This paper proposes a predictive approach to forecast future hedge fund performances and reporting stops to a commercial database within a subsequent year. We found that gradient boosting of decision trees is well suited to make a prognosis about the future development and reporting stops of hedge funds. The derived models are trained and evaluated using a panel of 5,592 individual hedge funds. We rank the impact of 22 variables that are computed out of hedge fund reporting (micro variables) and three different market environments (macro variables) on the predictability of hedge fund performance. In this way, we show the economic reasonability of the computed models and demonstrate the superiority of statistical learning algorithms.
{"title":"Performance and reporting predictability of hedge funds","authors":"Elisa Becker-Foss","doi":"10.1002/for.3122","DOIUrl":"10.1002/for.3122","url":null,"abstract":"<p>This paper proposes a predictive approach to forecast future hedge fund performances and reporting stops to a commercial database within a subsequent year. We found that gradient boosting of decision trees is well suited to make a prognosis about the future development and reporting stops of hedge funds. The derived models are trained and evaluated using a panel of 5,592 individual hedge funds. We rank the impact of 22 variables that are computed out of hedge fund reporting (micro variables) and three different market environments (macro variables) on the predictability of hedge fund performance. In this way, we show the economic reasonability of the computed models and demonstrate the superiority of statistical learning algorithms.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"43 6","pages":"2257-2278"},"PeriodicalIF":3.4,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140578111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper extends the Bayesian semiparametric stochastic volatility (SV-DPM) model. Instead of using a Dirichlet process mixture (DPM) to model return innovations, we use an infinite hidden Markov model (IHMM). This allows for time variation in the return density beyond that attributed to parametric latent volatility. The new model nests several special cases as well as the SV-DPM. We also discuss posterior and predictive density simulation methods for the model. Applied to equity returns, foreign exchange rates, oil price growth and industrial production growth, the new model improves density forecasts, compared with the SV-DPM, a stochastic volatility with Student's