Pub Date : 2025-01-01Epub Date: 2025-02-12DOI: 10.1117/1.JMI.12.S1.S13012
Mitchell M Goodsitt, Andrew D A Maidment
Purpose: Tomosynthesis is a limited-angle multi-projection method that was conceived to address a significant limitation of conventional single-projection x-ray imaging: the overlap of structures in an image. We trace the historical evolution of tomosynthesis.
Approach: Relevant papers are discussed including descriptions of technical advances and clinical applications.
Results: We start with the invention of tomosynthesis by Ziedses des Plantes in the Netherlands and Kaufman in the United States in the mid-1930s and end with our predictions of future technical advances. Some of the other topics that are covered include a respiratory-gated chest tomosynthesis system of the late 1930s, film-based systems of the 1960s and 1970s, coded aperture tomosynthesis, fluoroscopy tomosynthesis, digital detector-based tomosynthesis for imaging the breast and body, orthopedic, dental and radiotherapy applications, optimization of acquisition parameters for breast and body tomosynthesis, reconstruction methods, characteristics of present-day tomosynthesis systems, x-ray tubes, and promising new applications including contrast-enhanced and multimodal breast imaging systems.
Conclusion: Tomosynthesis has had an exciting history that continues today. This should serve as a foundation for other papers in the special issue "Celebrating Digital Tomosynthesis: Past, Present and Future" in the Journal of Medical Imaging.
{"title":"Evolution of tomosynthesis.","authors":"Mitchell M Goodsitt, Andrew D A Maidment","doi":"10.1117/1.JMI.12.S1.S13012","DOIUrl":"10.1117/1.JMI.12.S1.S13012","url":null,"abstract":"<p><strong>Purpose: </strong>Tomosynthesis is a limited-angle multi-projection method that was conceived to address a significant limitation of conventional single-projection x-ray imaging: the overlap of structures in an image. We trace the historical evolution of tomosynthesis.</p><p><strong>Approach: </strong>Relevant papers are discussed including descriptions of technical advances and clinical applications.</p><p><strong>Results: </strong>We start with the invention of tomosynthesis by Ziedses des Plantes in the Netherlands and Kaufman in the United States in the mid-1930s and end with our predictions of future technical advances. Some of the other topics that are covered include a respiratory-gated chest tomosynthesis system of the late 1930s, film-based systems of the 1960s and 1970s, coded aperture tomosynthesis, fluoroscopy tomosynthesis, digital detector-based tomosynthesis for imaging the breast and body, orthopedic, dental and radiotherapy applications, optimization of acquisition parameters for breast and body tomosynthesis, reconstruction methods, characteristics of present-day tomosynthesis systems, x-ray tubes, and promising new applications including contrast-enhanced and multimodal breast imaging systems.</p><p><strong>Conclusion: </strong>Tomosynthesis has had an exciting history that continues today. This should serve as a foundation for other papers in the special issue \"Celebrating Digital Tomosynthesis: Past, Present and Future\" in the <i>Journal of Medical Imaging</i>.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 Suppl 1","pages":"S13012"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817815/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143415683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-09-14DOI: 10.1117/1.JMI.12.S1.S13004
Maral Mirzai, Jenny Nilsson, Patrik Sund, Rauni Rossi Norrlund, Micael Oliveira Diniz, Bengt Gottfridsson, Ida Häggström, Åse A Johnsson, Magnus Båth, Angelica Svalkvist
Purpose: Chest tomosynthesis (CTS) has a relatively longer acquisition time compared with chest X-ray, which may increase the risk of motion artifacts in the reconstructed images. Motion artifacts induced by breathing motion adversely impact the image quality. This study aims to reduce these artifacts by excluding projection images identified with breathing motion prior to the reconstruction of section images and to assess if motion compensation improves overall image quality.
Approach: In this study, 2969 CTS examinations were analyzed to identify examinations where breathing motion has occurred using a method based on localizing the diaphragm border in each of the projection images. A trajectory over diaphragm positions was estimated from a second-order polynomial curve fit, and projection images where the diaphragm border deviated from the trajectory were removed before reconstruction. The image quality between motion-compensated and uncompensated examinations was evaluated using the image quality criteria for anatomical structures and image artifacts in a visual grading characteristic (VGC) study. The resulting rating data were statistically analyzed using the software VGC analyzer.
Results: A total of 58 examinations were included in this study with breathing motion occurring either at the beginning or end ( ) or throughout the entire acquisition ( ). In general, no significant difference in image quality or presence of motion artifacts was shown between the motion-compensated and uncompensated examinations. However, motion compensation significantly improved the image quality and reduced the motion artifacts in cases where motion occurred at the beginning or end. In examinations where motion occurred throughout the acquisition, motion compensation led to a significant increase in ripple artifacts and noise.
Conclusions: Compensation for respiratory motion in CTS by excluding projection images may improve the image quality if the motion occurs mainly at the beginning or end of the examination. However, the disadvantages of excluding projections may outweigh the benefits of motion compensation.
{"title":"Breathing motion compensation in chest tomosynthesis: evaluation of the effect on image quality and presence of artifacts.","authors":"Maral Mirzai, Jenny Nilsson, Patrik Sund, Rauni Rossi Norrlund, Micael Oliveira Diniz, Bengt Gottfridsson, Ida Häggström, Åse A Johnsson, Magnus Båth, Angelica Svalkvist","doi":"10.1117/1.JMI.12.S1.S13004","DOIUrl":"https://doi.org/10.1117/1.JMI.12.S1.S13004","url":null,"abstract":"<p><strong>Purpose: </strong>Chest tomosynthesis (CTS) has a relatively longer acquisition time compared with chest X-ray, which may increase the risk of motion artifacts in the reconstructed images. Motion artifacts induced by breathing motion adversely impact the image quality. This study aims to reduce these artifacts by excluding projection images identified with breathing motion prior to the reconstruction of section images and to assess if motion compensation improves overall image quality.</p><p><strong>Approach: </strong>In this study, 2969 CTS examinations were analyzed to identify examinations where breathing motion has occurred using a method based on localizing the diaphragm border in each of the projection images. A trajectory over diaphragm positions was estimated from a second-order polynomial curve fit, and projection images where the diaphragm border deviated from the trajectory were removed before reconstruction. The image quality between motion-compensated and uncompensated examinations was evaluated using the image quality criteria for anatomical structures and image artifacts in a visual grading characteristic (VGC) study. The resulting rating data were statistically analyzed using the software VGC analyzer.</p><p><strong>Results: </strong>A total of 58 examinations were included in this study with breathing motion occurring either at the beginning or end ( <math><mrow><mi>n</mi> <mo>=</mo> <mn>17</mn></mrow> </math> ) or throughout the entire acquisition ( <math><mrow><mi>n</mi> <mo>=</mo> <mn>41</mn></mrow> </math> ). In general, no significant difference in image quality or presence of motion artifacts was shown between the motion-compensated and uncompensated examinations. However, motion compensation significantly improved the image quality and reduced the motion artifacts in cases where motion occurred at the beginning or end. In examinations where motion occurred throughout the acquisition, motion compensation led to a significant increase in ripple artifacts and noise.</p><p><strong>Conclusions: </strong>Compensation for respiratory motion in CTS by excluding projection images may improve the image quality if the motion occurs mainly at the beginning or end of the examination. However, the disadvantages of excluding projections may outweigh the benefits of motion compensation.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 Suppl 1","pages":"S13004"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11399550/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142298677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose: The color of Papanicolaou-stained specimens is a crucial feature in cytology diagnosis. However, the quantification of color using digital images is challenging due to the variations in the staining process and characteristics of imaging equipment. The dye amount estimation of stained specimens is helpful for quantitatively interpreting the color based on a physical model. It has been realized with color unmixing and applied to staining with three or fewer dyes. Nevertheless, the Papanicolaou stain comprises five dyes. Thus, we employ multispectral imaging with more channels for quantitative analysis of the Papanicolaou-stained cervical cytology samples.
Approach: We estimate the dye amount map from a 14-band multispectral observation capturing a Papanicolaou-stained specimen using the actual measured spectral characteristics of the single-stained samples. The estimated dye amount maps were employed for the quantitative interpretation of the color of cytoplasmic mucin of lobular endocervical glandular hyperplasia (LEGH) and normal endocervical (EC) cells in a uterine cervical lesion.
Results: We demonstrated the dye amount estimation performance of the proposed method using single-stain images and Papanicolaou-stain images. Moreover, the yellowish color in the LEGH cells is found to be interpreted with more orange G (OG) and less Eosin Y (EY) dye amounts. We also elucidated that LEGH and EC cells could be classified using linear classifiers from the dye amount.
Conclusions: Multispectral imaging enables the quantitative analysis of dye amount maps of Papanicolaou-stained cytology specimens. The effectiveness is demonstrated in interpreting and classifying the cytoplasmic mucin of EC and LEGH cells in cervical cytology.
{"title":"Dye amount quantification of Papanicolaou-stained cytological images by multispectral unmixing: spectral analysis of cytoplasmic mucin.","authors":"Saori Takeyama, Tomoaki Watanabe, Nanxin Gong, Masahiro Yamaguchi, Takumi Urata, Fumikazu Kimura, Keiko Ishii","doi":"10.1117/1.JMI.12.1.017501","DOIUrl":"10.1117/1.JMI.12.1.017501","url":null,"abstract":"<p><strong>Purpose: </strong>The color of Papanicolaou-stained specimens is a crucial feature in cytology diagnosis. However, the quantification of color using digital images is challenging due to the variations in the staining process and characteristics of imaging equipment. The dye amount estimation of stained specimens is helpful for quantitatively interpreting the color based on a physical model. It has been realized with color unmixing and applied to staining with three or fewer dyes. Nevertheless, the Papanicolaou stain comprises five dyes. Thus, we employ multispectral imaging with more channels for quantitative analysis of the Papanicolaou-stained cervical cytology samples.</p><p><strong>Approach: </strong>We estimate the dye amount map from a 14-band multispectral observation capturing a Papanicolaou-stained specimen using the actual measured spectral characteristics of the single-stained samples. The estimated dye amount maps were employed for the quantitative interpretation of the color of cytoplasmic mucin of lobular endocervical glandular hyperplasia (LEGH) and normal endocervical (EC) cells in a uterine cervical lesion.</p><p><strong>Results: </strong>We demonstrated the dye amount estimation performance of the proposed method using single-stain images and Papanicolaou-stain images. Moreover, the yellowish color in the LEGH cells is found to be interpreted with more orange G (OG) and less Eosin Y (EY) dye amounts. We also elucidated that LEGH and EC cells could be classified using linear classifiers from the dye amount.</p><p><strong>Conclusions: </strong>Multispectral imaging enables the quantitative analysis of dye amount maps of Papanicolaou-stained cytology specimens. The effectiveness is demonstrated in interpreting and classifying the cytoplasmic mucin of EC and LEGH cells in cervical cytology.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 1","pages":"017501"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11681424/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142903877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-02-17DOI: 10.1117/1.JMI.12.1.016002
Justin N Kim, Yingnan Song, Hao Wu, Ananya Subramaniam, Jihye Lee, Mohamed H E Makhlouf, Neda S Hassani, Sadeer Al-Kindi, David L Wilson, Juhwan Lee
Purpose: Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide, with coronary computed tomography angiography (CCTA) playing a crucial role in its diagnosis. The mean Hounsfield unit (HU) of pericoronary adipose tissue (PCAT) is linked to cardiovascular risk. We utilized a self-supervised learning framework (SSL) to improve the accuracy and generalizability of coronary artery segmentation on CCTA volumes while addressing the limitations of small-annotated datasets.
Approach: We utilized self-supervised pretraining followed by supervised fine-tuning to segment coronary arteries. To evaluate the data efficiency of SSL, we varied the number of CCTA volumes used during pretraining. In addition, we developed an automated PCAT segmentation algorithm utilizing centerline extraction, spatial-geometric coronary identification, and landmark detection. We evaluated our method on a multi-institutional dataset by assessing coronary artery and PCAT segmentation accuracy via Dice scores and comparing mean PCAT HU values with the ground truth.
Results: Our approach significantly improved coronary artery segmentation, achieving Dice scores up to 0.787 after self-supervised pretraining. The automated PCAT segmentation achieved near-perfect performance, with -squared values of 0.9998 for both the left anterior descending artery and the right coronary artery indicating excellent agreement between predicted and actual mean PCAT HU values. Self-supervised pretraining notably enhanced model generalizability on external datasets, improving overall segmentation accuracy.
Conclusions: We demonstrate the potential of SSL to advance CCTA image analysis, enabling more accurate CAD diagnostics. Our findings highlight the robustness of SSL for automated coronary artery and PCAT segmentation, offering promising advancements in cardiovascular care.
{"title":"Improving coronary artery segmentation with self-supervised learning and automated pericoronary adipose tissue segmentation: a multi-institutional study on coronary computed tomography angiography images.","authors":"Justin N Kim, Yingnan Song, Hao Wu, Ananya Subramaniam, Jihye Lee, Mohamed H E Makhlouf, Neda S Hassani, Sadeer Al-Kindi, David L Wilson, Juhwan Lee","doi":"10.1117/1.JMI.12.1.016002","DOIUrl":"10.1117/1.JMI.12.1.016002","url":null,"abstract":"<p><strong>Purpose: </strong>Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide, with coronary computed tomography angiography (CCTA) playing a crucial role in its diagnosis. The mean Hounsfield unit (HU) of pericoronary adipose tissue (PCAT) is linked to cardiovascular risk. We utilized a self-supervised learning framework (SSL) to improve the accuracy and generalizability of coronary artery segmentation on CCTA volumes while addressing the limitations of small-annotated datasets.</p><p><strong>Approach: </strong>We utilized self-supervised pretraining followed by supervised fine-tuning to segment coronary arteries. To evaluate the data efficiency of SSL, we varied the number of CCTA volumes used during pretraining. In addition, we developed an automated PCAT segmentation algorithm utilizing centerline extraction, spatial-geometric coronary identification, and landmark detection. We evaluated our method on a multi-institutional dataset by assessing coronary artery and PCAT segmentation accuracy via Dice scores and comparing mean PCAT HU values with the ground truth.</p><p><strong>Results: </strong>Our approach significantly improved coronary artery segmentation, achieving Dice scores up to 0.787 after self-supervised pretraining. The automated PCAT segmentation achieved near-perfect performance, with <math><mrow><mi>R</mi></mrow> </math> -squared values of 0.9998 for both the left anterior descending artery and the right coronary artery indicating excellent agreement between predicted and actual mean PCAT HU values. Self-supervised pretraining notably enhanced model generalizability on external datasets, improving overall segmentation accuracy.</p><p><strong>Conclusions: </strong>We demonstrate the potential of SSL to advance CCTA image analysis, enabling more accurate CAD diagnostics. Our findings highlight the robustness of SSL for automated coronary artery and PCAT segmentation, offering promising advancements in cardiovascular care.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 1","pages":"016002"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11831809/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143450598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-01-11DOI: 10.1117/1.JMI.12.1.017502
Liping Wang, Lin Chen, Kaixi Wei, Huiyu Zhou, Reyer Zwiggelaar, Weiwei Fu, Yingchao Liu
Purpose: Differentiating primary central nervous system lymphoma (PCNSL) and glioblastoma (GBM) is crucial because their prognosis and treatment differ substantially. Manual examination of their histological characteristics is considered the golden standard in clinical diagnosis. However, this process is tedious and time-consuming and might lead to misdiagnosis caused by morphological similarity between their histology and tumor heterogeneity. Existing research focuses on radiological differentiation, which mostly uses multi-parametric magnetic resonance imaging. By contrast, we investigate the pathological differentiation between the two types of tumors using whole slide images (WSIs) of postoperative formalin-fixed paraffin-embedded samples.
Approach: To learn the specific and intrinsic histological feature representations from the WSI patches, a self-supervised feature extractor is trained. Then, the patch representations are fused by feeding into a weakly supervised multiple-instance learning model for the WSI classification. We validate our approach on 134 PCNSL and 526 GBM cases collected from three hospitals. We also investigate the effect of feature extraction on the final prediction by comparing the performance of applying the feature extractors trained on the PCNSL/GBM slides from specific institutions, multi-site PCNSL/GBM slides, and large-scale histopathological images.
Results: Different feature extractors perform comparably with the overall area under the receiver operating characteristic curve value exceeding 85% for each dataset and close to 95% for the combined multi-site dataset. Using the institution-specific feature extractors generally obtains the best overall prediction with both of the PCNSL and GBM classification accuracies reaching 80% for each dataset.
Conclusions: The excellent classification performance suggests that our approach can be used as an assistant tool to reduce the pathologists' workload by providing an accurate and objective second diagnosis. Moreover, the discriminant regions indicated by the generated attention heatmap improve the model interpretability and provide additional diagnostic information.
{"title":"Weakly supervised pathological differentiation of primary central nervous system lymphoma and glioblastoma on multi-site whole slide images.","authors":"Liping Wang, Lin Chen, Kaixi Wei, Huiyu Zhou, Reyer Zwiggelaar, Weiwei Fu, Yingchao Liu","doi":"10.1117/1.JMI.12.1.017502","DOIUrl":"10.1117/1.JMI.12.1.017502","url":null,"abstract":"<p><strong>Purpose: </strong>Differentiating primary central nervous system lymphoma (PCNSL) and glioblastoma (GBM) is crucial because their prognosis and treatment differ substantially. Manual examination of their histological characteristics is considered the golden standard in clinical diagnosis. However, this process is tedious and time-consuming and might lead to misdiagnosis caused by morphological similarity between their histology and tumor heterogeneity. Existing research focuses on radiological differentiation, which mostly uses multi-parametric magnetic resonance imaging. By contrast, we investigate the pathological differentiation between the two types of tumors using whole slide images (WSIs) of postoperative formalin-fixed paraffin-embedded samples.</p><p><strong>Approach: </strong>To learn the specific and intrinsic histological feature representations from the WSI patches, a self-supervised feature extractor is trained. Then, the patch representations are fused by feeding into a weakly supervised multiple-instance learning model for the WSI classification. We validate our approach on 134 PCNSL and 526 GBM cases collected from three hospitals. We also investigate the effect of feature extraction on the final prediction by comparing the performance of applying the feature extractors trained on the PCNSL/GBM slides from specific institutions, multi-site PCNSL/GBM slides, and large-scale histopathological images.</p><p><strong>Results: </strong>Different feature extractors perform comparably with the overall area under the receiver operating characteristic curve value exceeding 85% for each dataset and close to 95% for the combined multi-site dataset. Using the institution-specific feature extractors generally obtains the best overall prediction with both of the PCNSL and GBM classification accuracies reaching 80% for each dataset.</p><p><strong>Conclusions: </strong>The excellent classification performance suggests that our approach can be used as an assistant tool to reduce the pathologists' workload by providing an accurate and objective second diagnosis. Moreover, the discriminant regions indicated by the generated attention heatmap improve the model interpretability and provide additional diagnostic information.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 1","pages":"017502"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724367/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142972751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-01-17DOI: 10.1117/1.JMI.12.1.014502
Jennie Karlsson, Ida Arvidsson, Freja Sahlin, Kalle Åström, Niels Christian Overgaard, Kristina Lång, Anders Heyden
Purpose: The survival rate of breast cancer for women in low- and middle-income countries is poor compared with that in high-income countries. Point-of-care ultrasound (POCUS) combined with deep learning could potentially be a suitable solution enabling early detection of breast cancer. We aim to improve a classification network dedicated to classifying POCUS images by comparing different techniques for increasing the amount of training data.
Approach: Two data sets consisting of breast tissue images were collected, one captured with POCUS and another with standard ultrasound (US). The data sets were expanded by using different techniques, including augmentation, histogram matching, histogram equalization, and cycle-consistent adversarial networks (CycleGANs). A classification network was trained on different combinations of the original and expanded data sets. Different types of augmentation were investigated and two different CycleGAN approaches were implemented.
Results: Almost all methods for expanding the data sets significantly improved the classification results compared with solely using POCUS images during the training of the classification network. When training the classification network on POCUS and CycleGAN-generated POCUS images, it was possible to achieve an area under the receiver operating characteristic curve of 95.3% (95% confidence interval 93.4% to 97.0%).
Conclusions: Applying augmentation during training showed to be important and increased the performance of the classification network. Adding more data also increased the performance, but using standard US images or CycleGAN-generated POCUS images gave similar results.
{"title":"Breast cancer classification in point-of-care ultrasound imaging-the impact of training data.","authors":"Jennie Karlsson, Ida Arvidsson, Freja Sahlin, Kalle Åström, Niels Christian Overgaard, Kristina Lång, Anders Heyden","doi":"10.1117/1.JMI.12.1.014502","DOIUrl":"10.1117/1.JMI.12.1.014502","url":null,"abstract":"<p><strong>Purpose: </strong>The survival rate of breast cancer for women in low- and middle-income countries is poor compared with that in high-income countries. Point-of-care ultrasound (POCUS) combined with deep learning could potentially be a suitable solution enabling early detection of breast cancer. We aim to improve a classification network dedicated to classifying POCUS images by comparing different techniques for increasing the amount of training data.</p><p><strong>Approach: </strong>Two data sets consisting of breast tissue images were collected, one captured with POCUS and another with standard ultrasound (US). The data sets were expanded by using different techniques, including augmentation, histogram matching, histogram equalization, and cycle-consistent adversarial networks (CycleGANs). A classification network was trained on different combinations of the original and expanded data sets. Different types of augmentation were investigated and two different CycleGAN approaches were implemented.</p><p><strong>Results: </strong>Almost all methods for expanding the data sets significantly improved the classification results compared with solely using POCUS images during the training of the classification network. When training the classification network on POCUS and CycleGAN-generated POCUS images, it was possible to achieve an area under the receiver operating characteristic curve of 95.3% (95% confidence interval 93.4% to 97.0%).</p><p><strong>Conclusions: </strong>Applying augmentation during training showed to be important and increased the performance of the classification network. Adding more data also increased the performance, but using standard US images or CycleGAN-generated POCUS images gave similar results.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 1","pages":"014502"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740782/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143014090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-12-04DOI: 10.1117/1.JMI.12.S1.S13008
Xiangyi Wu, Xiaoyu Duan, Hailiang Huang, Wei Zhao
Purpose: Contrast-enhanced digital breast tomosynthesis (CEDBT) highlights breast tumors with neo-angiogenesis. A recently proposed CEDBT system with a dual-layer (DL) flat-panel detector enables simultaneous acquisition of high-energy (HE) and low-energy (LE) projection images with a single exposure, which reduces acquisition time and eliminates motion artifacts. However, x-ray scatter degrades image quality and lesion detectability. We propose a practical method for accurate and robust scatter correction (SC) for DL-CEDBT.
Approach: The proposed hybrid SC method combines the advantages of a two-kernel iterative convolution method and an empirical interpolation strategy, which accounts for the reduced scatter from the peripheral breast region due to thickness roll-off and the scatter contribution from the region outside the breast. Scatter point spread functions were generated using Monte Carlo simulations with different breast glandular fractions, compressed thicknesses, and projection angles. Projection images and ground truth scatter maps of anthropomorphic digital breast phantoms were simulated to evaluate the performance of the proposed SC method and three other kernel- and interpolation-based methods. The mean absolute relative error (MARE) between scatter estimates and ground truth was used as the metric for SC accuracy.
Results: DL-CEDBT shows scatter characteristics different from dual-shot, primarily due to the two energy peaks of the incident spectrum and the structure of the DL detector. Compared with the other methods investigated, the proposed hybrid SC method showed superior accuracy and robustness, with MARE of for all LE and HE projection images of different phantoms in both cranial-caudal and mediolateral-oblique views. After SC, cupping artifacts in the dual-energy image were removed, and the signal difference-to-noise ratio was improved by 82.0% for 8 mm iodine objects.
Conclusions: A practical SC method was developed, which provided accurate and robust scatter estimates to improve image quality and lesion detectability for DL-CEDBT.
{"title":"Scatter correction for contrast-enhanced digital breast tomosynthesis with a dual-layer detector.","authors":"Xiangyi Wu, Xiaoyu Duan, Hailiang Huang, Wei Zhao","doi":"10.1117/1.JMI.12.S1.S13008","DOIUrl":"10.1117/1.JMI.12.S1.S13008","url":null,"abstract":"<p><strong>Purpose: </strong>Contrast-enhanced digital breast tomosynthesis (CEDBT) highlights breast tumors with neo-angiogenesis. A recently proposed CEDBT system with a dual-layer (DL) flat-panel detector enables simultaneous acquisition of high-energy (HE) and low-energy (LE) projection images with a single exposure, which reduces acquisition time and eliminates motion artifacts. However, x-ray scatter degrades image quality and lesion detectability. We propose a practical method for accurate and robust scatter correction (SC) for DL-CEDBT.</p><p><strong>Approach: </strong>The proposed hybrid SC method combines the advantages of a two-kernel iterative convolution method and an empirical interpolation strategy, which accounts for the reduced scatter from the peripheral breast region due to thickness roll-off and the scatter contribution from the region outside the breast. Scatter point spread functions were generated using Monte Carlo simulations with different breast glandular fractions, compressed thicknesses, and projection angles. Projection images and ground truth scatter maps of anthropomorphic digital breast phantoms were simulated to evaluate the performance of the proposed SC method and three other kernel- and interpolation-based methods. The mean absolute relative error (MARE) between scatter estimates and ground truth was used as the metric for SC accuracy.</p><p><strong>Results: </strong>DL-CEDBT shows scatter characteristics different from dual-shot, primarily due to the two energy peaks of the incident spectrum and the structure of the DL detector. Compared with the other methods investigated, the proposed hybrid SC method showed superior accuracy and robustness, with MARE of <math><mrow><mo>∼</mo> <mn>3.1</mn> <mo>%</mo></mrow> </math> for all LE and HE projection images of different phantoms in both cranial-caudal and mediolateral-oblique views. After SC, cupping artifacts in the dual-energy image were removed, and the signal difference-to-noise ratio was improved by 82.0% for 8 mm iodine objects.</p><p><strong>Conclusions: </strong>A practical SC method was developed, which provided accurate and robust scatter estimates to improve image quality and lesion detectability for DL-CEDBT.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 Suppl 1","pages":"S13008"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615639/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142786642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-01-31DOI: 10.1117/1.JMI.12.1.014504
Shintaro Ambo, Ryo Hirano, Chihiro Hattori
Purpose: The purpose of this study was to develop and evaluate an algorithm for calculating a shape feature to automatically detect both main pancreatic duct dilation (MPDD) and pancreatic parenchymal atrophy (PPA) in abdominal contrast-enhanced CT (CE-CT) images.
Approach: The proposed algorithm for the automatic detection of MPDD and PPA is composed of five processes: coarse pancreas segmentation, fine pancreas segmentation, main pancreatic duct (MPD) segmentation, centerline estimation, and shape feature calculation. First, the pancreas region is segmented by a deep learning convolutional neural network (CNN). Then, the MPD region is segmented inside the pancreatic region by the deep learning CNN. Next, centerline estimation is performed using Dijkstra's rooting algorithm. Finally, in shape feature calculation, the cross-sectional area ratio of the pancreatic duct to the pancreatic parenchyma (DP ratio) is calculated in all cross sections perpendicular to the identified centerline, and the 90th percentile value of the DP ratio for all cross sections (90th DP ratio) is calculated. The detection performance of the 90th DP ratio for MPDD and PPA was evaluated using 56 abdominal CE-CT images available as public data.
Results: The average of the 90th DP ratio was 0.059 in 48 cases with MPDD and 0.007 in eight cases without MPDD ( ) and 0.074 in 31 cases with PPA and 0.023 in 25 cases without PPA ( ).
Conclusions: We have developed an algorithm for calculating an automatically measurable shape feature called the 90th DP ratio for the detection of MPDD and PPA.
{"title":"Automatic detection of main pancreatic duct dilation and pancreatic parenchymal atrophy based on a shape feature in abdominal contrast-enhanced CT images.","authors":"Shintaro Ambo, Ryo Hirano, Chihiro Hattori","doi":"10.1117/1.JMI.12.1.014504","DOIUrl":"10.1117/1.JMI.12.1.014504","url":null,"abstract":"<p><strong>Purpose: </strong>The purpose of this study was to develop and evaluate an algorithm for calculating a shape feature to automatically detect both main pancreatic duct dilation (MPDD) and pancreatic parenchymal atrophy (PPA) in abdominal contrast-enhanced CT (CE-CT) images.</p><p><strong>Approach: </strong>The proposed algorithm for the automatic detection of MPDD and PPA is composed of five processes: coarse pancreas segmentation, fine pancreas segmentation, main pancreatic duct (MPD) segmentation, centerline estimation, and shape feature calculation. First, the pancreas region is segmented by a deep learning convolutional neural network (CNN). Then, the MPD region is segmented inside the pancreatic region by the deep learning CNN. Next, centerline estimation is performed using Dijkstra's rooting algorithm. Finally, in shape feature calculation, the cross-sectional area ratio of the pancreatic duct to the pancreatic parenchyma (DP ratio) is calculated in all cross sections perpendicular to the identified centerline, and the 90th percentile value of the DP ratio for all cross sections (90th DP ratio) is calculated. The detection performance of the 90th DP ratio for MPDD and PPA was evaluated using 56 abdominal CE-CT images available as public data.</p><p><strong>Results: </strong>The average of the 90th DP ratio was 0.059 in 48 cases with MPDD and 0.007 in eight cases without MPDD ( <math><mrow><mi>p</mi> <mo><</mo> <mn>0.001</mn></mrow> </math> ) and 0.074 in 31 cases with PPA and 0.023 in 25 cases without PPA ( <math><mrow><mi>p</mi> <mo><</mo> <mn>0.001</mn></mrow> </math> ).</p><p><strong>Conclusions: </strong>We have developed an algorithm for calculating an automatically measurable shape feature called the 90th DP ratio for the detection of MPDD and PPA.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 1","pages":"014504"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782102/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143081749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-03-07DOI: 10.1117/1.JMI.12.S1.S13013
Emil Y Sidky, Xiangyi Wu, Xiaoyu Duan, Hailiang Huang, Wei Zhao, Leo Y Zhang, John Paul Phillips, Zheng Zhang, Buxin Chen, Dan Xia, Ingrid S Reiser, Xiaochuan Pan
Purpose: We aim to develop accurate volumetric quantitative imaging of iodinated contrast agent (ICA) in contrast-enhanced digital breast tomosynthesis (DBT).
Approach: The two main components of the approach are the use of a dual-energy DBT (DE-DBT) scan and the development of an optimization-based algorithm that can yield accurate images with isotropic resolution. The image reconstruction algorithm exploits sparsity in the subject's directional derivative magnitudes, and it also performs direct sparsity regularization to help confine the reconstruction to the true support of the subject. The algorithm is demonstrated with three sets of simulations in 2D and 3D, and a physical DE-DBT scan. The last of the three simulations employs an anthropomorphic phantom derived from the VICTRE project, testing quantitative tumor imaging with ICA.
Results: The 2D simulations of the algorithm demonstrate accurate and stable image reconstruction. With the first 3D simulation, the proposed algorithm shows the ability to resolve overlapping objects, and with the anthropomorphic phantom, accurate recovery of the irregular ICA distribution in the shape of a tumor model is demonstrated. Applying the algorithm to DE-DBT transmission data of the CIRS BR3D phantom with solid ICA inserts yields images in which the depth-blurring is greatly reduced and the ICA distribution is accurately reconstructed.
Conclusion: The results for the sparsity regularization algorithm applied to DE-DBT show promise, but as the algorithm performance is necessarily subject-dependent, further investigation using subjects with varying complexity in the ICA distribution is required.
{"title":"Accurate volume image reconstruction for digital breast tomosynthesis with directional-gradient and pixel sparsity regularization.","authors":"Emil Y Sidky, Xiangyi Wu, Xiaoyu Duan, Hailiang Huang, Wei Zhao, Leo Y Zhang, John Paul Phillips, Zheng Zhang, Buxin Chen, Dan Xia, Ingrid S Reiser, Xiaochuan Pan","doi":"10.1117/1.JMI.12.S1.S13013","DOIUrl":"10.1117/1.JMI.12.S1.S13013","url":null,"abstract":"<p><strong>Purpose: </strong>We aim to develop accurate volumetric quantitative imaging of iodinated contrast agent (ICA) in contrast-enhanced digital breast tomosynthesis (DBT).</p><p><strong>Approach: </strong>The two main components of the approach are the use of a dual-energy DBT (DE-DBT) scan and the development of an optimization-based algorithm that can yield accurate images with isotropic resolution. The image reconstruction algorithm exploits sparsity in the subject's directional derivative magnitudes, and it also performs direct sparsity regularization to help confine the reconstruction to the true support of the subject. The algorithm is demonstrated with three sets of simulations in 2D and 3D, and a physical DE-DBT scan. The last of the three simulations employs an anthropomorphic phantom derived from the VICTRE project, testing quantitative tumor imaging with ICA.</p><p><strong>Results: </strong>The 2D simulations of the algorithm demonstrate accurate and stable image reconstruction. With the first 3D simulation, the proposed algorithm shows the ability to resolve overlapping objects, and with the anthropomorphic phantom, accurate recovery of the irregular ICA distribution in the shape of a tumor model is demonstrated. Applying the algorithm to DE-DBT transmission data of the CIRS BR3D phantom with solid ICA inserts yields images in which the depth-blurring is greatly reduced and the ICA distribution is accurately reconstructed.</p><p><strong>Conclusion: </strong>The results for the sparsity regularization algorithm applied to DE-DBT show promise, but as the algorithm performance is necessarily subject-dependent, further investigation using subjects with varying complexity in the ICA distribution is required.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 Suppl 1","pages":"S13013"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889465/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143587703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-07-24DOI: 10.1117/1.JMI.12.S1.S13002
Xiaoyu Duan, Hailiang Huang, Wei Zhao
Purpose: Accurate detection of microcalcifications ( ) is crucial for the early detection of breast cancer. Some clinical studies have indicated that digital breast tomosynthesis (DBT) systems with a wide angular range have inferior detectability compared with those with a narrow angular range. This study aims to (1) provide guidance for optimizing wide-angle (WA) DBT for improving detectability and (2) prioritize key optimization factors.
Approach: An in-silico DBT pipeline was constructed to evaluate detectability of a WA DBT system under various imaging conditions: focal spot motion (FSM), angular dose distribution (ADS), detector pixel pitch, and detector electronic noise (EN). Images were simulated using a digital anthropomorphic breast phantom inserted with clusters. Evaluation metrics included the signal-to-noise ratio (SNR) of the filtered channel observer and the area under the receiver operator curve (AUC) of multiple-reader multiple-case analysis.
Results: Results showed that FSM degraded sharpness and decreased the SNR and AUC by 5.2% and 1.8%, respectively. Non-uniform ADS increased the SNR by 62.8% and the AUC by 10.2% for filtered backprojection reconstruction with a typical clinical filter setting. When EN decreased from 2000 to 200 electrons, the SNR and AUC increased by 21.6% and 5.0%, respectively. Decreasing the detector pixel pitch from 85 to improved the SNR and AUC by 55.6% and 7.5%, respectively. The combined improvement of a pixel pitch and EN200 was 89.2% in the SNR and 12.8% in the AUC.
Conclusions: Based on the magnitude of impact, the priority for enhancing detectability in WA DBT is as follows: (1) utilizing detectors with a small pixel pitch and low EN level, (2) allocating a higher dose to central projections, and (3) reducing FSM. The results from this study can potentially provide guidance for DBT system optimization in the future.
{"title":"<i>In-silico</i> study of the impact of system design parameters on microcalcification detection in wide-angle digital breast tomosynthesis.","authors":"Xiaoyu Duan, Hailiang Huang, Wei Zhao","doi":"10.1117/1.JMI.12.S1.S13002","DOIUrl":"10.1117/1.JMI.12.S1.S13002","url":null,"abstract":"<p><strong>Purpose: </strong>Accurate detection of microcalcifications ( <math><mrow><mi>μ</mi> <mi>Calcs</mi></mrow> </math> ) is crucial for the early detection of breast cancer. Some clinical studies have indicated that digital breast tomosynthesis (DBT) systems with a wide angular range have inferior <math><mrow><mi>μ</mi> <mi>Calc</mi></mrow> </math> detectability compared with those with a narrow angular range. This study aims to (1) provide guidance for optimizing wide-angle (WA) DBT for improving <math><mrow><mi>μ</mi> <mi>Calcs</mi></mrow> </math> detectability and (2) prioritize key optimization factors.</p><p><strong>Approach: </strong>An <i>in-silico</i> DBT pipeline was constructed to evaluate <math><mrow><mi>μ</mi> <mi>Calc</mi></mrow> </math> detectability of a WA DBT system under various imaging conditions: focal spot motion (FSM), angular dose distribution (ADS), detector pixel pitch, and detector electronic noise (EN). Images were simulated using a digital anthropomorphic breast phantom inserted with <math><mrow><mn>120</mn> <mtext> </mtext> <mi>μ</mi> <mi>m</mi></mrow> </math> <math><mrow><mi>μ</mi> <mi>Calc</mi></mrow> </math> clusters. Evaluation metrics included the signal-to-noise ratio (SNR) of the filtered channel observer and the area under the receiver operator curve (AUC) of multiple-reader multiple-case analysis.</p><p><strong>Results: </strong>Results showed that FSM degraded <math><mrow><mi>μ</mi> <mi>Calcs</mi></mrow> </math> sharpness and decreased the SNR and AUC by 5.2% and 1.8%, respectively. Non-uniform ADS increased the SNR by 62.8% and the AUC by 10.2% for filtered backprojection reconstruction with a typical clinical filter setting. When EN decreased from 2000 to 200 electrons, the SNR and AUC increased by 21.6% and 5.0%, respectively. Decreasing the detector pixel pitch from 85 to <math><mrow><mn>50</mn> <mtext> </mtext> <mi>μ</mi> <mi>m</mi></mrow> </math> improved the SNR and AUC by 55.6% and 7.5%, respectively. The combined improvement of a <math><mrow><mn>50</mn> <mtext> </mtext> <mi>μ</mi> <mi>m</mi></mrow> </math> pixel pitch and EN200 was 89.2% in the SNR and 12.8% in the AUC.</p><p><strong>Conclusions: </strong>Based on the magnitude of impact, the priority for enhancing <math><mrow><mi>μ</mi> <mi>Calc</mi></mrow> </math> detectability in WA DBT is as follows: (1) utilizing detectors with a small pixel pitch and low EN level, (2) allocating a higher dose to central projections, and (3) reducing FSM. The results from this study can potentially provide guidance for DBT system optimization in the future.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 Suppl 1","pages":"S13002"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11266813/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141761687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}