ABSTRACT The advent of virtual reality (VR) in education offers unique possibilities for facilitating cooperative learning strategies, particularly in fields demanding intricate spatial understanding, such as gross anatomy. This study investigates the impact of integrating cooperative learning strategies within a VR-based gross anatomy curriculum, focusing on enhancing students’ anatomy knowledge and skills. We analyzed the performance of two cohorts of first-year nursing students across five semesters (2016–2020), where traditional learning methods were used in the first three semesters (2016–2018), and a VR-based cooperative learning approach was adopted in the last two semesters (2019–2020). Our findings suggest that the VR-based cooperative learning group achieved significantly higher scores in their gross anatomy laboratory courses compared to their counterparts learning through traditional methods. This research provides valuable insights into how the integration of VR technology and cooperative learning strategies can not only enhance learning outcomes but also improve the VR learning experience by reducing motion sickness. It accentuates the potential of VR-based cooperative learning as an impactful educational tool in anatomy education. Future research should further explore the optimal integration of VR and cooperative learning strategies in diverse course types and their potential to enhance educational outcomes and the learning experience.
{"title":"Enhancing anatomy education through cooperative learning: harnessing virtual reality for effective gross anatomy learning","authors":"Chao-Ying Wang, Ti Yin, Kuo-Hsing Ma, Jia-Fwu Shyu, Chia-Pi Cheng, Yu-Chiao Wang, Yun-Ling Huang, Ming-Hsien Chiang","doi":"10.1128/jmbe.00100-23","DOIUrl":"https://doi.org/10.1128/jmbe.00100-23","url":null,"abstract":"ABSTRACT The advent of virtual reality (VR) in education offers unique possibilities for facilitating cooperative learning strategies, particularly in fields demanding intricate spatial understanding, such as gross anatomy. This study investigates the impact of integrating cooperative learning strategies within a VR-based gross anatomy curriculum, focusing on enhancing students’ anatomy knowledge and skills. We analyzed the performance of two cohorts of first-year nursing students across five semesters (2016–2020), where traditional learning methods were used in the first three semesters (2016–2018), and a VR-based cooperative learning approach was adopted in the last two semesters (2019–2020). Our findings suggest that the VR-based cooperative learning group achieved significantly higher scores in their gross anatomy laboratory courses compared to their counterparts learning through traditional methods. This research provides valuable insights into how the integration of VR technology and cooperative learning strategies can not only enhance learning outcomes but also improve the VR learning experience by reducing motion sickness. It accentuates the potential of VR-based cooperative learning as an impactful educational tool in anatomy education. Future research should further explore the optimal integration of VR and cooperative learning strategies in diverse course types and their potential to enhance educational outcomes and the learning experience.","PeriodicalId":46416,"journal":{"name":"Journal of Microbiology & Biology Education","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135824263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ABSTRACT Climate change represents one of the biggest threats to agricultural productivity around the world. In the tropics, extreme climate and pest and disease outbreaks represent one of the biggest climate change threats to smallholder farmers. Understanding smallholder farmers’ educational needs and increasing access to information and awareness of climate change through education and training are key first steps to enhance the adaptive capacity of smallholder farmers. In a primary effort to increase accessible training and education to these communities, we developed a plant pathology lesson plan. The lesson plan introduces basic concepts in plant pathology and disease management using diverse educational activities focused on experiential and collaborative learning. This lesson plan may have implications in enhancing farmers’ adaptive capacity and increasing accessible education to underrepresented farming communities around the world.
{"title":"From the classroom to the farm: a lesson plan that promotes smallholder farmers’ education and training about plant pathology in the context of climate change","authors":"Nicole Colón Carrión, Sofia Machiavelli Girón","doi":"10.1128/jmbe.00090-23","DOIUrl":"https://doi.org/10.1128/jmbe.00090-23","url":null,"abstract":"ABSTRACT Climate change represents one of the biggest threats to agricultural productivity around the world. In the tropics, extreme climate and pest and disease outbreaks represent one of the biggest climate change threats to smallholder farmers. Understanding smallholder farmers’ educational needs and increasing access to information and awareness of climate change through education and training are key first steps to enhance the adaptive capacity of smallholder farmers. In a primary effort to increase accessible training and education to these communities, we developed a plant pathology lesson plan. The lesson plan introduces basic concepts in plant pathology and disease management using diverse educational activities focused on experiential and collaborative learning. This lesson plan may have implications in enhancing farmers’ adaptive capacity and increasing accessible education to underrepresented farming communities around the world.","PeriodicalId":46416,"journal":{"name":"Journal of Microbiology & Biology Education","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136112442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elizabeth G. Monthofer, Jewel M. Ito, Samantha Battaglia, Laura A. Diaz-Martinez
ABSTRACT Course-based undergraduate research experiences (CUREs) are increasingly becoming the first, and perhaps only, research experience for many biology students. Responsible and ethical conduct of research (RECR) is crucial for the integrity of scientific research and essential for students to have an understanding of the scientific process at any academic level. However, there is a current lack of RECR education in biology CUREs. To understand the level of RECR knowledge and skills in undergraduate students, we created a diagnostic survey that uses case scenarios designed to illustrate RECR issues in the CURE classroom. Analysis of students’ responses indicated that the overall percentage of students who are able to effectively use RECR terminology and identify the impact of RECR violations on science integrity and ultimately on society is low. Furthermore, some students equated RECR violations to academic dishonesty, indicating difficulties separating the research and academic aspects of CUREs. This diagnostic tool can aid instructors in identifying gaps in student RECR knowledge for the subsequent development of RECR educational interventions, particularly to ensure the integrity of the research performed in CURE settings.
{"title":"Responsible and ethical conduct of research (RECR) diagnostic survey using case scenarios from biology course-based undergraduate research experiences (CUREs)","authors":"Elizabeth G. Monthofer, Jewel M. Ito, Samantha Battaglia, Laura A. Diaz-Martinez","doi":"10.1128/jmbe.00119-23","DOIUrl":"https://doi.org/10.1128/jmbe.00119-23","url":null,"abstract":"ABSTRACT Course-based undergraduate research experiences (CUREs) are increasingly becoming the first, and perhaps only, research experience for many biology students. Responsible and ethical conduct of research (RECR) is crucial for the integrity of scientific research and essential for students to have an understanding of the scientific process at any academic level. However, there is a current lack of RECR education in biology CUREs. To understand the level of RECR knowledge and skills in undergraduate students, we created a diagnostic survey that uses case scenarios designed to illustrate RECR issues in the CURE classroom. Analysis of students’ responses indicated that the overall percentage of students who are able to effectively use RECR terminology and identify the impact of RECR violations on science integrity and ultimately on society is low. Furthermore, some students equated RECR violations to academic dishonesty, indicating difficulties separating the research and academic aspects of CUREs. This diagnostic tool can aid instructors in identifying gaps in student RECR knowledge for the subsequent development of RECR educational interventions, particularly to ensure the integrity of the research performed in CURE settings.","PeriodicalId":46416,"journal":{"name":"Journal of Microbiology & Biology Education","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135858101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Evelyn Goh, Anna Szücs, Victor Weng Keong Loh, Yann Felix Boucher
ABSTRACT The COVID-19 pandemic has demonstrated the detrimental effects of a lack of understanding of public health measures. During the pandemic, lockdowns, social distancing, and mask mandates introduced by governments were met with skepticism, doubt, and an unwillingness to comply, increasing the extent of negative outcomes as a result. Albeit devastating, the pandemic has offered an invaluable opportunity to observe the correlation between the prevalence of public health education and compliance with public health measures during critical times. In this article, we describe a card game that was developed during the COVID-19 pandemic to educate the public (including children) about how specific public health measures address the pandemic and how global cooperation is essential in addressing even one country’s problems. The game can be used in primary, secondary, or tertiary education classrooms, initiating conversations about the topic and providing a basic understanding before more in-depth learning.
{"title":"<i>Lockdown!</i> Learning public health of infectious diseases through gameplay","authors":"Evelyn Goh, Anna Szücs, Victor Weng Keong Loh, Yann Felix Boucher","doi":"10.1128/jmbe.00095-23","DOIUrl":"https://doi.org/10.1128/jmbe.00095-23","url":null,"abstract":"ABSTRACT The COVID-19 pandemic has demonstrated the detrimental effects of a lack of understanding of public health measures. During the pandemic, lockdowns, social distancing, and mask mandates introduced by governments were met with skepticism, doubt, and an unwillingness to comply, increasing the extent of negative outcomes as a result. Albeit devastating, the pandemic has offered an invaluable opportunity to observe the correlation between the prevalence of public health education and compliance with public health measures during critical times. In this article, we describe a card game that was developed during the COVID-19 pandemic to educate the public (including children) about how specific public health measures address the pandemic and how global cooperation is essential in addressing even one country’s problems. The game can be used in primary, secondary, or tertiary education classrooms, initiating conversations about the topic and providing a basic understanding before more in-depth learning.","PeriodicalId":46416,"journal":{"name":"Journal of Microbiology & Biology Education","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135591149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ABSTRACT Many introductory-level classes teach fundamental concepts, as they are prerequisites for upper-division courses. Therefore, the student body in these classes has diverse interests. To address this breadth of career trajectory, introductory-level laboratory courses often include experiments that demonstrate a wide range of microbiological techniques and processes. One of the experiments that is a standard component of many microbiology classes, the Bacterial Unknown Identification Project (BUIP), is often limited to isolated organisms or a specific environment. Here, we describe an updated method for the BUIP that incorporates the projected student career diversity through the implementation of multiple mixed cultures of microorganisms associated with different environments. This update can be utilized in any microbiology laboratory classroom. We maintained the learning objectives, including applying appropriate microbiological methods to analyze and interpret results, and effectively communicate scientific findings, while modifying the sample composition. Assessment of the modification demonstrated that upon completion of the BUIP, students felt that the project applied to their career and it did not take too much of their free time to complete.
{"title":"Increasing student interest with the Bacterial Unknown Identification Project: using mixed cultures to create real-world applications","authors":"Kayla Perri, Maha Abdelhaseib, Ashwana D. Fricker","doi":"10.1128/jmbe.00070-23","DOIUrl":"https://doi.org/10.1128/jmbe.00070-23","url":null,"abstract":"ABSTRACT Many introductory-level classes teach fundamental concepts, as they are prerequisites for upper-division courses. Therefore, the student body in these classes has diverse interests. To address this breadth of career trajectory, introductory-level laboratory courses often include experiments that demonstrate a wide range of microbiological techniques and processes. One of the experiments that is a standard component of many microbiology classes, the Bacterial Unknown Identification Project (BUIP), is often limited to isolated organisms or a specific environment. Here, we describe an updated method for the BUIP that incorporates the projected student career diversity through the implementation of multiple mixed cultures of microorganisms associated with different environments. This update can be utilized in any microbiology laboratory classroom. We maintained the learning objectives, including applying appropriate microbiological methods to analyze and interpret results, and effectively communicate scientific findings, while modifying the sample composition. Assessment of the modification demonstrated that upon completion of the BUIP, students felt that the project applied to their career and it did not take too much of their free time to complete.","PeriodicalId":46416,"journal":{"name":"Journal of Microbiology & Biology Education","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135592435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Felicia McKee, Josef D. Wolf, Samantha Simon, Jeanetta H. Floyd
ABSTRACT College to Career is a phrase that we often use to describe the skills and abilities that students should achieve while preparing for college and/or careers. To help prepare our students for their future careers, we developed a microbiology laboratory curriculum based on factors identified to improve college-to-career readiness. These factors include content knowledge, analyzing and interpreting data, accountability, goal setting, and teamwork. At the core of the design are inquiry and problem-based learning. This approach allows students to actively engage in the scientific process while collaborating with classmates and learning technical and transferable career skills. The curriculum includes microbiology laboratory skills, including plating, serial dilutions, and biochemical tests, with integrated opportunities for students to engage in critical thinking, analysis and interpretation of data, teamwork, goal setting, decision-making, and scientific writing.
{"title":"Teaching transferable skills in teamwork, accountability, goal setting, writing, and problem-solving in a non-major microbiology lab: the unknown bacteria experiment redefined","authors":"Felicia McKee, Josef D. Wolf, Samantha Simon, Jeanetta H. Floyd","doi":"10.1128/jmbe.00135-23","DOIUrl":"https://doi.org/10.1128/jmbe.00135-23","url":null,"abstract":"ABSTRACT College to Career is a phrase that we often use to describe the skills and abilities that students should achieve while preparing for college and/or careers. To help prepare our students for their future careers, we developed a microbiology laboratory curriculum based on factors identified to improve college-to-career readiness. These factors include content knowledge, analyzing and interpreting data, accountability, goal setting, and teamwork. At the core of the design are inquiry and problem-based learning. This approach allows students to actively engage in the scientific process while collaborating with classmates and learning technical and transferable career skills. The curriculum includes microbiology laboratory skills, including plating, serial dilutions, and biochemical tests, with integrated opportunities for students to engage in critical thinking, analysis and interpretation of data, teamwork, goal setting, decision-making, and scientific writing.","PeriodicalId":46416,"journal":{"name":"Journal of Microbiology & Biology Education","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135591664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emily M. Wollmuth, Alberto Correa, Manuela Alvarado Obando, Michelle K. Smith, Daniel H. Buckley, Kathleen L. Hefferon, Esther R. Angert
ABSTRACT In the microbial world, cell size and shape impact physiology, but students struggle to visualize spatial relationships between cells and macromolecules. In prokaryotic cells, cell size is limited by reliance on diffusion for nutrient uptake and the transport of nutrients within the cell. Cells must also meet a minimum size threshold to accommodate essential cellular components such as ribosomes and DNA. Using 3D printing allows for the creation of custom models that can be influential teaching tools in the biology classroom. This lesson uses 3D cell models to teach students enrolled in an introductory microbiology course about bacterial cell size and the biological importance of surface-area-to-volume ratio. During the lesson, students interact with 3D cell models and discuss a series of questions in small groups. Student learning was assessed using quantitative and qualitative student response data collected pre- and post-lesson. Student achievement of learning objectives, and their confidence in their knowledge of these concepts, improved post-lesson, and these gains were statistically significant. Our findings suggest that interacting with 3D-printed cell models improves student understanding about bacterial cell size and diffusion.
{"title":"Helping students see bacteria in 3D: cellular models increase student learning about cell size and diffusion","authors":"Emily M. Wollmuth, Alberto Correa, Manuela Alvarado Obando, Michelle K. Smith, Daniel H. Buckley, Kathleen L. Hefferon, Esther R. Angert","doi":"10.1128/jmbe.00089-23","DOIUrl":"https://doi.org/10.1128/jmbe.00089-23","url":null,"abstract":"ABSTRACT In the microbial world, cell size and shape impact physiology, but students struggle to visualize spatial relationships between cells and macromolecules. In prokaryotic cells, cell size is limited by reliance on diffusion for nutrient uptake and the transport of nutrients within the cell. Cells must also meet a minimum size threshold to accommodate essential cellular components such as ribosomes and DNA. Using 3D printing allows for the creation of custom models that can be influential teaching tools in the biology classroom. This lesson uses 3D cell models to teach students enrolled in an introductory microbiology course about bacterial cell size and the biological importance of surface-area-to-volume ratio. During the lesson, students interact with 3D cell models and discuss a series of questions in small groups. Student learning was assessed using quantitative and qualitative student response data collected pre- and post-lesson. Student achievement of learning objectives, and their confidence in their knowledge of these concepts, improved post-lesson, and these gains were statistically significant. Our findings suggest that interacting with 3D-printed cell models improves student understanding about bacterial cell size and diffusion.","PeriodicalId":46416,"journal":{"name":"Journal of Microbiology & Biology Education","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135696633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shelby Chandar, Ryan Crum, Eric Pennino, Cathy Ishikawa, Sayonita Ghosh Hajra, Kelly McDonald
ABSTRACT In higher education, syllabi have traditionally served as written contracts between instructors and their students, providing first-hand information about the course and expectations. Reading the syllabus may provide students with first impressions or mental images of the instructor, thereby initiating a student-instructor relationship even before any interaction has occurred. Instructors can use syllabi to directly communicate values and practices of equity and inclusion, but students can perceive indirect messages through tone and language that may support or contradict stated values. Here, we share empirically derived recommendations for improving the tone of syllabi with inviting language and stylistic features that promote relationship-building with students.
{"title":"Ten tips for developing a more inviting syllabus","authors":"Shelby Chandar, Ryan Crum, Eric Pennino, Cathy Ishikawa, Sayonita Ghosh Hajra, Kelly McDonald","doi":"10.1128/jmbe.00032-23","DOIUrl":"https://doi.org/10.1128/jmbe.00032-23","url":null,"abstract":"ABSTRACT In higher education, syllabi have traditionally served as written contracts between instructors and their students, providing first-hand information about the course and expectations. Reading the syllabus may provide students with first impressions or mental images of the instructor, thereby initiating a student-instructor relationship even before any interaction has occurred. Instructors can use syllabi to directly communicate values and practices of equity and inclusion, but students can perceive indirect messages through tone and language that may support or contradict stated values. Here, we share empirically derived recommendations for improving the tone of syllabi with inviting language and stylistic features that promote relationship-building with students.","PeriodicalId":46416,"journal":{"name":"Journal of Microbiology & Biology Education","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135696643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The landscape of higher education has changed significantly in recent years with a concomitant shift in the classroom. Science courses have historically been content-driven with the need to cover content driving curricular and pedagogical choices. However, educators are recognizing that the curricular approaches of years past no longer provide adequate support for students. A classroom that centers relationships—both among students as well as teachers and students—is one that is better positioned to foster a sense of belonging, science identity, and student success. Furthermore, an educator who builds a professional community and prioritizes self-care is the one who is better equipped to adapt to the ever-changing needs of students. Emphasizing the human component of education creates a classroom where students and teachers feel seen and valued and the educational experience is enriched for all.
{"title":"Centering relationships in the biology classroom","authors":"Amy Siegesmund","doi":"10.1128/jmbe.00124-23","DOIUrl":"https://doi.org/10.1128/jmbe.00124-23","url":null,"abstract":"The landscape of higher education has changed significantly in recent years with a concomitant shift in the classroom. Science courses have historically been content-driven with the need to cover content driving curricular and pedagogical choices. However, educators are recognizing that the curricular approaches of years past no longer provide adequate support for students. A classroom that centers relationships—both among students as well as teachers and students—is one that is better positioned to foster a sense of belonging, science identity, and student success. Furthermore, an educator who builds a professional community and prioritizes self-care is the one who is better equipped to adapt to the ever-changing needs of students. Emphasizing the human component of education creates a classroom where students and teachers feel seen and valued and the educational experience is enriched for all.","PeriodicalId":46416,"journal":{"name":"Journal of Microbiology & Biology Education","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135388415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Macy J. L. Rennpferd, Madeline V. Schroeder, Jonathan J. Nguyen, Marley A. Lund-Peterson, Onora Lancaster, Danielle L. Jessen Condry
ABSTRACT The Microbiology Concept Inventory is an assessment tool derived from the fundamental statements created by the American Society for Microbiology. This two-tier, multiple-choice question inventory requires students to choose the most correct answer for each question and provide a brief justification of their reasoning. Educators can utilize this tool to identify common misconceptions held by students and adjust curriculum to address and prevent the persistence of student misconceptions. Over the course of 5 years, the Microbiology Concept Inventory was annually administered to undergraduate students enrolled in entry-level, mid-level, and senior capstone microbiology courses at a mid-western rural university. Analysis was completed to compare course, year, majors and minors, gender, ethnicity, and cumulative GPA. Results of this study showed a significant difference in Microbiology Concept Inventory scores between students with high cumulative GPAs (3.5–4.0) and students with comparatively lower cumulative GPAs (2.5–2.99, 3.0–3.49). Results between the other demographic categories revealed statistically different scores in favor of white students, but no differences in scores between genders. The results suggest evidence of ethnic bias, but no gender bias as measured by the Microbiology Concept Inventory. Additionally, significant differences in scores across cohorts are indicative of improvements in the curricula due to prior targeted changes. Analysis of concept inventory results can guide curriculum changes for course instructors. Implementation of curriculum changes can enrich students’ academic success.
{"title":"Application of the Microbiology Concept Inventory to improve programmatic curriculum","authors":"Macy J. L. Rennpferd, Madeline V. Schroeder, Jonathan J. Nguyen, Marley A. Lund-Peterson, Onora Lancaster, Danielle L. Jessen Condry","doi":"10.1128/jmbe.00110-22","DOIUrl":"https://doi.org/10.1128/jmbe.00110-22","url":null,"abstract":"ABSTRACT The Microbiology Concept Inventory is an assessment tool derived from the fundamental statements created by the American Society for Microbiology. This two-tier, multiple-choice question inventory requires students to choose the most correct answer for each question and provide a brief justification of their reasoning. Educators can utilize this tool to identify common misconceptions held by students and adjust curriculum to address and prevent the persistence of student misconceptions. Over the course of 5 years, the Microbiology Concept Inventory was annually administered to undergraduate students enrolled in entry-level, mid-level, and senior capstone microbiology courses at a mid-western rural university. Analysis was completed to compare course, year, majors and minors, gender, ethnicity, and cumulative GPA. Results of this study showed a significant difference in Microbiology Concept Inventory scores between students with high cumulative GPAs (3.5–4.0) and students with comparatively lower cumulative GPAs (2.5–2.99, 3.0–3.49). Results between the other demographic categories revealed statistically different scores in favor of white students, but no differences in scores between genders. The results suggest evidence of ethnic bias, but no gender bias as measured by the Microbiology Concept Inventory. Additionally, significant differences in scores across cohorts are indicative of improvements in the curricula due to prior targeted changes. Analysis of concept inventory results can guide curriculum changes for course instructors. Implementation of curriculum changes can enrich students’ academic success.","PeriodicalId":46416,"journal":{"name":"Journal of Microbiology & Biology Education","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135815644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}