Afees Salisu, Kazeem O. Isah, Ahamuefula Ephraim Ogbonna
This study aims to examine the usefulness of corporate profits in predicting the return volatility of sectoral stocks in the United States. We use a GARCH-MIDAS approach to keep the datasets in their original frequencies. The results show a consistently positive slope coefficient across various sectoral stocks. This implies that higher profits lead to increased trading of stocks and, subsequently, a higher volatility in the long run than usual. Furthermore, the analysis also extends to predictability beyond the in-sample. We find strong evidence that corporate profits can predict the out-of-sample long-run return volatility of sectoral stocks in the United States. These findings are significant for investors and portfolio managers.
{"title":"Sectoral Corporate Profits and Long-Run Stock Return Volatility in the United States: A GARCH-MIDAS Approach","authors":"Afees Salisu, Kazeem O. Isah, Ahamuefula Ephraim Ogbonna","doi":"10.1002/for.3207","DOIUrl":"https://doi.org/10.1002/for.3207","url":null,"abstract":"<p>This study aims to examine the usefulness of corporate profits in predicting the return volatility of sectoral stocks in the United States. We use a GARCH-MIDAS approach to keep the datasets in their original frequencies. The results show a consistently positive slope coefficient across various sectoral stocks. This implies that higher profits lead to increased trading of stocks and, subsequently, a higher volatility in the long run than usual. Furthermore, the analysis also extends to predictability beyond the in-sample. We find strong evidence that corporate profits can predict the out-of-sample long-run return volatility of sectoral stocks in the United States. These findings are significant for investors and portfolio managers.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"44 2","pages":"623-634"},"PeriodicalIF":3.4,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/for.3207","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143115485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Developing and employing practically useful and easy to calibrate models for prediction of exchange rates remains a challenging task, especially for highly volatile emerging market currencies. In this paper, we propose a novel approach for joint prediction of correlated exchange rates for two different currencies with respect to the same base currency. For this purpose, we reformulate a generalized version of a bivariate ARMA model into a state space model and use the Kalman filter for estimation and forecasting of the underlying exchange rates as latent variables. With extensive numerical experiments spanning 18 different exchange rates (across both emerging markets, developing and developed economies), we demonstrate that our approach consistently outperforms univariate ARMA models as well as the random walk model in short term out-of-sample prediction for various exchange rate pairs. Our study fills a gap in the empirical finance literature in terms of robust, explainable, accurate, and easy to calibrate models for forecasting correlated exchange rates. The proposed methodology has applications in exchange rate risk management as well as pricing of financial derivatives based on two exchange rates.
{"title":"Modelling and Forecasting of Exchange Rate Pairs Using the Kalman Filter","authors":"Paresh Date, Janeeta Maunthrooa","doi":"10.1002/for.3217","DOIUrl":"https://doi.org/10.1002/for.3217","url":null,"abstract":"<p>Developing and employing practically useful and easy to calibrate models for prediction of exchange rates remains a challenging task, especially for highly volatile emerging market currencies. In this paper, we propose a novel approach for joint prediction of correlated exchange rates for two different currencies with respect to the same base currency. For this purpose, we reformulate a generalized version of a bivariate ARMA model into a state space model and use the Kalman filter for estimation and forecasting of the underlying exchange rates as latent variables. With extensive numerical experiments spanning 18 different exchange rates (across both emerging markets, developing and developed economies), we demonstrate that our approach consistently outperforms univariate ARMA models as well as the random walk model in short term out-of-sample prediction for various exchange rate pairs. Our study fills a gap in the empirical finance literature in terms of robust, explainable, accurate, and easy to calibrate models for forecasting correlated exchange rates. The proposed methodology has applications in exchange rate risk management as well as pricing of financial derivatives based on two exchange rates.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"44 2","pages":"606-622"},"PeriodicalIF":3.4,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/for.3217","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143115547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}