Seismic attenuation is a fundamental property of the Earth's media. Attenuation structure for the complicated geological structures with strong seismicity in the Sichuan-Yunnan region is poorly studied. In this study, we collected 108,399 waveforms of 11,517 local small earthquakes with magnitudes between 1.5 and 3.5 from January 2014 to September 2021 in the Sichuan-Yunnan region and its adjacent areas. We employed an envelope inversion technique for separating the intrinsic and scattering attenuations of the S coda wave, and obtained the intrinsic and scattering attenuation structures for frequencies between 0.25 and 8.00 Hz. The attenuation structures correlate well with the geological units, and some major faults mark the attenuation variations where historic large earthquakes have occurred. The regional average attenuation shows a negative frequency dependence. The average scattering attenuation has a faster descending rate than the average intrinsic attenuation, and is dominant at low frequencies, while at high frequencies the average intrinsic attenuation is stronger. The lateral variation in the intrinsic attenuation is consistent with the variation in heat flow, the scattering attenuation may be related to the scatter distribution and size. The total attenuation is consistent with the previous studies in this region, and the separate intrinsic and scattering attenuation may be useful in understanding regional tectonics and important in earthquake prevention and disaster reduction.

地震衰减是地球介质的基本特性。目前对四川云南地区强震复杂地质结构的衰减结构研究较少。本研究收集了 2014 年 1 月至 2021 年 9 月川滇地区及其邻近地区发生的 11,517 次 1.5 级至 3.5 级局部小地震的 108,399 个波形。我们采用包络反演技术分离了 S 尾振波的本征衰减和散射衰减,得到了频率在 0.25 至 8.00 Hz 之间的本征衰减结构和散射衰减结构。衰减结构与地质单元有很好的相关性,历史上发生过大地震的一些主要断层标志着衰减变化。区域平均衰减与频率呈负相关。平均散射衰减的下降速度比平均本征衰减快,在低频时占主导地位,而在高频时平均本征衰减较强。本征衰减的横向变化与热流的变化一致,散射衰减可能与散射分布和大小有关。总衰减与该地区以往的研究结果一致,单独的本征衰减和散射衰减可能有助于了解区域构造,对防震减灾具有重要意义。
{"title":"Intrinsic and scattering attenuations of the Sichuan-Yunnan region in China from S coda waves","authors":"Tian Li ,&nbsp;Lei Zhang ,&nbsp;Xiaodong Song ,&nbsp;Qincai Wang ,&nbsp;Xinyu Jiang ,&nbsp;Jinchuan Zhang ,&nbsp;Hanlin Chen","doi":"10.1016/j.eqs.2023.11.003","DOIUrl":"https://doi.org/10.1016/j.eqs.2023.11.003","url":null,"abstract":"<div><p>Seismic attenuation is a fundamental property of the Earth's media. Attenuation structure for the complicated geological structures with strong seismicity in the Sichuan-Yunnan region is poorly studied. In this study, we collected 108,399 waveforms of 11,517 local small earthquakes with magnitudes between 1.5 and 3.5 from January 2014 to September 2021 in the Sichuan-Yunnan region and its adjacent areas. We employed an envelope inversion technique for separating the intrinsic and scattering attenuations of the S coda wave, and obtained the intrinsic and scattering attenuation structures for frequencies between 0.25 and 8.00 Hz. The attenuation structures correlate well with the geological units, and some major faults mark the attenuation variations where historic large earthquakes have occurred. The regional average attenuation shows a negative frequency dependence. The average scattering attenuation has a faster descending rate than the average intrinsic attenuation, and is dominant at low frequencies, while at high frequencies the average intrinsic attenuation is stronger. The lateral variation in the intrinsic attenuation is consistent with the variation in heat flow, the scattering attenuation may be related to the scatter distribution and size. The total attenuation is consistent with the previous studies in this region, and the separate intrinsic and scattering attenuation may be useful in understanding regional tectonics and important in earthquake prevention and disaster reduction.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"37 1","pages":"Pages 51-66"},"PeriodicalIF":1.2,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674451923000587/pdfft?md5=7463e0f16fe96810ece59b82fe24967c&pid=1-s2.0-S1674451923000587-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139652903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of faulting destruction and water supply pipeline damage from the first mainshock of the February 6, 2023 Türkiye earthquake doublet 2023 年 2 月 6 日图尔基耶双重地震第一次主震造成的断层破坏和供水管道损坏分析
IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences Pub Date : 2024-02-01 DOI: 10.1016/j.eqs.2023.11.004
Xiaoqing Fan , Libao Zhang , Juke Wang , Yefei Ren , Aiwen Liu

In 2023, two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye, causing severe casualties and economic losses. The damage to critical urban infrastructure and building structures, including highways, railroads, and water supply pipelines, was particularly severe in areas where these structures intersected the seismogenic fault. Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement, pulse velocity, and ground motions. In this study, we used a unique approach to analyze the acceleration records obtained from the seismic station array (9 strong ground motion stations) located along the East Anatolian Fault (the seismogenic fault of the MW7.8 mainshock of the 2023 Türkiye earthquake doublet). The acceleration records were filtered and integrated to obtain the velocity and displacement time histories. We used the results of an on-site investigation, jointly conducted by China Earthquake Administration and Türkiye’s AFAD, to analyze the distribution of PGA, PGV, and PGD recorded by the strong motion array of the East Anatolian Fault. We found that the maximum horizontal PGA in this earthquake was 3.0 g, and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m. As the fault rupture propagated southwest, the velocity pulse caused by the directional effect of the rupture increased gradually, with the maximum PGA reaching 162.3 cm/s. We also discussed the seismic safety of critical infrastructure projects traversing active faults, using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes. We used a three-dimensional finite element model of the PE (polyethylene) water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms. We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline, based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake. The seismic method of buried pipelines crossing the fault was summarized.

2023 年,土耳其连续发生两次超过 7 级的地震,造成严重的人员伤亡和经济损失。公路、铁路和供水管道等重要城市基础设施和建筑结构在与地震断层相交的地区受到的破坏尤为严重。穿越活动断层的关键基础设施项目很容易受到断层运动、脉冲速度和地面运动的影响。在本研究中,我们采用了一种独特的方法来分析从位于东安纳托利亚断层(2023 年图尔基耶双重地震中 MW7.8 主震的发震断层)沿线的地震台站阵列(9 个强地震动台站)获得的加速度记录。对加速度记录进行过滤和积分,以获得速度和位移时间历程。我们利用中国地震局和土耳其 AFAD 联合开展的现场调查的结果,分析了东安纳托利亚断层强震阵列记录的 PGA、PGV 和 PGD 的分布。我们发现,此次地震的最大水平 PGA 为 3.0 g,东安纳托利亚断层断裂引起的最大共震面位移为 6.50 m,随着断层断裂向西南传播,断裂方向效应引起的速度脉冲逐渐增加,最大 PGA 达到 162.3 cm/s。我们还通过两个案例研究了穿越活动断层的重要基础设施项目的地震安全性,这两个案例研究的对象是在地震中受损的图尔基耶的供水管道。我们利用伊斯拉希耶国立医院聚乙烯(PE)供水管道的三维有限元模型和现场调查获得的断层位移观测结果,分析了管道的破坏机制。根据我们的分析和 1999 年科贾埃利地震中泰晤士河大口径输水管道的破坏表现,我们进一步研究了断层交叉角对管道地震安全性的影响。总结了穿越断层的埋地管道的抗震方法。
{"title":"Analysis of faulting destruction and water supply pipeline damage from the first mainshock of the February 6, 2023 Türkiye earthquake doublet","authors":"Xiaoqing Fan ,&nbsp;Libao Zhang ,&nbsp;Juke Wang ,&nbsp;Yefei Ren ,&nbsp;Aiwen Liu","doi":"10.1016/j.eqs.2023.11.004","DOIUrl":"https://doi.org/10.1016/j.eqs.2023.11.004","url":null,"abstract":"<div><p>In 2023, two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye, causing severe casualties and economic losses. The damage to critical urban infrastructure and building structures, including highways, railroads, and water supply pipelines, was particularly severe in areas where these structures intersected the seismogenic fault. Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement, pulse velocity, and ground motions. In this study, we used a unique approach to analyze the acceleration records obtained from the seismic station array (9 strong ground motion stations) located along the East Anatolian Fault (the seismogenic fault of the <em>M</em><sub>W</sub>7.8 mainshock of the 2023 Türkiye earthquake doublet). The acceleration records were filtered and integrated to obtain the velocity and displacement time histories. We used the results of an on-site investigation, jointly conducted by China Earthquake Administration and Türkiye’s AFAD, to analyze the distribution of PGA, PGV, and PGD recorded by the strong motion array of the East Anatolian Fault. We found that the maximum horizontal PGA in this earthquake was 3.0 g, and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m. As the fault rupture propagated southwest, the velocity pulse caused by the directional effect of the rupture increased gradually, with the maximum PGA reaching 162.3 cm/s. We also discussed the seismic safety of critical infrastructure projects traversing active faults, using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes. We used a three-dimensional finite element model of the PE (polyethylene) water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms. We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline, based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake. The seismic method of buried pipelines crossing the fault was summarized.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"37 1","pages":"Pages 78-90"},"PeriodicalIF":1.2,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674451923000599/pdfft?md5=7d4e957703f0e5a7b18ba23065721bfd&pid=1-s2.0-S1674451923000599-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139652905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Earthquake Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1