首页 > 最新文献

Journal of Medical Imaging最新文献

英文 中文
Application of thin-slice and accelerated T1-weighted GRE sequences in 1.5T abdominal magnetic resonance imaging using deep learning image reconstruction. 基于深度学习图像重建的薄层加速t1加权GRE序列在1.5T腹部磁共振成像中的应用
IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-11-01 Epub Date: 2025-12-10 DOI: 10.1117/1.JMI.12.6.064005
Natalie S Joos, Saif Afat, Marcel Dominik Nickel, Elisabeth Weiland, Judith Herrmann, Stephan Ursprung, Haidara Almansour, Andreas Lingg, Sebastian Werner, Bianca Haase, Konstantin Nikolaou, Sebastian Gassenmaier
<p><strong>Purpose: </strong>Deep-learning (DL)-based image reconstruction (DLR) is a key technique for reducing acquisition time (TA) and increasing morphologic resolution in abdominal magnetic resonance imaging (MRI). We aim to compare the performance of a standard ( <math> <mrow> <msub><mrow><mi>VIBE</mi></mrow> <mrow><mi>Std</mi></mrow> </msub> </mrow> </math> ) gradient echo (GRE) sequence with Dixon fat separation versus an accelerated ultra-fast ( <math> <mrow> <msub><mrow><mi>VIBE</mi></mrow> <mrow><mi>UF</mi></mrow> </msub> </mrow> </math> ) and high-resolution ( <math> <mrow> <msub><mrow><mi>VIBE</mi></mrow> <mrow><mi>HR</mi></mrow> </msub> </mrow> </math> ) T1-weighted GRE sequence with Dixon fat separation and DLR.</p><p><strong>Approach: </strong>A total of 50 patients with an abdominal 1.5T MRI, with a mean age of <math><mrow><mn>59</mn> <mo>±</mo> <mn>11</mn></mrow> </math> years, were prospectively included from January to July 2023. Each examination protocol included <math> <mrow> <msub><mrow><mi>VIBE</mi></mrow> <mrow><mi>Std</mi></mrow> </msub> </mrow> </math> , <math> <mrow> <msub><mrow><mi>VIBE</mi></mrow> <mrow><mi>UF</mi></mrow> </msub> </mrow> </math> , and <math> <mrow> <msub><mrow><mi>VIBE</mi></mrow> <mrow><mi>HR</mi></mrow> </msub> </mrow> </math> . Both DL sequences use more aggressive parallel imaging and partial Fourier sampling to reduce TA (slice thickness <math> <mrow> <msub><mrow><mi>VIBE</mi></mrow> <mrow><mi>Std</mi></mrow> </msub> </mrow> </math> and <math> <mrow> <msub><mrow><mi>VIBE</mi></mrow> <mrow><mi>UF</mi></mrow> </msub> </mrow> </math> 3 mm, <math> <mrow> <msub><mrow><mi>VIBE</mi></mrow> <mrow><mi>HR</mi></mrow> </msub> </mrow> </math> 2 mm). Evaluation of each contrast-enhanced datasets for noise, artifacts, sharpness/contrast, overall image quality, and diagnostic confidence was performed independently by four radiologists using a Likert scale of 1 to 5 (5 = best).</p><p><strong>Results: </strong><math> <mrow> <msub><mrow><mi>VIBE</mi></mrow> <mrow><mi>UF</mi></mrow> </msub> </mrow> </math> significantly reduced TA (mean 7.3 s versus 15.0 s ( <math> <mrow> <msub><mrow><mi>VIBE</mi></mrow> <mrow><mi>Std</mi></mrow> </msub> </mrow> </math> ) and 14.5 s ( <math> <mrow> <msub><mrow><mi>VIBE</mi></mrow> <mrow><mi>HR</mi></mrow> </msub> </mrow> </math> ); <math><mrow><mi>p</mi> <mo><</mo> <mn>0.001</mn></mrow> </math> ). Both DL sequences provided significantly better sharpness/contrast for all organs compared with <math> <mrow> <msub><mrow><mi>VIBE</mi></mrow> <mrow><mi>Std</mi></mrow> </msub> </mrow> </math> (median 5 versus 4; <math><mrow><mi>p</mi> <mo><</mo> <mn>0.001</mn></mrow> </math> ). <math> <mrow> <msub><mrow><mi>VIBE</mi></mrow> <mrow><mi>UF</mi></mrow> </msub> </mrow> </math> showed less noise than <math> <mrow> <msub><mrow><mi>VIBE</mi></mrow> <mrow><mi>Std</mi></mrow> </msub> </mrow> </math> (median 5 versus 4; <math><mrow><mi>p</mi> <mo><</mo> <mn>0.001</mn></mrow> </math> ), but <math>
目的:基于深度学习(DL)的图像重建(DLR)是腹部磁共振成像(MRI)中减少采集时间(TA)和提高形态分辨率的关键技术。我们旨在比较Dixon脂肪分离的标准(VIBE Std)梯度回波(GRE)序列与Dixon脂肪分离和DLR的加速超快速(VIBE UF)和高分辨率(VIBE HR) t1加权GRE序列的性能。方法:前瞻性纳入2023年1 - 7月腹部1.5T MRI患者50例,平均年龄59±11岁。每个检查方案包括VIBE Std、VIBE UF和VIBE HR。两个DL序列都使用更积极的平行成像和部分傅立叶采样来减少TA(层厚VIBE Std和VIBE UF为3毫米,VIBE HR为2毫米)。每个对比度增强数据集的噪声、伪影、清晰度/对比度、整体图像质量和诊断置信度的评估由四名放射科医生使用李克特量表(Likert scale) 1到5(5 =最佳)独立进行。结果:VIBE UF显著降低TA(平均7.3 s vs 15.0 s (VIBE Std)和14.5 s (VIBE HR));P 0.001)。与VIBE Std相比,两种DL序列对所有器官的清晰度/对比度都明显更好(中位数为5比4;p 0.001)。VIBE UF表现出比VIBE Std更少的噪声(中位数5比4,p 0.001),但VIBE Std比两个DL序列更少的伪影影响(中位数5比4,p 0.001)。与VIBE Std相比,两种DL序列的总体图像质量都更好(中位数为5比4;p 0.001)。诊断置信度和病变检出率差异无统计学意义(p < 0.05)。结论:基于dl的图像重建显著提高了VIBE UF和VIBE HR的整体图像质量,其中VIBE UF将TA降低了约50%。
{"title":"Application of thin-slice and accelerated T1-weighted GRE sequences in 1.5T abdominal magnetic resonance imaging using deep learning image reconstruction.","authors":"Natalie S Joos, Saif Afat, Marcel Dominik Nickel, Elisabeth Weiland, Judith Herrmann, Stephan Ursprung, Haidara Almansour, Andreas Lingg, Sebastian Werner, Bianca Haase, Konstantin Nikolaou, Sebastian Gassenmaier","doi":"10.1117/1.JMI.12.6.064005","DOIUrl":"https://doi.org/10.1117/1.JMI.12.6.064005","url":null,"abstract":"&lt;p&gt;&lt;strong&gt;Purpose: &lt;/strong&gt;Deep-learning (DL)-based image reconstruction (DLR) is a key technique for reducing acquisition time (TA) and increasing morphologic resolution in abdominal magnetic resonance imaging (MRI). We aim to compare the performance of a standard ( &lt;math&gt; &lt;mrow&gt; &lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;VIBE&lt;/mi&gt;&lt;/mrow&gt; &lt;mrow&gt;&lt;mi&gt;Std&lt;/mi&gt;&lt;/mrow&gt; &lt;/msub&gt; &lt;/mrow&gt; &lt;/math&gt; ) gradient echo (GRE) sequence with Dixon fat separation versus an accelerated ultra-fast ( &lt;math&gt; &lt;mrow&gt; &lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;VIBE&lt;/mi&gt;&lt;/mrow&gt; &lt;mrow&gt;&lt;mi&gt;UF&lt;/mi&gt;&lt;/mrow&gt; &lt;/msub&gt; &lt;/mrow&gt; &lt;/math&gt; ) and high-resolution ( &lt;math&gt; &lt;mrow&gt; &lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;VIBE&lt;/mi&gt;&lt;/mrow&gt; &lt;mrow&gt;&lt;mi&gt;HR&lt;/mi&gt;&lt;/mrow&gt; &lt;/msub&gt; &lt;/mrow&gt; &lt;/math&gt; ) T1-weighted GRE sequence with Dixon fat separation and DLR.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Approach: &lt;/strong&gt;A total of 50 patients with an abdominal 1.5T MRI, with a mean age of &lt;math&gt;&lt;mrow&gt;&lt;mn&gt;59&lt;/mn&gt; &lt;mo&gt;±&lt;/mo&gt; &lt;mn&gt;11&lt;/mn&gt;&lt;/mrow&gt; &lt;/math&gt; years, were prospectively included from January to July 2023. Each examination protocol included &lt;math&gt; &lt;mrow&gt; &lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;VIBE&lt;/mi&gt;&lt;/mrow&gt; &lt;mrow&gt;&lt;mi&gt;Std&lt;/mi&gt;&lt;/mrow&gt; &lt;/msub&gt; &lt;/mrow&gt; &lt;/math&gt; , &lt;math&gt; &lt;mrow&gt; &lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;VIBE&lt;/mi&gt;&lt;/mrow&gt; &lt;mrow&gt;&lt;mi&gt;UF&lt;/mi&gt;&lt;/mrow&gt; &lt;/msub&gt; &lt;/mrow&gt; &lt;/math&gt; , and &lt;math&gt; &lt;mrow&gt; &lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;VIBE&lt;/mi&gt;&lt;/mrow&gt; &lt;mrow&gt;&lt;mi&gt;HR&lt;/mi&gt;&lt;/mrow&gt; &lt;/msub&gt; &lt;/mrow&gt; &lt;/math&gt; . Both DL sequences use more aggressive parallel imaging and partial Fourier sampling to reduce TA (slice thickness &lt;math&gt; &lt;mrow&gt; &lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;VIBE&lt;/mi&gt;&lt;/mrow&gt; &lt;mrow&gt;&lt;mi&gt;Std&lt;/mi&gt;&lt;/mrow&gt; &lt;/msub&gt; &lt;/mrow&gt; &lt;/math&gt; and &lt;math&gt; &lt;mrow&gt; &lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;VIBE&lt;/mi&gt;&lt;/mrow&gt; &lt;mrow&gt;&lt;mi&gt;UF&lt;/mi&gt;&lt;/mrow&gt; &lt;/msub&gt; &lt;/mrow&gt; &lt;/math&gt; 3 mm, &lt;math&gt; &lt;mrow&gt; &lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;VIBE&lt;/mi&gt;&lt;/mrow&gt; &lt;mrow&gt;&lt;mi&gt;HR&lt;/mi&gt;&lt;/mrow&gt; &lt;/msub&gt; &lt;/mrow&gt; &lt;/math&gt; 2 mm). Evaluation of each contrast-enhanced datasets for noise, artifacts, sharpness/contrast, overall image quality, and diagnostic confidence was performed independently by four radiologists using a Likert scale of 1 to 5 (5 = best).&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results: &lt;/strong&gt;&lt;math&gt; &lt;mrow&gt; &lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;VIBE&lt;/mi&gt;&lt;/mrow&gt; &lt;mrow&gt;&lt;mi&gt;UF&lt;/mi&gt;&lt;/mrow&gt; &lt;/msub&gt; &lt;/mrow&gt; &lt;/math&gt; significantly reduced TA (mean 7.3 s versus 15.0 s ( &lt;math&gt; &lt;mrow&gt; &lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;VIBE&lt;/mi&gt;&lt;/mrow&gt; &lt;mrow&gt;&lt;mi&gt;Std&lt;/mi&gt;&lt;/mrow&gt; &lt;/msub&gt; &lt;/mrow&gt; &lt;/math&gt; ) and 14.5 s ( &lt;math&gt; &lt;mrow&gt; &lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;VIBE&lt;/mi&gt;&lt;/mrow&gt; &lt;mrow&gt;&lt;mi&gt;HR&lt;/mi&gt;&lt;/mrow&gt; &lt;/msub&gt; &lt;/mrow&gt; &lt;/math&gt; ); &lt;math&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt; &lt;mo&gt;&lt;&lt;/mo&gt; &lt;mn&gt;0.001&lt;/mn&gt;&lt;/mrow&gt; &lt;/math&gt; ). Both DL sequences provided significantly better sharpness/contrast for all organs compared with &lt;math&gt; &lt;mrow&gt; &lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;VIBE&lt;/mi&gt;&lt;/mrow&gt; &lt;mrow&gt;&lt;mi&gt;Std&lt;/mi&gt;&lt;/mrow&gt; &lt;/msub&gt; &lt;/mrow&gt; &lt;/math&gt; (median 5 versus 4; &lt;math&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt; &lt;mo&gt;&lt;&lt;/mo&gt; &lt;mn&gt;0.001&lt;/mn&gt;&lt;/mrow&gt; &lt;/math&gt; ). &lt;math&gt; &lt;mrow&gt; &lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;VIBE&lt;/mi&gt;&lt;/mrow&gt; &lt;mrow&gt;&lt;mi&gt;UF&lt;/mi&gt;&lt;/mrow&gt; &lt;/msub&gt; &lt;/mrow&gt; &lt;/math&gt; showed less noise than &lt;math&gt; &lt;mrow&gt; &lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;VIBE&lt;/mi&gt;&lt;/mrow&gt; &lt;mrow&gt;&lt;mi&gt;Std&lt;/mi&gt;&lt;/mrow&gt; &lt;/msub&gt; &lt;/mrow&gt; &lt;/math&gt; (median 5 versus 4; &lt;math&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt; &lt;mo&gt;&lt;&lt;/mo&gt; &lt;mn&gt;0.001&lt;/mn&gt;&lt;/mrow&gt; &lt;/math&gt; ), but &lt;math&gt; ","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 6","pages":"064005"},"PeriodicalIF":1.7,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12694749/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145745166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of synthetic data on training a deep learning model for lesion detection and classification in contrast-enhanced mammography. 合成数据对增强乳房x光造影中病变检测和分类的深度学习模型训练的影响。
IF 1.9 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-11-01 Epub Date: 2025-04-28 DOI: 10.1117/1.JMI.12.S2.S22006
Astrid Van Camp, Henry C Woodruff, Lesley Cockmartin, Marc Lobbes, Michael Majer, Corinne Balleyguier, Nicholas W Marshall, Hilde Bosmans, Philippe Lambin

Purpose: Predictive models for contrast-enhanced mammography often perform better at detecting and classifying enhancing masses than (non-enhancing) microcalcification clusters. We aim to investigate whether incorporating synthetic data with simulated microcalcification clusters during training can enhance model performance.

Approach: Microcalcification clusters were simulated in low-energy images of lesion-free breasts from 782 patients, considering local texture features. Enhancement was simulated in the corresponding recombined images. A deep learning (DL) model for lesion detection and classification was trained with varying ratios of synthetic and real (850 patients) data. In addition, a handcrafted radiomics classifier was trained using delineations and class labels from real data, and predictions from both models were ensembled. Validation was performed on internal (212 patients) and external (279 patients) real datasets.

Results: The DL model trained exclusively with synthetic data detected over 60% of malignant lesions. Adding synthetic data to smaller real training sets improved detection sensitivity for malignant lesions but decreased precision. Performance plateaued at a detection sensitivity of 0.80. The ensembled DL and radiomics models performed worse than the standalone DL model, decreasing the area under this receiver operating characteristic curve from 0.75 to 0.60 on the external validation set, likely due to falsely detected suspicious regions of interest.

Conclusions: Synthetic data can enhance DL model performance, provided model setup and data distribution are optimized. The possibility to detect malignant lesions without real data present in the training set confirms the utility of synthetic data. It can serve as a helpful tool, especially when real data are scarce, and it is most effective when complementing real data.

目的:对比增强乳房x线摄影的预测模型通常在检测和分类增强肿块方面优于(非增强)微钙化团簇。我们的目的是研究在训练期间将合成数据与模拟微钙化簇结合是否可以提高模型性能。方法:采用782例无病变乳房低能图像模拟微钙化团簇,考虑局部纹理特征。在相应的重组图像中模拟增强。用不同比例的合成和真实(850例)数据训练了一个用于病变检测和分类的深度学习(DL)模型。此外,使用来自真实数据的描述和类别标签训练了手工制作的放射组学分类器,并集成了两种模型的预测结果。对内部(212例)和外部(279例)真实数据集进行验证。结果:仅用合成数据训练的DL模型对恶性病变的检出率超过60%。将合成数据添加到较小的真实训练集中,提高了对恶性病变的检测灵敏度,但降低了精度。性能在检测灵敏度为0.80时趋于稳定。集成DL和放射组学模型比独立DL模型表现更差,在外部验证集中,接收器工作特征曲线下的面积从0.75减少到0.60,可能是由于错误地检测到可疑的感兴趣区域。结论:在优化模型设置和数据分布的前提下,综合数据可以提高深度学习模型的性能。在训练集中没有真实数据的情况下检测恶性病变的可能性证实了合成数据的实用性。它可以作为一种有用的工具,特别是在真实数据稀缺的情况下,并且在补充真实数据时最有效。
{"title":"Impact of synthetic data on training a deep learning model for lesion detection and classification in contrast-enhanced mammography.","authors":"Astrid Van Camp, Henry C Woodruff, Lesley Cockmartin, Marc Lobbes, Michael Majer, Corinne Balleyguier, Nicholas W Marshall, Hilde Bosmans, Philippe Lambin","doi":"10.1117/1.JMI.12.S2.S22006","DOIUrl":"10.1117/1.JMI.12.S2.S22006","url":null,"abstract":"<p><strong>Purpose: </strong>Predictive models for contrast-enhanced mammography often perform better at detecting and classifying enhancing masses than (non-enhancing) microcalcification clusters. We aim to investigate whether incorporating synthetic data with simulated microcalcification clusters during training can enhance model performance.</p><p><strong>Approach: </strong>Microcalcification clusters were simulated in low-energy images of lesion-free breasts from 782 patients, considering local texture features. Enhancement was simulated in the corresponding recombined images. A deep learning (DL) model for lesion detection and classification was trained with varying ratios of synthetic and real (850 patients) data. In addition, a handcrafted radiomics classifier was trained using delineations and class labels from real data, and predictions from both models were ensembled. Validation was performed on internal (212 patients) and external (279 patients) real datasets.</p><p><strong>Results: </strong>The DL model trained exclusively with synthetic data detected over 60% of malignant lesions. Adding synthetic data to smaller real training sets improved detection sensitivity for malignant lesions but decreased precision. Performance plateaued at a detection sensitivity of 0.80. The ensembled DL and radiomics models performed worse than the standalone DL model, decreasing the area under this receiver operating characteristic curve from 0.75 to 0.60 on the external validation set, likely due to falsely detected suspicious regions of interest.</p><p><strong>Conclusions: </strong>Synthetic data can enhance DL model performance, provided model setup and data distribution are optimized. The possibility to detect malignant lesions without real data present in the training set confirms the utility of synthetic data. It can serve as a helpful tool, especially when real data are scarce, and it is most effective when complementing real data.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 Suppl 2","pages":"S22006"},"PeriodicalIF":1.9,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12036226/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144001778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust evaluation of tissue-specific radiomic features for classifying breast tissue density grades. 对乳腺组织密度分级的组织特异性放射学特征进行稳健评估。
IF 1.9 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-11-01 Epub Date: 2025-05-29 DOI: 10.1117/1.JMI.12.S2.S22010
Vincent Dong, Walter Mankowski, Telmo M Silva Filho, Anne Marie McCarthy, Despina Kontos, Andrew D A Maidment, Bruno Barufaldi

Purpose: Breast cancer risk depends on an accurate assessment of breast density due to lesion masking. Although governed by standardized guidelines, radiologist assessment of breast density is still highly variable. Automated breast density assessment tools leverage deep learning but are limited by model robustness and interpretability.

Approach: We assessed the robustness of a feature selection methodology (RFE-SHAP) for classifying breast density grades using tissue-specific radiomic features extracted from raw central projections of digital breast tomosynthesis screenings ( n I = 651 , n II = 100 ). RFE-SHAP leverages traditional and explainable AI methods to identify highly predictive and influential features. A simple logistic regression (LR) classifier was used to assess classification performance, and unsupervised clustering was employed to investigate the intrinsic separability of density grade classes.

Results: LR classifiers yielded cross-validated areas under the receiver operating characteristic (AUCs) per density grade of [ A : 0.909 ± 0.032 , B : 0.858 ± 0.027 , C : 0.927 ± 0.013 , D : 0.890 ± 0.089 ] and an AUC of 0.936 ± 0.016 for classifying patients as nondense or dense. In external validation, we observed per density grade AUCs of [ A : 0.880, B : 0.779, C : 0.878, D : 0.673] and nondense/dense AUC of 0.823. Unsupervised clustering highlighted the ability of these features to characterize different density grades.

Conclusions: Our RFE-SHAP feature selection methodology for classifying breast tissue density generalized well to validation datasets after accounting for natural class imbalance, and the identified radiomic features properly captured the progression of density grades. Our results potentiate future research into correlating selected radiomic features with clinical descriptors of breast tissue density.

目的:乳腺癌的风险取决于对乳腺密度的准确评估,因为病变掩盖。尽管有标准化的指导方针,放射科医生对乳腺密度的评估仍然是高度可变的。自动乳腺密度评估工具利用深度学习,但受到模型鲁棒性和可解释性的限制。方法:我们评估了特征选择方法(fe - shap)的稳健性,该方法使用从数字乳房断层合成筛查的原始中心投影中提取的组织特异性放射学特征来分类乳腺密度等级(n I = 651, n II = 100)。RFE-SHAP利用传统和可解释的人工智能方法来识别具有高度预测性和影响力的特征。采用简单逻辑回归(LR)分类器评估分类性能,采用无监督聚类研究密度等级类的内在可分性。结果:LR分类器在每个密度等级下的受试者操作特征(AUC)交叉验证面积为[A: 0.909±0.032,B: 0.858±0.027,C: 0.927±0.013,D: 0.890±0.089],非致密或致密患者分类的AUC为0.936±0.016。在外部验证中,我们观察到每个密度等级的AUC为[A: 0.880, B: 0.779, C: 0.878, D: 0.673],非密集/密集AUC为0.823。无监督聚类突出了这些特征表征不同密度等级的能力。结论:我们的rf - shap特征选择方法用于乳腺组织密度分类,在考虑了自然类别不平衡后,可以很好地推广到验证数据集,并且确定的放射学特征适当地捕获了密度等级的进展。我们的结果增强了未来的研究,将选定的放射学特征与乳腺组织密度的临床描述相关联。
{"title":"Robust evaluation of tissue-specific radiomic features for classifying breast tissue density grades.","authors":"Vincent Dong, Walter Mankowski, Telmo M Silva Filho, Anne Marie McCarthy, Despina Kontos, Andrew D A Maidment, Bruno Barufaldi","doi":"10.1117/1.JMI.12.S2.S22010","DOIUrl":"10.1117/1.JMI.12.S2.S22010","url":null,"abstract":"<p><strong>Purpose: </strong>Breast cancer risk depends on an accurate assessment of breast density due to lesion masking. Although governed by standardized guidelines, radiologist assessment of breast density is still highly variable. Automated breast density assessment tools leverage deep learning but are limited by model robustness and interpretability.</p><p><strong>Approach: </strong>We assessed the robustness of a feature selection methodology (RFE-SHAP) for classifying breast density grades using tissue-specific radiomic features extracted from raw central projections of digital breast tomosynthesis screenings ( <math> <mrow> <msub><mrow><mi>n</mi></mrow> <mrow><mi>I</mi></mrow> </msub> <mo>=</mo> <mn>651</mn></mrow> </math> , <math> <mrow> <msub><mrow><mi>n</mi></mrow> <mrow><mi>II</mi></mrow> </msub> <mo>=</mo> <mn>100</mn></mrow> </math> ). RFE-SHAP leverages traditional and explainable AI methods to identify highly predictive and influential features. A simple logistic regression (LR) classifier was used to assess classification performance, and unsupervised clustering was employed to investigate the intrinsic separability of density grade classes.</p><p><strong>Results: </strong>LR classifiers yielded cross-validated areas under the receiver operating characteristic (AUCs) per density grade of [ <math><mrow><mi>A</mi></mrow> </math> : <math><mrow><mn>0.909</mn> <mo>±</mo> <mn>0.032</mn></mrow> </math> , <math><mrow><mi>B</mi></mrow> </math> : <math><mrow><mn>0.858</mn> <mo>±</mo> <mn>0.027</mn></mrow> </math> , <math><mrow><mi>C</mi></mrow> </math> : <math><mrow><mn>0.927</mn> <mo>±</mo> <mn>0.013</mn></mrow> </math> , <math><mrow><mi>D</mi></mrow> </math> : <math><mrow><mn>0.890</mn> <mo>±</mo> <mn>0.089</mn></mrow> </math> ] and an AUC of <math><mrow><mn>0.936</mn> <mo>±</mo> <mn>0.016</mn></mrow> </math> for classifying patients as nondense or dense. In external validation, we observed per density grade AUCs of [ <math><mrow><mi>A</mi></mrow> </math> : 0.880, <math><mrow><mi>B</mi></mrow> </math> : 0.779, <math><mrow><mi>C</mi></mrow> </math> : 0.878, <math><mrow><mi>D</mi></mrow> </math> : 0.673] and nondense/dense AUC of 0.823. Unsupervised clustering highlighted the ability of these features to characterize different density grades.</p><p><strong>Conclusions: </strong>Our RFE-SHAP feature selection methodology for classifying breast tissue density generalized well to validation datasets after accounting for natural class imbalance, and the identified radiomic features properly captured the progression of density grades. Our results potentiate future research into correlating selected radiomic features with clinical descriptors of breast tissue density.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 Suppl 2","pages":"S22010"},"PeriodicalIF":1.9,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12120562/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144200544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing mammographic density change within individuals across screening rounds using deep learning-based software. 使用基于深度学习的软件评估个体在筛查轮中的乳房x光密度变化。
IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-11-01 Epub Date: 2025-08-13 DOI: 10.1117/1.JMI.12.S2.S22017
Jakob Olinder, Daniel Förnvik, Victor Dahlblom, Viktor Lu, Anna Åkesson, Kristin Johnson, Sophia Zackrisson

Purpose: The purposes are to evaluate the change in mammographic density within individuals across screening rounds using automatic density software, to evaluate whether a change in breast density is associated with a future breast cancer diagnosis, and to provide insight into breast density evolution.

Approach: Mammographic breast density was analyzed in women screened in Malmö, Sweden, between 2010 and 2015 who had undergone at least two consecutive screening rounds < 30 months apart. The volumetric and area-based densities were measured with deep learning-based software and fully automated software, respectively. The change in volumetric breast density percentage (VBD%) between two consecutive screening examinations was determined. Multiple linear regression was used to investigate the association between VBD% change in percentage points and future breast cancer, as well as the initial VBD%, adjusting for age group and the time between examinations. Examinations with potential positioning issues were removed in a sensitivity analysis.

Results: In 26,056 included women, the mean VBD% decreased from 10.7% [95% confidence interval (CI) 10.6 to 10.8] to 10.3% (95% CI: 10.2 to 10.3) ( p < 0.001 ) between the two examinations. The decline in VBD% was more pronounced in women with initially denser breasts (adjusted β = - 0.10 , p < 0.001 ) and less pronounced in women with a future breast cancer diagnosis (adjusted β = 0.16 , p = 0.02 ).

Conclusions: The demonstrated density changes over time support the potential of using breast density change in risk assessment tools and provide insights for future risk-based screening.

目的:目的是使用自动密度软件评估个体在筛查轮次中乳房x线摄影密度的变化,评估乳腺密度的变化是否与未来的乳腺癌诊断相关,并为乳腺密度的演变提供见解。方法:对2010年至2015年间在瑞典Malmö接受筛查的女性进行乳房x线摄影乳腺密度分析,这些女性至少连续两次筛查,间隔30个月。采用基于深度学习的软件和全自动软件分别测量体积密度和面积密度。确定两次连续筛查检查之间乳腺体积密度百分比(VBD%)的变化。采用多元线性回归来研究VBD百分比百分比变化与未来乳腺癌之间的关系,以及调整年龄组和检查间隔时间后的初始VBD百分比。在敏感性分析中,排除了有潜在定位问题的检查。结果:在纳入的26,056名女性中,两次检查之间的平均VBD%从10.7%[95%可信区间(CI) 10.6至10.8]降至10.3% (95% CI: 10.2至10.3)(p 0.001)。VBD%的下降在最初乳房密度较大的女性中更为明显(调整后的β = - 0.10, p = 0.001),而在未来诊断为乳腺癌的女性中不太明显(调整后的β = 0.16, p = 0.02)。结论:所证实的密度随时间的变化支持了使用乳腺密度变化作为风险评估工具的潜力,并为未来基于风险的筛查提供了见解。
{"title":"Assessing mammographic density change within individuals across screening rounds using deep learning-based software.","authors":"Jakob Olinder, Daniel Förnvik, Victor Dahlblom, Viktor Lu, Anna Åkesson, Kristin Johnson, Sophia Zackrisson","doi":"10.1117/1.JMI.12.S2.S22017","DOIUrl":"10.1117/1.JMI.12.S2.S22017","url":null,"abstract":"<p><strong>Purpose: </strong>The purposes are to evaluate the change in mammographic density within individuals across screening rounds using automatic density software, to evaluate whether a change in breast density is associated with a future breast cancer diagnosis, and to provide insight into breast density evolution.</p><p><strong>Approach: </strong>Mammographic breast density was analyzed in women screened in Malmö, Sweden, between 2010 and 2015 who had undergone at least two consecutive screening rounds <math><mrow><mo><</mo> <mn>30</mn></mrow> </math> months apart. The volumetric and area-based densities were measured with deep learning-based software and fully automated software, respectively. The change in volumetric breast density percentage (VBD%) between two consecutive screening examinations was determined. Multiple linear regression was used to investigate the association between VBD% change in percentage points and future breast cancer, as well as the initial VBD%, adjusting for age group and the time between examinations. Examinations with potential positioning issues were removed in a sensitivity analysis.</p><p><strong>Results: </strong>In 26,056 included women, the mean VBD% decreased from 10.7% [95% confidence interval (CI) 10.6 to 10.8] to 10.3% (95% CI: 10.2 to 10.3) ( <math><mrow><mi>p</mi> <mo><</mo> <mn>0.001</mn></mrow> </math> ) between the two examinations. The decline in VBD% was more pronounced in women with initially denser breasts (adjusted <math><mrow><mi>β</mi> <mo>=</mo> <mo>-</mo> <mn>0.10</mn></mrow> </math> , <math><mrow><mi>p</mi> <mo><</mo> <mn>0.001</mn></mrow> </math> ) and less pronounced in women with a future breast cancer diagnosis (adjusted <math><mrow><mi>β</mi> <mo>=</mo> <mn>0.16</mn></mrow> </math> , <math><mrow><mi>p</mi> <mo>=</mo> <mn>0.02</mn></mrow> </math> ).</p><p><strong>Conclusions: </strong>The demonstrated density changes over time support the potential of using breast density change in risk assessment tools and provide insights for future risk-based screening.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 Suppl 2","pages":"S22017"},"PeriodicalIF":1.7,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12350635/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144876009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Federated learning in computational pathology: a literature review. 计算病理学中的联合学习:文献综述。
IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-11-01 Epub Date: 2025-11-26 DOI: 10.1117/1.JMI.12.6.061412
Sonal Shukla, Scott Doyle
<p><strong>Purpose: </strong>Artificial intelligence has emerged as a powerful technique for data analysis and predictive modeling. However, traditional centralized learning methods, which require aggregating large and diverse datasets at a central location, present considerable privacy and security risks, particularly in sensitive areas such as healthcare. Federated learning (FL) offers a promising alternative by enabling collaborative model training without the need to share raw data. We aim to systematically examine the current state of the art in the application of FL within the healthcare domain, with a focus on computational pathology.</p><p><strong>Approach: </strong>We conducted a systematic review of the published literature on FL in healthcare, with a specific focus on imaging-based applications relevant to computational pathology. Our analysis includes studies utilizing a range of medical imaging modalities such as whole-slide histopathology images, magnetic resonance imaging, computed tomography, and positron emission tomography. The selected studies were categorized based on a taxonomy of FL architectures, with a focus on understanding each study's motivations, implementation strategies, and targeted problems. We also evaluated recurring technical challenges such as system and data heterogeneity, privacy preservation mechanisms, and communication efficiency, as well as the integration of complementary technologies such as blockchain, homomorphic encryption, and multi-modal learning.</p><p><strong>Results: </strong>The literature demonstrates a growing adoption of FL across healthcare applications, with increasing interest in computational pathology. Studies report promising outcomes for tasks such as patient outcome prediction, disease classification, and tissue segmentation using decentralized datasets. Notably, federated approaches often match or outperform centralized models in terms of accuracy while maintaining data privacy across institutions. In the case of computational pathology, federated training has proven feasible and effective. However, challenges persist across studies, including data modality heterogeneity, communication overhead, and slow model convergence. Several papers propose novel FL frameworks to address these issues, although standardization across implementations remains limited.</p><p><strong>Conclusions: </strong>FL holds significant promise for enabling secure, privacy-preserving collaboration in healthcare, particularly within computational pathology. The reviewed studies highlight the feasibility of applying FL across diverse data types without the need to centralize sensitive information. Nevertheless, key challenges such as system interoperability, data heterogeneity, and model interpretability continue to hinder real-world adoption. Future research should focus on developing scalable, standardized FL infrastructures, improving model robustness across heterogeneous sources, and addressing ethical conce
目的:人工智能已经成为一种强大的数据分析和预测建模技术。然而,传统的集中式学习方法需要在中心位置聚合大量不同的数据集,这带来了相当大的隐私和安全风险,特别是在医疗保健等敏感领域。联邦学习(FL)通过支持协作模型训练而无需共享原始数据,提供了一个很有前途的替代方案。我们的目标是系统地检查FL在医疗保健领域应用的最新技术,重点是计算病理学。方法:我们对医疗保健中FL的已发表文献进行了系统回顾,特别关注与计算病理学相关的基于成像的应用。我们的分析包括利用一系列医学成像方式的研究,如全玻片组织病理学图像、磁共振成像、计算机断层扫描和正电子发射断层扫描。所选择的研究是基于FL架构的分类进行分类的,重点是理解每个研究的动机、实现策略和目标问题。我们还评估了反复出现的技术挑战,如系统和数据异质性、隐私保护机制和通信效率,以及区块链、同态加密和多模态学习等互补技术的集成。结果:文献表明,随着对计算病理学的兴趣增加,在医疗保健应用中越来越多地采用FL。研究报告了使用分散数据集进行患者结果预测、疾病分类和组织分割等任务的有希望的结果。值得注意的是,在保持跨机构数据隐私的同时,联邦方法在准确性方面通常与集中式模型相匹配或优于集中式模型。在计算病理学的案例中,联合训练已被证明是可行和有效的。然而,在研究中仍然存在挑战,包括数据模态异构、通信开销和缓慢的模型收敛。一些论文提出了新的FL框架来解决这些问题,尽管跨实现的标准化仍然有限。结论:在医疗保健领域,特别是在计算病理学领域,FL在实现安全、保护隐私的协作方面有着重要的前景。回顾的研究强调了在不需要集中敏感信息的情况下跨不同数据类型应用FL的可行性。然而,诸如系统互操作性、数据异构性和模型可解释性等关键挑战继续阻碍着现实世界的采用。未来的研究应侧重于开发可扩展的、标准化的FL基础设施,提高跨异构来源的模型鲁棒性,并解决围绕公平性和问责制的伦理问题,以支持安全有效的临床整合。
{"title":"Federated learning in computational pathology: a literature review.","authors":"Sonal Shukla, Scott Doyle","doi":"10.1117/1.JMI.12.6.061412","DOIUrl":"https://doi.org/10.1117/1.JMI.12.6.061412","url":null,"abstract":"&lt;p&gt;&lt;strong&gt;Purpose: &lt;/strong&gt;Artificial intelligence has emerged as a powerful technique for data analysis and predictive modeling. However, traditional centralized learning methods, which require aggregating large and diverse datasets at a central location, present considerable privacy and security risks, particularly in sensitive areas such as healthcare. Federated learning (FL) offers a promising alternative by enabling collaborative model training without the need to share raw data. We aim to systematically examine the current state of the art in the application of FL within the healthcare domain, with a focus on computational pathology.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Approach: &lt;/strong&gt;We conducted a systematic review of the published literature on FL in healthcare, with a specific focus on imaging-based applications relevant to computational pathology. Our analysis includes studies utilizing a range of medical imaging modalities such as whole-slide histopathology images, magnetic resonance imaging, computed tomography, and positron emission tomography. The selected studies were categorized based on a taxonomy of FL architectures, with a focus on understanding each study's motivations, implementation strategies, and targeted problems. We also evaluated recurring technical challenges such as system and data heterogeneity, privacy preservation mechanisms, and communication efficiency, as well as the integration of complementary technologies such as blockchain, homomorphic encryption, and multi-modal learning.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results: &lt;/strong&gt;The literature demonstrates a growing adoption of FL across healthcare applications, with increasing interest in computational pathology. Studies report promising outcomes for tasks such as patient outcome prediction, disease classification, and tissue segmentation using decentralized datasets. Notably, federated approaches often match or outperform centralized models in terms of accuracy while maintaining data privacy across institutions. In the case of computational pathology, federated training has proven feasible and effective. However, challenges persist across studies, including data modality heterogeneity, communication overhead, and slow model convergence. Several papers propose novel FL frameworks to address these issues, although standardization across implementations remains limited.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Conclusions: &lt;/strong&gt;FL holds significant promise for enabling secure, privacy-preserving collaboration in healthcare, particularly within computational pathology. The reviewed studies highlight the feasibility of applying FL across diverse data types without the need to centralize sensitive information. Nevertheless, key challenges such as system interoperability, data heterogeneity, and model interpretability continue to hinder real-world adoption. Future research should focus on developing scalable, standardized FL infrastructures, improving model robustness across heterogeneous sources, and addressing ethical conce","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 6","pages":"061412"},"PeriodicalIF":1.7,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12649815/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145641377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fine-grained multiclass nuclei segmentation with molecular empowered all-in-SAM model. 细粒度多类核分割与分子赋能的all-in-SAM模型。
IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-09-01 Epub Date: 2025-09-04 DOI: 10.1117/1.JMI.12.5.057501
Xueyuan Li, Can Cui, Ruining Deng, Yucheng Tang, Quan Liu, Tianyuan Yao, Shunxing Bao, Naweed Chowdhury, Haichun Yang, Yuankai Huo

Purpose: Recent developments in computational pathology have been driven by advances in vision foundation models (VFMs), particularly the Segment Anything Model (SAM). This model facilitates nuclei segmentation through two primary methods: prompt-based zero-shot segmentation and the use of cell-specific SAM models for direct segmentation. These approaches enable effective segmentation across a range of nuclei and cells. However, general VFMs often face challenges with fine-grained semantic segmentation, such as identifying specific nuclei subtypes or particular cells.

Approach: In this paper, we propose the molecular empowered all-in-SAM model to advance computational pathology by leveraging the capabilities of VFMs. This model incorporates a full-stack approach, focusing on (1) annotation-engaging lay annotators through molecular empowered learning to reduce the need for detailed pixel-level annotations, (2) learning-adapting the SAM model to emphasize specific semantics, which utilizes its strong generalizability with SAM adapter, and (3) refinement-enhancing segmentation accuracy by integrating molecular oriented corrective learning.

Results: Experimental results from both in-house and public datasets show that the all-in-SAM model significantly improves cell classification performance, even when faced with varying annotation quality.

Conclusions: Our approach not only reduces the workload for annotators but also extends the accessibility of precise biomedical image analysis to resource-limited settings, thereby advancing medical diagnostics and automating pathology image analysis.

目的:计算病理学的最新发展是由视觉基础模型(VFMs)的进步推动的,特别是部分任何模型(SAM)。该模型通过两种主要方法促进细胞核分割:基于提示的零粒分割和使用细胞特异性SAM模型进行直接分割。这些方法能够在一系列细胞核和细胞中进行有效的分割。然而,一般的VFMs经常面临细粒度语义分割的挑战,例如识别特定的细胞核亚型或特定的细胞。方法:在本文中,我们提出了分子授权的all-in-SAM模型,通过利用VFMs的能力来推进计算病理学。该模型采用了全栈方法,重点关注(1)通过分子授权学习吸引注释者,以减少对详细像素级注释的需求;(2)学习-调整SAM模型以强调特定语义,利用SAM适配器的强泛化能力;(3)通过集成面向分子的校正学习来提高分割精度。结果:来自内部和公共数据集的实验结果表明,即使面对不同的注释质量,all-in-SAM模型也显著提高了细胞分类性能。结论:我们的方法不仅减少了注释者的工作量,而且将精确的生物医学图像分析扩展到资源有限的环境中,从而促进了医学诊断和病理图像分析的自动化。
{"title":"Fine-grained multiclass nuclei segmentation with molecular empowered all-in-SAM model.","authors":"Xueyuan Li, Can Cui, Ruining Deng, Yucheng Tang, Quan Liu, Tianyuan Yao, Shunxing Bao, Naweed Chowdhury, Haichun Yang, Yuankai Huo","doi":"10.1117/1.JMI.12.5.057501","DOIUrl":"10.1117/1.JMI.12.5.057501","url":null,"abstract":"<p><strong>Purpose: </strong>Recent developments in computational pathology have been driven by advances in vision foundation models (VFMs), particularly the Segment Anything Model (SAM). This model facilitates nuclei segmentation through two primary methods: prompt-based zero-shot segmentation and the use of cell-specific SAM models for direct segmentation. These approaches enable effective segmentation across a range of nuclei and cells. However, general VFMs often face challenges with fine-grained semantic segmentation, such as identifying specific nuclei subtypes or particular cells.</p><p><strong>Approach: </strong>In this paper, we propose the molecular empowered all-in-SAM model to advance computational pathology by leveraging the capabilities of VFMs. This model incorporates a full-stack approach, focusing on (1) annotation-engaging lay annotators through molecular empowered learning to reduce the need for detailed pixel-level annotations, (2) learning-adapting the SAM model to emphasize specific semantics, which utilizes its strong generalizability with SAM adapter, and (3) refinement-enhancing segmentation accuracy by integrating molecular oriented corrective learning.</p><p><strong>Results: </strong>Experimental results from both in-house and public datasets show that the all-in-SAM model significantly improves cell classification performance, even when faced with varying annotation quality.</p><p><strong>Conclusions: </strong>Our approach not only reduces the workload for annotators but also extends the accessibility of precise biomedical image analysis to resource-limited settings, thereby advancing medical diagnostics and automating pathology image analysis.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 5","pages":"057501"},"PeriodicalIF":1.7,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12410749/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145015261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive mixed reality surgical navigation system for liver surgery. 肝脏外科综合混合现实手术导航系统。
IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-09-01 Epub Date: 2025-10-06 DOI: 10.1117/1.JMI.12.5.055001
Bowen Xiang, Jon S Heiselman, Michael I Miga

Purpose: Intraoperative liver deformation and the need to glance repeatedly between the operative field and a remote monitor undermine the precision and workflow of image-guided liver surgery. Existing mixed reality (MR) prototypes address only isolated aspects of this challenge and lack quantitative validation in deformable anatomy.

Approach: We introduce a fully self-contained MR navigation system for liver surgery that runs on a MR headset and bridges this clinical gap by (1) stabilizing holographic content with an external retro-reflective reference tool that defines a fixed world origin, (2) tracking instruments and surface points in real time with the headset's depth camera, and (3) compensating soft-tissue deformation through a weighted ICP + linearized iterative boundary reconstruction pipeline. A lightweight server-client architecture streams deformation-corrected 3D models to the headset and enables hands-free control via voice commands.

Results: Validation on a multistate liver-phantom protocol demonstrated that the reference tool reduced mean hologram drift from 4.0 ± 1.2    mm to 1.1 ± 0.3    mm and improved tracking accuracy from 3.6 ± 1.3 to 2.3 ± 0.8    mm . Across five simulated deformation states, nonrigid registration lowered surface target registration error from 7.4 ± 4.8 to 3.0 ± 2.7    mm -an average 57% error reduction-yielding sub-4 mm guidance accuracy.

Conclusions: By unifying stable MR visualization, tool tracking, and biomechanical deformation correction in a single headset, the proposed platform eliminates monitor-related context switching and restores spatial fidelity lost to liver motion. The device-agnostic framework is extendable to open approaches and potentially laparoscopic workflows and other soft-tissue interventions, marking a significant step toward MR-enabled surgical navigation.

目的:术中肝脏变形,需要在手术视野和远程监护仪之间反复扫视,影响了图像引导下肝脏手术的准确性和工作流程。现有的混合现实(MR)原型仅解决了这一挑战的孤立方面,并且在可变形解剖中缺乏定量验证。方法:我们介绍了一种完全独立的肝脏手术MR导航系统,该系统运行在MR头戴式设备上,通过(1)使用外部回溯反射参考工具稳定全息内容,定义固定的世界原点,(2)使用头戴式设备的深度相机实时跟踪仪器和表面点,以及(3)通过加权ICP +线性化迭代边界重建管道补偿软组织变形。轻量级的服务器-客户端架构将变形校正的3D模型传输到耳机,并通过语音命令实现免提控制。结果:在多状态肝幻影方案上的验证表明,参考工具将平均全息图漂移从4.0±1.2 mm减少到1.1±0.3 mm,并将跟踪精度从3.6±1.3提高到2.3±0.8 mm。在五种模拟变形状态下,非刚性配准将表面目标配准误差从7.4±4.8 mm降低到3.0±2.7 mm,平均误差降低57%,制导精度低于4 mm。结论:通过将稳定的MR可视化、工具跟踪和生物力学变形校正统一到一个头戴式设备中,该平台消除了与监视器相关的上下文切换,并恢复了肝脏运动丢失的空间保真度。与设备无关的框架可扩展到开放式方法,潜在的腹腔镜工作流程和其他软组织干预,标志着向磁共振手术导航迈出了重要的一步。
{"title":"Comprehensive mixed reality surgical navigation system for liver surgery.","authors":"Bowen Xiang, Jon S Heiselman, Michael I Miga","doi":"10.1117/1.JMI.12.5.055001","DOIUrl":"10.1117/1.JMI.12.5.055001","url":null,"abstract":"<p><strong>Purpose: </strong>Intraoperative liver deformation and the need to glance repeatedly between the operative field and a remote monitor undermine the precision and workflow of image-guided liver surgery. Existing mixed reality (MR) prototypes address only isolated aspects of this challenge and lack quantitative validation in deformable anatomy.</p><p><strong>Approach: </strong>We introduce a fully self-contained MR navigation system for liver surgery that runs on a MR headset and bridges this clinical gap by (1) stabilizing holographic content with an external retro-reflective reference tool that defines a fixed world origin, (2) tracking instruments and surface points in real time with the headset's depth camera, and (3) compensating soft-tissue deformation through a weighted ICP + linearized iterative boundary reconstruction pipeline. A lightweight server-client architecture streams deformation-corrected 3D models to the headset and enables hands-free control via voice commands.</p><p><strong>Results: </strong>Validation on a multistate liver-phantom protocol demonstrated that the reference tool reduced mean hologram drift from <math><mrow><mn>4.0</mn> <mo>±</mo> <mn>1.2</mn> <mtext>  </mtext> <mi>mm</mi></mrow> </math> to <math><mrow><mn>1.1</mn> <mo>±</mo> <mn>0.3</mn> <mtext>  </mtext> <mi>mm</mi></mrow> </math> and improved tracking accuracy from <math><mrow><mn>3.6</mn> <mo>±</mo> <mn>1.3</mn></mrow> </math> to <math><mrow><mn>2.3</mn> <mo>±</mo> <mn>0.8</mn> <mtext>  </mtext> <mi>mm</mi></mrow> </math> . Across five simulated deformation states, nonrigid registration lowered surface target registration error from <math><mrow><mn>7.4</mn> <mo>±</mo> <mn>4.8</mn></mrow> </math> to <math><mrow><mn>3.0</mn> <mo>±</mo> <mn>2.7</mn> <mtext>  </mtext> <mi>mm</mi></mrow> </math> -an average 57% error reduction-yielding sub-4 mm guidance accuracy.</p><p><strong>Conclusions: </strong>By unifying stable MR visualization, tool tracking, and biomechanical deformation correction in a single headset, the proposed platform eliminates monitor-related context switching and restores spatial fidelity lost to liver motion. The device-agnostic framework is extendable to open approaches and potentially laparoscopic workflows and other soft-tissue interventions, marking a significant step toward MR-enabled surgical navigation.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 5","pages":"055001"},"PeriodicalIF":1.7,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12499930/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145245641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BigReg: an efficient registration pipeline for high-resolution X-ray and light-sheet fluorescence microscopy. BigReg:用于高分辨率x射线和光片荧光显微镜的高效配准管道。
IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-09-01 Epub Date: 2025-10-06 DOI: 10.1117/1.JMI.12.5.054004
Siyuan Mei, Fuxin Fan, Mareike Thies, Mingxuan Gu, Fabian Wagner, Oliver Aust, Ina Erceg, Zeynab Mirzaei, Georgiana Neag, Yipeng Sun, Yixing Huang, Andreas Maier

Purpose: We aim to propose a reliable registration pipeline tailored for multimodal mouse bone imaging using X-ray microscopy (XRM) and light-sheet fluorescence microscopy (LSFM). These imaging modalities have emerged as pivotal tools in preclinical research, particularly for studying bone remodeling diseases such as osteoporosis. Although multimodal registration enables micrometer-level structural correspondence and facilitates functional analysis, conventional landmark-, feature-, or intensity-based approaches are often infeasible due to inconsistent signal characteristics and significant misalignment resulting from independent scanning, especially in real-world and reference-free scenarios.

Approach: To address these challenges, we introduce BigReg, an automatic, two-stage registration pipeline optimized for high-resolution XRM and LSFM volumes. The first stage involves extracting surface features and applying two successive global-to-local point-cloud-based methods for coarse alignment. The subsequent stage refines this alignment in the 3D Fourier domain using a modified cross-correlation technique, achieving precise volumetric registration.

Results: Evaluations using expert-annotated landmarks and augmented test data demonstrate that BigReg approaches the accuracy of landmark-based registration with a landmark distance (LMD) of 8.36 ± 0.12    μ m and a landmark fitness (LM fitness) of 85.71 % ± 1.02 % . Moreover, BigReg can provide an optimal initialization for mutual information-based methods that otherwise fail independently, further reducing LMD to 7.24 ± 0.11    μ m and increasing LM fitness to 93.90 % ± 0.77 % .

Conclusions: To the best of our knowledge, BigReg is the first automated method to successfully register XRM and LSFM volumes without requiring manual intervention or prior alignment cues. Its ability to accurately align fine-scale structures, such as lacunae in XRM and osteocytes in LSFM, opens up new avenues for quantitative, multimodal analysis of bone microarchitecture and disease pathology, particularly in studies of osteoporosis.

目的:我们的目标是为x射线显微镜(XRM)和光片荧光显微镜(LSFM)的多模态小鼠骨成像提供可靠的配准管道。这些成像方式已经成为临床前研究的关键工具,特别是研究骨质疏松症等骨重塑疾病。尽管多模态配准可以实现微米级的结构对应并促进功能分析,但由于信号特征不一致以及独立扫描导致的显著不对准,特别是在现实世界和无参考的情况下,传统的基于地标、特征或强度的方法往往是不可行的。方法:为了应对这些挑战,我们引入了BigReg,这是一种针对高分辨率XRM和LSFM卷进行优化的自动两阶段配准管道。第一阶段包括提取表面特征,并应用两个连续的基于全局到局部点云的方法进行粗对准。随后的阶段使用改进的互相关技术在三维傅里叶域中细化这种对齐,实现精确的体积配准。结果:使用专家标注的地标和增强的测试数据进行评估表明,BigReg的地标距离(LMD)为8.36±0.12 μ m,地标适应度(LM适应度)为85.71%±1.02%,接近基于地标的配准精度。此外,BigReg可以为基于互信息的方法提供最优初始化,进一步将LMD降低到7.24±0.11 μ m,将LM适应度提高到93.90%±0.77%。结论:据我们所知,bigregg是第一个在不需要人工干预或事先对齐提示的情况下成功注册XRM和LSFM卷的自动化方法。它能够精确对准精细结构,如XRM中的腔隙和LSFM中的骨细胞,为骨微结构和疾病病理学的定量、多模态分析开辟了新的途径,特别是在骨质疏松症的研究中。
{"title":"BigReg: an efficient registration pipeline for high-resolution X-ray and light-sheet fluorescence microscopy.","authors":"Siyuan Mei, Fuxin Fan, Mareike Thies, Mingxuan Gu, Fabian Wagner, Oliver Aust, Ina Erceg, Zeynab Mirzaei, Georgiana Neag, Yipeng Sun, Yixing Huang, Andreas Maier","doi":"10.1117/1.JMI.12.5.054004","DOIUrl":"https://doi.org/10.1117/1.JMI.12.5.054004","url":null,"abstract":"<p><strong>Purpose: </strong>We aim to propose a reliable registration pipeline tailored for multimodal mouse bone imaging using X-ray microscopy (XRM) and light-sheet fluorescence microscopy (LSFM). These imaging modalities have emerged as pivotal tools in preclinical research, particularly for studying bone remodeling diseases such as osteoporosis. Although multimodal registration enables micrometer-level structural correspondence and facilitates functional analysis, conventional landmark-, feature-, or intensity-based approaches are often infeasible due to inconsistent signal characteristics and significant misalignment resulting from independent scanning, especially in real-world and reference-free scenarios.</p><p><strong>Approach: </strong>To address these challenges, we introduce BigReg, an automatic, two-stage registration pipeline optimized for high-resolution XRM and LSFM volumes. The first stage involves extracting surface features and applying two successive global-to-local point-cloud-based methods for coarse alignment. The subsequent stage refines this alignment in the 3D Fourier domain using a modified cross-correlation technique, achieving precise volumetric registration.</p><p><strong>Results: </strong>Evaluations using expert-annotated landmarks and augmented test data demonstrate that BigReg approaches the accuracy of landmark-based registration with a landmark distance (LMD) of <math><mrow><mn>8.36</mn> <mo>±</mo> <mn>0.12</mn> <mtext>  </mtext> <mi>μ</mi> <mi>m</mi></mrow> </math> and a landmark fitness (LM fitness) of <math><mrow><mn>85.71</mn> <mo>%</mo> <mo>±</mo> <mn>1.02</mn> <mo>%</mo></mrow> </math> . Moreover, BigReg can provide an optimal initialization for mutual information-based methods that otherwise fail independently, further reducing LMD to <math><mrow><mn>7.24</mn> <mo>±</mo> <mn>0.11</mn> <mtext>  </mtext> <mi>μ</mi> <mi>m</mi></mrow> </math> and increasing LM fitness to <math><mrow><mn>93.90</mn> <mo>%</mo> <mo>±</mo> <mn>0.77</mn> <mo>%</mo></mrow> </math> .</p><p><strong>Conclusions: </strong>To the best of our knowledge, BigReg is the first automated method to successfully register XRM and LSFM volumes without requiring manual intervention or prior alignment cues. Its ability to accurately align fine-scale structures, such as lacunae in XRM and osteocytes in LSFM, opens up new avenues for quantitative, multimodal analysis of bone microarchitecture and disease pathology, particularly in studies of osteoporosis.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 5","pages":"054004"},"PeriodicalIF":1.7,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12499931/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145245576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approximating the ideal observer for joint signal detection and estimation tasks by the use of Markov-Chain Monte Carlo with generative adversarial networks. 基于生成对抗网络的马尔可夫链蒙特卡罗逼近联合信号检测和估计任务的理想观测器。
IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-09-01 Epub Date: 2025-10-21 DOI: 10.1117/1.JMI.12.5.051810
Dan Li, Kaiyan Li, Weimin Zhou, Mark A Anastasio

Purpose: The Bayesian ideal observer (IO) is a special model observer that achieves the best possible performance on tasks that involve signal detection or discrimination. Although IOs are desired for optimizing and assessing imaging technologies, they remain difficult to compute. Previously, a hybrid method that combines deep learning (DL) with a Markov-Chain Monte Carlo (MCMC) method was proposed for estimating the IO test statistic for joint signal detection-estimation tasks. That method will be referred to as the hybrid MCMC method. However, the hybrid MCMC method was restricted to use cases that involved relatively simple stochastic background and signal models.

Approach: The previously developed hybrid MCMC method is generalized by utilizing a framework that integrates deep generative modeling into the MCMC sampling process. This method employs a generative adversarial network (GAN) that is trained on object or signal ensembles to establish data-driven stochastic object and signal models, respectively, and will be referred to as the hybrid MCMC-GAN method. This circumvents the limitation of traditional MCMC methods and enables the estimation of the IO test statistic with consideration of broader classes of clinically relevant object and signal models.

Results: The hybrid MCMC-GAN method was evaluated on two binary detection-estimation tasks in which the observer must detect a signal and estimate its amplitude if the signal is detected. First, a stylized signal-known-statistically (SKS) and background-known-exactly task was considered. A GAN was employed to establish a stochastic signal model, enabling direct comparison of our GAN-based IO approximation with a closed-form expression for the IO decision strategy. The results confirmed that the proposed method could accurately approximate the performance of the true IO. Next, an SKS and background-known-statistically (BKS) task was considered. Here, a GAN was employed to establish a stochastic object model that described anatomical variability in an ensemble of magnetic resonance (MR) brain images. This represented a setting where traditional MCMC methods are inapplicable. In this study, although a reference estimate of the true IO performance was unavailable, the hybrid MCMC-GAN produced area under the estimation receiver operating characteristic curve (AEROC) estimates that exceeded those of a sub-ideal observer that represented a lower bound for the IO performance.

Conclusion: By combining GAN-based generative modeling with MCMC, the hybrid MCMC-GAN method extends a previously proposed IO approximation method to more general detection-estimation tasks. This provides a new capability to benchmark and optimize imaging-system performance through virtual imaging studies.

目的:贝叶斯理想观测器(IO)是一种特殊的模型观测器,它在涉及信号检测或识别的任务中达到最佳性能。尽管IOs被用于优化和评估成像技术,但它们仍然难以计算。以前,提出了一种将深度学习(DL)与马尔可夫链蒙特卡罗(MCMC)方法相结合的混合方法,用于估计联合信号检测-估计任务的IO测试统计量。该方法将被称为混合MCMC方法。然而,混合MCMC方法仅限于涉及相对简单的随机背景和信号模型的用例。方法:利用将深度生成建模集成到MCMC采样过程的框架,对先前开发的混合MCMC方法进行了推广。该方法采用生成式对抗网络(GAN),在对象或信号集合上进行训练,分别建立数据驱动的随机对象和信号模型,将其称为混合MCMC-GAN方法。这规避了传统MCMC方法的局限性,使IO测试统计量的估计能够考虑到更广泛的临床相关对象和信号模型。结果:混合MCMC-GAN方法在两个二元检测估计任务中进行了评估,其中观察者必须检测信号并在信号被检测到时估计其幅度。首先,考虑了一个程式化的统计已知信号(SKS)和背景确切已知任务。采用GAN建立随机信号模型,将基于GAN的IO近似与IO决策策略的封闭表达式进行直接比较。结果表明,该方法能够准确地逼近真实IO的性能。接下来,考虑了SKS和背景已知统计(BKS)任务。在这里,GAN被用来建立一个随机对象模型,该模型描述了磁共振(MR)脑图像集合中的解剖变异性。这代表了传统MCMC方法不适用的设置。在本研究中,虽然无法获得真实IO性能的参考估计,但混合MCMC-GAN在估计接收器工作特性曲线(AEROC)估计下产生的面积超过了代表IO性能下界的亚理想观察者。结论:通过将基于gan的生成建模与MCMC相结合,混合MCMC- gan方法将先前提出的IO近似方法扩展到更一般的检测估计任务。通过虚拟成像研究,这为基准测试和优化成像系统性能提供了新的能力。
{"title":"Approximating the ideal observer for joint signal detection and estimation tasks by the use of Markov-Chain Monte Carlo with generative adversarial networks.","authors":"Dan Li, Kaiyan Li, Weimin Zhou, Mark A Anastasio","doi":"10.1117/1.JMI.12.5.051810","DOIUrl":"10.1117/1.JMI.12.5.051810","url":null,"abstract":"<p><strong>Purpose: </strong>The Bayesian ideal observer (IO) is a special model observer that achieves the best possible performance on tasks that involve signal detection or discrimination. Although IOs are desired for optimizing and assessing imaging technologies, they remain difficult to compute. Previously, a hybrid method that combines deep learning (DL) with a Markov-Chain Monte Carlo (MCMC) method was proposed for estimating the IO test statistic for joint signal detection-estimation tasks. That method will be referred to as the hybrid MCMC method. However, the hybrid MCMC method was restricted to use cases that involved relatively simple stochastic background and signal models.</p><p><strong>Approach: </strong>The previously developed hybrid MCMC method is generalized by utilizing a framework that integrates deep generative modeling into the MCMC sampling process. This method employs a generative adversarial network (GAN) that is trained on object or signal ensembles to establish data-driven stochastic object and signal models, respectively, and will be referred to as the hybrid MCMC-GAN method. This circumvents the limitation of traditional MCMC methods and enables the estimation of the IO test statistic with consideration of broader classes of clinically relevant object and signal models.</p><p><strong>Results: </strong>The hybrid MCMC-GAN method was evaluated on two binary detection-estimation tasks in which the observer must detect a signal and estimate its amplitude if the signal is detected. First, a stylized signal-known-statistically (SKS) and background-known-exactly task was considered. A GAN was employed to establish a stochastic signal model, enabling direct comparison of our GAN-based IO approximation with a closed-form expression for the IO decision strategy. The results confirmed that the proposed method could accurately approximate the performance of the true IO. Next, an SKS and background-known-statistically (BKS) task was considered. Here, a GAN was employed to establish a stochastic object model that described anatomical variability in an ensemble of magnetic resonance (MR) brain images. This represented a setting where traditional MCMC methods are inapplicable. In this study, although a reference estimate of the true IO performance was unavailable, the hybrid MCMC-GAN produced area under the estimation receiver operating characteristic curve (AEROC) estimates that exceeded those of a sub-ideal observer that represented a lower bound for the IO performance.</p><p><strong>Conclusion: </strong>By combining GAN-based generative modeling with MCMC, the hybrid MCMC-GAN method extends a previously proposed IO approximation method to more general detection-estimation tasks. This provides a new capability to benchmark and optimize imaging-system performance through virtual imaging studies.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 5","pages":"051810"},"PeriodicalIF":1.7,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12539792/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145349258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond the Victory Lap. 超越胜利圈。
IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-09-01 Epub Date: 2025-10-24 DOI: 10.1117/1.JMI.12.5.050101
Bennett A Landman

The editorial introduces JMI Volume 12 Issue 5, as it marks the beginning of a new academic year with a celebration of innovation, mentorship, and the evolving role of scholarly publishing in medical imaging. It emphasizes that impactful research is not just about results, but about teaching, sharing insights, and advancing the field through curiosity, collaboration, and community-driven resources.

这篇社论介绍了JMI第12卷第5期,因为它标志着新学年的开始,庆祝创新、指导和学术出版在医学成像中的不断发展的作用。它强调,有影响力的研究不仅仅是关于结果,而是关于教学,分享见解,并通过好奇心,协作和社区驱动的资源推进该领域。
{"title":"Beyond the Victory Lap.","authors":"Bennett A Landman","doi":"10.1117/1.JMI.12.5.050101","DOIUrl":"https://doi.org/10.1117/1.JMI.12.5.050101","url":null,"abstract":"<p><p>The editorial introduces JMI Volume 12 Issue 5, as it marks the beginning of a new academic year with a celebration of innovation, mentorship, and the evolving role of scholarly publishing in medical imaging. It emphasizes that impactful research is not just about results, but about teaching, sharing insights, and advancing the field through curiosity, collaboration, and community-driven resources.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 5","pages":"050101"},"PeriodicalIF":1.7,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12550604/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145379086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Medical Imaging
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1