首页 > 最新文献

Monte Carlo Methods and Applications最新文献

英文 中文
A fresh Take on 'Barker Dynamics' for MCMC MCMC对“巴克动力”的全新诠释
IF 0.9 Q3 STATISTICS & PROBABILITY Pub Date : 2020-12-17 DOI: 10.1007/978-3-030-98319-2_8
Max Hird, Samuel Livingstone, Giacomo Zanella
{"title":"A fresh Take on 'Barker Dynamics' for MCMC","authors":"Max Hird, Samuel Livingstone, Giacomo Zanella","doi":"10.1007/978-3-030-98319-2_8","DOIUrl":"https://doi.org/10.1007/978-3-030-98319-2_8","url":null,"abstract":"","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"38 1","pages":"169-184"},"PeriodicalIF":0.9,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81976348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Simulation of conditional expectations under fast mean-reverting stochastic volatility models 快速均值回归随机波动模型下条件期望的模拟
IF 0.9 Q3 STATISTICS & PROBABILITY Pub Date : 2020-12-17 DOI: 10.1007/978-3-030-98319-2_11
A. Cozma, C. Reisinger
{"title":"Simulation of conditional expectations under fast mean-reverting stochastic volatility models","authors":"A. Cozma, C. Reisinger","doi":"10.1007/978-3-030-98319-2_11","DOIUrl":"https://doi.org/10.1007/978-3-030-98319-2_11","url":null,"abstract":"","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"16 1","pages":"223-240"},"PeriodicalIF":0.9,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75703429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Generating from the Strauss Process using stitching 使用缝线从施特劳斯工艺生成
IF 0.9 Q3 STATISTICS & PROBABILITY Pub Date : 2020-12-15 DOI: 10.1007/978-3-030-98319-2_12
M. Huber
{"title":"Generating from the Strauss Process using stitching","authors":"M. Huber","doi":"10.1007/978-3-030-98319-2_12","DOIUrl":"https://doi.org/10.1007/978-3-030-98319-2_12","url":null,"abstract":"","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"12 1","pages":"241-251"},"PeriodicalIF":0.9,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82058479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applications of multivariate quasi-random sampling with neural networks 神经网络在多元拟随机抽样中的应用
IF 0.9 Q3 STATISTICS & PROBABILITY Pub Date : 2020-12-15 DOI: 10.1007/978-3-030-98319-2_14
M. Hofert, Avinash Prasad, Mu Zhu
{"title":"Applications of multivariate quasi-random sampling with neural networks","authors":"M. Hofert, Avinash Prasad, Mu Zhu","doi":"10.1007/978-3-030-98319-2_14","DOIUrl":"https://doi.org/10.1007/978-3-030-98319-2_14","url":null,"abstract":"","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"17 1","pages":"273-289"},"PeriodicalIF":0.9,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86001095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On the Selection of Random Field Evaluation Points in the p-MLQMC Method p-MLQMC方法中随机场评价点的选取
IF 0.9 Q3 STATISTICS & PROBABILITY Pub Date : 2020-12-15 DOI: 10.1007/978-3-030-98319-2_9
P. Blondeel, Pieterjan Robbe, S. François, G. Lombaert, S. Vandewalle
{"title":"On the Selection of Random Field Evaluation Points in the p-MLQMC Method","authors":"P. Blondeel, Pieterjan Robbe, S. François, G. Lombaert, S. Vandewalle","doi":"10.1007/978-3-030-98319-2_9","DOIUrl":"https://doi.org/10.1007/978-3-030-98319-2_9","url":null,"abstract":"","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"1 1","pages":"185-203"},"PeriodicalIF":0.9,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86246927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Frontmatter
IF 0.9 Q3 STATISTICS & PROBABILITY Pub Date : 2020-12-01 DOI: 10.1515/mcma-2020-frontmatter4
{"title":"Frontmatter","authors":"","doi":"10.1515/mcma-2020-frontmatter4","DOIUrl":"https://doi.org/10.1515/mcma-2020-frontmatter4","url":null,"abstract":"","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"1 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mcma-2020-frontmatter4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41816612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Random walk on ellipsoids method for solving elliptic and parabolic equations 求解椭圆型和抛物型方程的椭球随机游动方法
IF 0.9 Q3 STATISTICS & PROBABILITY Pub Date : 2020-11-20 DOI: 10.1515/mcma-2020-2078
I. Shalimova, K. Sabelfeld
Abstract A Random Walk on Ellipsoids (RWE) algorithm is developed for solving a general class of elliptic equations involving second- and zero-order derivatives. Starting with elliptic equations with constant coefficients, we derive an integral equation which relates the solution in the center of an ellipsoid with the integral of the solution over an ellipsoid defined by the structure of the coefficients of the original differential equation. This integral relation is extended to parabolic equations where a first passage time distribution and survival probability are given in explicit forms. We suggest an efficient simulation method which implements the RWE algorithm by introducing a notion of a separation sphere. We prove that the logarithmic behavior of the mean number of steps for the RWS method remains true for the RWE algorithm. Finally we show how the developed RWE algorithm can be applied to solve elliptic and parabolic equations with variable coefficients. A series of supporting computer simulations are given.
摘要针对一类二阶导数和零阶导数的椭圆型方程,提出了一种椭球上随机游走算法。从常系数椭圆方程出发,导出了一个积分方程,它将椭球中心的解与原微分方程的系数结构所定义的椭球上解的积分联系起来。将此积分关系推广到抛物型方程,其中首次通过时间分布和生存概率以显式形式给出。我们提出了一种有效的仿真方法,通过引入分离球的概念来实现RWE算法。我们证明了RWS方法的平均步数的对数行为对RWE算法仍然成立。最后,我们展示了如何将所开发的RWE算法应用于求解变系数椭圆型和抛物型方程。给出了一系列辅助的计算机模拟。
{"title":"Random walk on ellipsoids method for solving elliptic and parabolic equations","authors":"I. Shalimova, K. Sabelfeld","doi":"10.1515/mcma-2020-2078","DOIUrl":"https://doi.org/10.1515/mcma-2020-2078","url":null,"abstract":"Abstract A Random Walk on Ellipsoids (RWE) algorithm is developed for solving a general class of elliptic equations involving second- and zero-order derivatives. Starting with elliptic equations with constant coefficients, we derive an integral equation which relates the solution in the center of an ellipsoid with the integral of the solution over an ellipsoid defined by the structure of the coefficients of the original differential equation. This integral relation is extended to parabolic equations where a first passage time distribution and survival probability are given in explicit forms. We suggest an efficient simulation method which implements the RWE algorithm by introducing a notion of a separation sphere. We prove that the logarithmic behavior of the mean number of steps for the RWS method remains true for the RWE algorithm. Finally we show how the developed RWE algorithm can be applied to solve elliptic and parabolic equations with variable coefficients. A series of supporting computer simulations are given.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"26 1","pages":"335 - 353"},"PeriodicalIF":0.9,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mcma-2020-2078","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43214522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Drift velocity in GaN semiconductors: Monte Carlo simulation and comparison with experimental measurements GaN半导体漂移速度的蒙特卡罗模拟及其与实验测量的比较
IF 0.9 Q3 STATISTICS & PROBABILITY Pub Date : 2020-10-30 DOI: 10.1515/mcma-2020-2077
E. Kablukova, K. Sabelfeld, D. Y. Protasov, K. Zhuravlev
Abstract Monte Carlo algorithms are developed to simulate the electron transport in semiconductors. In particular, the drift velocity in GaN semiconductors is calculated, and a comparison with experimental measurements is discussed. Explicit expressions for the scattering probabilities and distributions of the scattering angle of electrons on polar optical and intervalley phonons, and acoustic deformation potential as well are given. A good agreement of the simulation results and the experimental measurements reveals that the M-L valley is located at 0.7 eV higher than the Γ-valley. This value agrees with other experimental studies, while it is lower compared to ab initio calculations.
摘要发展了蒙特卡罗算法来模拟半导体中的电子输运。特别地,计算了GaN半导体中的漂移速度,并与实验测量结果进行了比较。给出了电子在极性光学和谷间声子上的散射概率、散射角分布以及声变形势的显式表达式。模拟结果和实验测量结果的良好一致性表明,M-L谷位于0.7 eV高于Γ-谷。这个值与其他实验研究一致,但与从头计算相比更低。
{"title":"Drift velocity in GaN semiconductors: Monte Carlo simulation and comparison with experimental measurements","authors":"E. Kablukova, K. Sabelfeld, D. Y. Protasov, K. Zhuravlev","doi":"10.1515/mcma-2020-2077","DOIUrl":"https://doi.org/10.1515/mcma-2020-2077","url":null,"abstract":"Abstract Monte Carlo algorithms are developed to simulate the electron transport in semiconductors. In particular, the drift velocity in GaN semiconductors is calculated, and a comparison with experimental measurements is discussed. Explicit expressions for the scattering probabilities and distributions of the scattering angle of electrons on polar optical and intervalley phonons, and acoustic deformation potential as well are given. A good agreement of the simulation results and the experimental measurements reveals that the M-L valley is located at 0.7 eV higher than the Γ-valley. This value agrees with other experimental studies, while it is lower compared to ab initio calculations.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"26 1","pages":"263 - 271"},"PeriodicalIF":0.9,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mcma-2020-2077","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45427333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
An approximate formula for calculating the expectations of functionals from random processes based on using the Wiener chaos expansion 基于维纳混沌展开计算随机过程泛函期望的近似公式
IF 0.9 Q3 STATISTICS & PROBABILITY Pub Date : 2020-10-07 DOI: 10.1515/mcma-2020-2074
A. Egorov
Abstract In this work, we propose a new method for calculating the mathematical expectation of nonlinear functionals from random processes. The method is based on using Wiener chaos expansion and approximate formulas, exact for functional polynomials of given degree. Examples illustrating approximation accuracy are considered.
摘要在这项工作中,我们提出了一种从随机过程中计算非线性泛函的数学期望的新方法。该方法基于维纳混沌展开和近似公式,对给定次数的函数多项式是精确的。考虑了说明近似精度的示例。
{"title":"An approximate formula for calculating the expectations of functionals from random processes based on using the Wiener chaos expansion","authors":"A. Egorov","doi":"10.1515/mcma-2020-2074","DOIUrl":"https://doi.org/10.1515/mcma-2020-2074","url":null,"abstract":"Abstract In this work, we propose a new method for calculating the mathematical expectation of nonlinear functionals from random processes. The method is based on using Wiener chaos expansion and approximate formulas, exact for functional polynomials of given degree. Examples illustrating approximation accuracy are considered.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"26 1","pages":"285 - 292"},"PeriodicalIF":0.9,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mcma-2020-2074","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47835394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Implementing de-biased estimators using mixed sequences 使用混合序列实现去偏估计
IF 0.9 Q3 STATISTICS & PROBABILITY Pub Date : 2020-10-02 DOI: 10.1515/mcma-2020-2075
Arun Kumar Polala, G. Ökten
Abstract We describe an implementation of the de-biased estimator using mixed sequences; these are sequences obtained from pseudorandom and low-discrepancy sequences. We use this implementation to numerically solve some stochastic differential equations from computational finance. The mixed sequences, when combined with Brownian bridge or principal component analysis constructions, offer convergence rates significantly better than the Monte Carlo implementation.
摘要我们描述了使用混合序列的去偏估计器的实现;这些是从伪随机序列和低差异序列获得的序列。我们使用这种实现来数值求解计算金融中的一些随机微分方程。当混合序列与布朗桥或主成分分析结构相结合时,其收敛速度明显优于蒙特卡罗实现。
{"title":"Implementing de-biased estimators using mixed sequences","authors":"Arun Kumar Polala, G. Ökten","doi":"10.1515/mcma-2020-2075","DOIUrl":"https://doi.org/10.1515/mcma-2020-2075","url":null,"abstract":"Abstract We describe an implementation of the de-biased estimator using mixed sequences; these are sequences obtained from pseudorandom and low-discrepancy sequences. We use this implementation to numerically solve some stochastic differential equations from computational finance. The mixed sequences, when combined with Brownian bridge or principal component analysis constructions, offer convergence rates significantly better than the Monte Carlo implementation.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"26 1","pages":"293 - 301"},"PeriodicalIF":0.9,"publicationDate":"2020-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mcma-2020-2075","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45823111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Monte Carlo Methods and Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1