首页 > 最新文献

Journal of Forecasting最新文献

英文 中文
A forecasting model for oil prices using a large set of economic indicators 利用大量经济指标的石油价格预测模型
IF 3.4 3区 经济学 Q1 ECONOMICS Pub Date : 2024-02-26 DOI: 10.1002/for.3087
Jihad El Hokayem, Ibrahim Jamali, Ale Hejase

This paper examines the predictability of the changes in Brent oil futures prices using a multilayer perceptron artificial neural network that exploits the information contained in the largest possible set of economic indicators. Feature engineering is employed to identify the most important predictors of the change in Brent oil futures prices. We find that oil-market-specific variables are important predictors. Our findings also suggest that forecasts of the change in the Brent oil futures prices from the multilayer perceptron that exploits the informational content of all and oil-market-specific predictors exhibit higher statistical forecast accuracy than the random walk. Tests of forecast optimality indicate that the forecasts generated using oil-market-specific predictors are optimal. We discuss the policymaking and practical relevance of our results.

本文采用多层感知器人工神经网络,利用尽可能多的经济指标集所包含的信息,研究布伦特石油期货价格变化的可预测性。采用特征工程来确定布伦特石油期货价格变化的最重要预测因素。我们发现,石油市场的特定变量是重要的预测因素。我们的研究结果还表明,利用所有预测因子和石油市场特定预测因子的信息含量的多层感知器对布伦特石油期货价格变化的预测比随机游走的统计预测精度更高。预测最优性测试表明,利用石油市场特定预测因子生成的预测是最优的。我们讨论了我们结果的决策和实际意义。
{"title":"A forecasting model for oil prices using a large set of economic indicators","authors":"Jihad El Hokayem,&nbsp;Ibrahim Jamali,&nbsp;Ale Hejase","doi":"10.1002/for.3087","DOIUrl":"10.1002/for.3087","url":null,"abstract":"<p>This paper examines the predictability of the changes in Brent oil futures prices using a multilayer perceptron artificial neural network that exploits the information contained in the largest possible set of economic indicators. Feature engineering is employed to identify the most important predictors of the change in Brent oil futures prices. We find that oil-market-specific variables are important predictors. Our findings also suggest that forecasts of the change in the Brent oil futures prices from the multilayer perceptron that exploits the informational content of all and oil-market-specific predictors exhibit higher statistical forecast accuracy than the random walk. Tests of forecast optimality indicate that the forecasts generated using oil-market-specific predictors are optimal. We discuss the policymaking and practical relevance of our results.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"43 5","pages":"1615-1624"},"PeriodicalIF":3.4,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140026034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interpretable corn future price forecasting with multivariate time series 利用多变量时间序列预测可解读的玉米未来价格
IF 3.4 3区 经济学 Q1 ECONOMICS Pub Date : 2024-02-25 DOI: 10.1002/for.3099
Binrong Wu, Zhongrui Wang, Lin Wang

Efforts in corn future price forecasting and early warning play a vital role in guiding the high-quality development of the agricultural economy. However, recent years have witnessed significant fluctuations in global corn future prices due to the impact of COVID-19 and the escalating risks associated with geopolitical conflicts. Therefore, there is an urgent need for accurate and efficient methods to forecast corn future prices. To address this challenge, a novel and comprehensive framework for explainable corn future price forecasting is designed. This framework takes into account multiple factors contributing to corn price volatility, including supply and demand dynamics, policy adjustments, international market shocks, global geopolitical risks, and investor concerns within the corn market. During the data processing stage, complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is utilized to thoroughly explore the volatility characteristics of historical corn future prices. Additionally, a convolutional neural network (CNN) is employed to extract essential forecasting information from corn news data. To enhance interpretability, a novel JADE–TFT interpretable corn future price prediction model is proposed. This model combines adaptive differential evolution with optional external archiving (JADE) to intelligently and efficiently optimize the parameters of the temporal fusion transformers (TFTs). Furthermore, in the empirical study, the introduction of a global geopolitical risk coefficient, Baidu indices such as “corn” and “corn price,” and quantized corn news text features is shown to improve the accuracy of corn future price predictions. The proposed corn future price prediction framework contributes to the healthy development of the global grain futures market, thereby fostering the growth and well-being of enterprises involved in the grain industry.

玉米未来价格预测和预警工作在引导农业经济高质量发展方面发挥着至关重要的作用。然而,近年来,受 COVID-19 和地缘政治冲突风险升级的影响,全球玉米未来价格大幅波动。因此,迫切需要准确、高效的方法来预测玉米未来价格。为了应对这一挑战,我们设计了一个新颖而全面的可解释玉米未来价格预测框架。该框架考虑了导致玉米价格波动的多种因素,包括供需动态、政策调整、国际市场冲击、全球地缘政治风险以及玉米市场投资者的担忧。在数据处理阶段,利用具有自适应噪声的完整集合经验模式分解(CEEMDAN)来深入探讨玉米期货价格的历史波动特征。此外,还利用卷积神经网络(CNN)从玉米新闻数据中提取重要的预测信息。为了增强可解释性,提出了一种新颖的 JADE-TFT 可解释玉米未来价格预测模型。该模型将自适应差分进化与可选外部存档(JADE)相结合,智能、高效地优化了时态融合变换器(TFT)的参数。此外,在实证研究中,全球地缘政治风险系数、"玉米 "和 "玉米价格 "等百度指数以及量化的玉米新闻文本特征的引入,提高了玉米未来价格预测的准确性。所提出的玉米未来价格预测框架有助于全球粮食期货市场的健康发展,从而促进粮食产业相关企业的成长和福祉。
{"title":"Interpretable corn future price forecasting with multivariate time series","authors":"Binrong Wu,&nbsp;Zhongrui Wang,&nbsp;Lin Wang","doi":"10.1002/for.3099","DOIUrl":"10.1002/for.3099","url":null,"abstract":"<p>Efforts in corn future price forecasting and early warning play a vital role in guiding the high-quality development of the agricultural economy. However, recent years have witnessed significant fluctuations in global corn future prices due to the impact of COVID-19 and the escalating risks associated with geopolitical conflicts. Therefore, there is an urgent need for accurate and efficient methods to forecast corn future prices. To address this challenge, a novel and comprehensive framework for explainable corn future price forecasting is designed. This framework takes into account multiple factors contributing to corn price volatility, including supply and demand dynamics, policy adjustments, international market shocks, global geopolitical risks, and investor concerns within the corn market. During the data processing stage, complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is utilized to thoroughly explore the volatility characteristics of historical corn future prices. Additionally, a convolutional neural network (CNN) is employed to extract essential forecasting information from corn news data. To enhance interpretability, a novel JADE–TFT interpretable corn future price prediction model is proposed. This model combines adaptive differential evolution with optional external archiving (JADE) to intelligently and efficiently optimize the parameters of the temporal fusion transformers (TFTs). Furthermore, in the empirical study, the introduction of a global geopolitical risk coefficient, Baidu indices such as “corn” and “corn price,” and quantized corn news text features is shown to improve the accuracy of corn future price predictions. The proposed corn future price prediction framework contributes to the healthy development of the global grain futures market, thereby fostering the growth and well-being of enterprises involved in the grain industry.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"43 5","pages":"1575-1594"},"PeriodicalIF":3.4,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140016765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applying k-nearest neighbors to time series forecasting: Two new approaches 将 K 最近邻法应用于时间序列预测:两种新方法
IF 3.4 3区 经济学 Q1 ECONOMICS Pub Date : 2024-02-25 DOI: 10.1002/for.3093
Samya Tajmouati, Bouazza E. L. Wahbi, Adel Bedoui, Abdallah Abarda, Mohamed Dakkon

The k-nearest neighbors algorithm is one of the prominent techniques used in classification and regression. Despite its simplicity, the k-nearest neighbors has been successfully applied in time series forecasting. However, the selection of the number of neighbors and feature selection is a daunting task. In this paper, we introduce two methodologies for forecasting time series that we refer to as Classical Parameters Tuning in Weighted Nearest Neighbors and Fast Parameters Tuning in Weighted Nearest Neighbors. The first approach uses classical parameters tuning that compares the most recent subsequence with every possible subsequence from the past of the same length. The second approach reduces the neighbors' search set, which leads to significantly reduced grid size and hence a lower computational time. To tune the models' parameters, both methods implement an approach inspired by cross-validation for weighted nearest neighbors. We evaluate the forecasting performance and accuracy of our models. Then, we compare them to other approaches, especially, Seasonal Autoregressive Integrated Moving Average, Holt Winters, and Exponential Smoothing State Space Model. Real data examples on retail and food services sales in the United States and milk production in the United Kingdom are analyzed to demonstrate the application and efficiency of the proposed approaches.

k 近邻算法是用于分类和回归的重要技术之一。尽管 k 近邻算法非常简单,但它已成功应用于时间序列预测。然而,邻居数量的选择和特征选择是一项艰巨的任务。在本文中,我们介绍了两种预测时间序列的方法,分别称为加权近邻中的经典参数调整和加权近邻中的快速参数调整。第一种方法使用经典参数调整,将最近的子序列与过去所有可能的相同长度的子序列进行比较。第二种方法减少了近邻搜索集,从而大大减少了网格大小,从而降低了计算时间。为了调整模型参数,两种方法都采用了加权近邻交叉验证法。我们评估了模型的预测性能和准确性。然后,我们将它们与其他方法进行比较,特别是季节自回归综合移动平均法、霍尔特-温特斯法和指数平滑状态空间模型。我们对美国零售和食品服务销售以及英国牛奶生产的真实数据进行了分析,以证明所提方法的应用和效率。
{"title":"Applying k-nearest neighbors to time series forecasting: Two new approaches","authors":"Samya Tajmouati,&nbsp;Bouazza E. L. Wahbi,&nbsp;Adel Bedoui,&nbsp;Abdallah Abarda,&nbsp;Mohamed Dakkon","doi":"10.1002/for.3093","DOIUrl":"10.1002/for.3093","url":null,"abstract":"<p>The <i>k</i>-nearest neighbors algorithm is one of the prominent techniques used in classification and regression. Despite its simplicity, the <i>k</i>-nearest neighbors has been successfully applied in time series forecasting. However, the selection of the number of neighbors and feature selection is a daunting task. In this paper, we introduce two methodologies for forecasting time series that we refer to as Classical Parameters Tuning in Weighted Nearest Neighbors and Fast Parameters Tuning in Weighted Nearest Neighbors. The first approach uses classical parameters tuning that compares the most recent subsequence with every possible subsequence from the past of the same length. The second approach reduces the neighbors' search set, which leads to significantly reduced grid size and hence a lower computational time. To tune the models' parameters, both methods implement an approach inspired by cross-validation for weighted nearest neighbors. We evaluate the forecasting performance and accuracy of our models. Then, we compare them to other approaches, especially, Seasonal Autoregressive Integrated Moving Average, Holt Winters, and Exponential Smoothing State Space Model. Real data examples on retail and food services sales in the United States and milk production in the United Kingdom are analyzed to demonstrate the application and efficiency of the proposed approaches.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"43 5","pages":"1559-1574"},"PeriodicalIF":3.4,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140016711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Do search queries predict violence against women? A forecasting model based on Google Trends 搜索查询能预测暴力侵害妇女行为吗?基于谷歌趋势的预测模型
IF 3.4 3区 经济学 Q1 ECONOMICS Pub Date : 2024-02-25 DOI: 10.1002/for.3102
Nicolás Gonzálvez-Gallego, María Concepción Pérez-Cárceles, Laura Nieto-Torrejón

This paper introduces a new indicator for reported intimate partner violence against women based on search query time series from Google Trends. This indicator is built up from the relative popularity of three topic-related keywords. We propose a predictive model based on this specific Google index that is assessed relative to two alternative models: the first one includes the lagged variable, while the second one considers fatalities as a predictor. This comparative analysis is run in two different samples, whether the reported cases are a direct consequence of a violent direct or not. Our results show that the predictive model based on Google data significantly outperforms the other two models, regardless the sample and the forecast horizon. Then, using information gathered from Google queries may improve the allocation and management of resources and services to protect women against this form of violence and to improve risk assessment.

本文根据谷歌趋势(Google Trends)的搜索查询时间序列,介绍了一个新的指标,即针对妇女的亲密伴侣暴力报告。该指标由三个主题相关关键词的相对流行度建立。我们根据这一特定的谷歌指数提出了一个预测模型,并对两个替代模型进行了评估:第一个模型包括滞后变量,而第二个模型则将死亡作为预测因素。这种比较分析在两个不同的样本中进行,无论报告的案件是否是直接暴力事件的直接后果。我们的结果表明,基于谷歌数据的预测模型明显优于其他两个模型,无论样本和预测范围如何。因此,利用从谷歌查询中收集到的信息可以改善资源和服务的分配与管理,从而保护妇女免受这种形式的暴力侵害,并改善风险评估。
{"title":"Do search queries predict violence against women? A forecasting model based on Google Trends","authors":"Nicolás Gonzálvez-Gallego,&nbsp;María Concepción Pérez-Cárceles,&nbsp;Laura Nieto-Torrejón","doi":"10.1002/for.3102","DOIUrl":"10.1002/for.3102","url":null,"abstract":"<p>This paper introduces a new indicator for reported intimate partner violence against women based on search query time series from Google Trends. This indicator is built up from the relative popularity of three topic-related keywords. We propose a predictive model based on this specific Google index that is assessed relative to two alternative models: the first one includes the lagged variable, while the second one considers fatalities as a predictor. This comparative analysis is run in two different samples, whether the reported cases are a direct consequence of a violent direct or not. Our results show that the predictive model based on Google data significantly outperforms the other two models, regardless the sample and the forecast horizon. Then, using information gathered from Google queries may improve the allocation and management of resources and services to protect women against this form of violence and to improve risk assessment.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"43 5","pages":"1607-1614"},"PeriodicalIF":3.4,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140016754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Forecasting stock market returns with a lottery index: Evidence from China 用彩票指数预测股市收益:来自中国的证据
IF 3.4 3区 经济学 Q1 ECONOMICS Pub Date : 2024-02-25 DOI: 10.1002/for.3100
Yaojie Zhang, Qingxiang Han, Mengxi He

This study constructs a Chinese lottery index (LI) based on six popular lottery preference variables by using the partial least squares method and examines the relationship between the LI and future stock market returns during the period from January 2000 to December 2021. We find that the LI can negatively predict stock market excess returns in-sample and out-of-sample. In addition, the LI can generate a large economic gain for a mean–variance investor. Finally, the predictive sources of the LI stem from a cash flow channel and can be explained by the positive volume–volatility relationship and investor attention.

本研究采用偏最小二乘法,基于六个流行的彩票偏好变量构建了中国彩票指数(LI),并研究了 2000 年 1 月至 2021 年 12 月期间中国彩票指数与未来股市收益率之间的关系。我们发现,中国彩票可以负向预测样本内和样本外的股市超额收益。此外,LI 还能为均值方差投资者带来巨大的经济收益。最后,LI 的预测来源于现金流渠道,并可通过正向的交易量-波动率关系和投资者关注度来解释。
{"title":"Forecasting stock market returns with a lottery index: Evidence from China","authors":"Yaojie Zhang,&nbsp;Qingxiang Han,&nbsp;Mengxi He","doi":"10.1002/for.3100","DOIUrl":"https://doi.org/10.1002/for.3100","url":null,"abstract":"<p>This study constructs a Chinese lottery index (LI) based on six popular lottery preference variables by using the partial least squares method and examines the relationship between the LI and future stock market returns during the period from January 2000 to December 2021. We find that the LI can negatively predict stock market excess returns in-sample and out-of-sample. In addition, the LI can generate a large economic gain for a mean–variance investor. Finally, the predictive sources of the LI stem from a cash flow channel and can be explained by the positive volume–volatility relationship and investor attention.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"43 5","pages":"1595-1606"},"PeriodicalIF":3.4,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141537063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust approach to earnings forecast: A comparison 稳健的盈利预测方法:比较
IF 3.4 3区 经济学 Q1 ECONOMICS Pub Date : 2024-02-21 DOI: 10.1002/for.3085
Xiaojian Yu, Xiaoqian Zhang, Donald Lien

This paper applies three robust approaches, namely, the MM estimation, the Theil–Sen estimation, and the quantile regression, to generate earnings forecasts in Chinese financial market and evaluates the forecast accuracy of these three methods based on three forecasting criteria. We examine six forecasting models where the predicted variables include earnings per share, net income, and three profitability measures. We show that the three robust methods significantly outperform the OLS method. Moreover, the MM estimation and the quantile regression have better forecast accuracy than the Theil–Sen approach.

本文采用 MM 估计、Theil-Sen 估计和量子回归三种稳健方法生成中国金融市场的盈利预测,并根据三种预测标准评估了这三种方法的预测准确性。我们研究了六个预测模型,预测变量包括每股收益、净利润和三个盈利能力指标。我们发现,这三种稳健方法的预测结果明显优于 OLS 方法。此外,MM 估计法和量化回归法的预测准确性也优于 Theil-Sen 方法。
{"title":"Robust approach to earnings forecast: A comparison","authors":"Xiaojian Yu,&nbsp;Xiaoqian Zhang,&nbsp;Donald Lien","doi":"10.1002/for.3085","DOIUrl":"10.1002/for.3085","url":null,"abstract":"<p>This paper applies three robust approaches, namely, the MM estimation, the Theil–Sen estimation, and the quantile regression, to generate earnings forecasts in Chinese financial market and evaluates the forecast accuracy of these three methods based on three forecasting criteria. We examine six forecasting models where the predicted variables include earnings per share, net income, and three profitability measures. We show that the three robust methods significantly outperform the OLS method. Moreover, the MM estimation and the quantile regression have better forecast accuracy than the Theil–Sen approach.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"43 5","pages":"1530-1558"},"PeriodicalIF":3.4,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140443703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tail risk forecasting and its application to margin requirements in the commodity futures market 尾部风险预测及其在商品期货市场保证金要求中的应用
IF 3.4 3区 经济学 Q1 ECONOMICS Pub Date : 2024-02-20 DOI: 10.1002/for.3094
Yun Feng, Weijie Hou, Yuping Song

This study presents a dynamic analysis framework called autoregressive conditional extreme value (AEV), designed for modeling the daily maximum drawdowns of commodity futures markets, using steel rebar futures as an illustrative example. The research demonstrates that AEV outperforms AR or generalized autoregressive conditional heteroskedasticity (GARCH)-type benchmark models in terms of in-sample fitting and out-of-sample forecasting accuracy. Notably, AEV's time-varying shape parameter (tail index) sensitively captures the clustering nature of tail risk and differentiates between long- and short-side markets. The study also presents theoretical findings regarding AEV-based value at risk (VaR) and expected shortfall (ES), and empirically measures and predicts the tail risk of the steel rebar futures market. Moreover, the research extends the methodology to create a dynamic margin model for Chinese commodity futures, showing that the AEV-based model effectively achieves the specified risk coverage targets and significantly reduces current exchange margin requirements.

本研究以螺纹钢期货为例,提出了一种名为自回归条件极值(AEV)的动态分析框架,旨在对商品期货市场的每日最大跌幅进行建模。研究表明,就样本内拟合和样本外预测精度而言,AEV 优于 AR 或广义自回归条件异方差(GARCH)型基准模型。值得注意的是,AEV 的时变形状参数(尾部指数)能灵敏地捕捉尾部风险的聚类性质,并区分多头和空头市场。研究还提出了基于 AEV 的风险值(VaR)和预期缺口(ES)的理论结论,并对螺纹钢期货市场的尾部风险进行了实证测量和预测。此外,研究还扩展了方法论,创建了中国商品期货的动态保证金模型,表明基于 AEV 的模型能有效实现指定的风险覆盖目标,并显著降低当前的交易所保证金要求。
{"title":"Tail risk forecasting and its application to margin requirements in the commodity futures market","authors":"Yun Feng,&nbsp;Weijie Hou,&nbsp;Yuping Song","doi":"10.1002/for.3094","DOIUrl":"https://doi.org/10.1002/for.3094","url":null,"abstract":"<p>This study presents a dynamic analysis framework called autoregressive conditional extreme value (AEV), designed for modeling the daily maximum drawdowns of commodity futures markets, using steel rebar futures as an illustrative example. The research demonstrates that AEV outperforms AR or generalized autoregressive conditional heteroskedasticity (GARCH)-type benchmark models in terms of in-sample fitting and out-of-sample forecasting accuracy. Notably, AEV's time-varying shape parameter (tail index) sensitively captures the clustering nature of tail risk and differentiates between long- and short-side markets. The study also presents theoretical findings regarding AEV-based value at risk (VaR) and expected shortfall (ES), and empirically measures and predicts the tail risk of the steel rebar futures market. Moreover, the research extends the methodology to create a dynamic margin model for Chinese commodity futures, showing that the AEV-based model effectively achieves the specified risk coverage targets and significantly reduces current exchange margin requirements.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"43 5","pages":"1513-1529"},"PeriodicalIF":3.4,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141536921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tail risk forecasting with semiparametric regression models by incorporating overnight information 通过纳入隔夜信息,利用半参数回归模型预测尾端风险
IF 3.4 3区 经济学 Q1 ECONOMICS Pub Date : 2024-02-20 DOI: 10.1002/for.3090
Cathy W. S. Chen, Takaaki Koike, Wei-Hsuan Shau

This research incorporates realized volatility and overnight information into risk models, wherein the overnight return often contributes significantly to the total return volatility. Extending a semiparametric regression model based on asymmetric Laplace distribution, we propose a family of RES-CAViaR-oc models by adding overnight return and realized measures as a nowcasting technique for simultaneously forecasting Value-at-Risk (VaR) and expected shortfall (ES). We utilize Bayesian methods to estimate unknown parameters and forecast VaR and ES jointly for the proposed model family. We also conduct extensive backtests based on joint elicitability of the pair of VaR and ES during the out-of-sample period. Our empirical study on four international stock indices confirms that overnight return and realized volatility are vital in tail risk forecasting.

本研究将已实现波动率和隔夜信息纳入风险模型,其中隔夜回报往往对总回报波动率有重大影响。我们扩展了基于非对称拉普拉斯分布的半参数回归模型,提出了一个 RES-CAViaR-oc 模型系列,通过添加隔夜收益和已实现指标作为同时预测风险值(VaR)和预期缺口(ES)的现时预测技术。我们利用贝叶斯方法来估计未知参数,并联合预测拟议模型系列的风险价值和 ES。我们还根据样本外期间 VaR 和 ES 的联合可求性进行了广泛的回溯测试。我们对四个国际股票指数的实证研究证实,隔夜收益率和实现波动率在尾部风险预测中至关重要。
{"title":"Tail risk forecasting with semiparametric regression models by incorporating overnight information","authors":"Cathy W. S. Chen,&nbsp;Takaaki Koike,&nbsp;Wei-Hsuan Shau","doi":"10.1002/for.3090","DOIUrl":"10.1002/for.3090","url":null,"abstract":"<p>This research incorporates realized volatility and overnight information into risk models, wherein the overnight return often contributes significantly to the total return volatility. Extending a semiparametric regression model based on asymmetric Laplace distribution, we propose a family of RES-CAViaR-oc models by adding overnight return and realized measures as a nowcasting technique for simultaneously forecasting Value-at-Risk (VaR) and expected shortfall (ES). We utilize Bayesian methods to estimate unknown parameters and forecast VaR and ES jointly for the proposed model family. We also conduct extensive backtests based on joint elicitability of the pair of VaR and ES during the out-of-sample period. Our empirical study on four international stock indices confirms that overnight return and realized volatility are vital in tail risk forecasting.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"43 5","pages":"1492-1512"},"PeriodicalIF":3.4,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139953516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probabilistic electricity price forecasting based on penalized temporal fusion transformer 基于惩罚性时态融合变压器的概率电价预测
IF 3.4 3区 经济学 Q1 ECONOMICS Pub Date : 2024-02-20 DOI: 10.1002/for.3084
He Jiang, Sheng Pan, Yao Dong, Jianzhou Wang

In the deregulated electricity market, it is increasingly important to accurately predict the fluctuating, nonlinear, and high-frequent electricity price for market decision-making. However, the uncertainties associated with electricity prices, such as non-stationarity, nonlinearity, and high volatility, pose critical difficulties for electricity price forecasting (EPF). Unlike point forecasting, which provides only a single, deterministic estimate of future prices, probabilistic forecasting gives a more comprehensive and nuanced picture of future price dynamics, which can help market participants make better-informed decisions when facing uncertainty. Therefore, in this paper, we propose a robust deep learning method for multi-step probabilistic forecasting. First, we use the least absolute shrinkage and selection operator (LASSO) in the expert model to generate point forecasts. Second, we introduce the smoothly clipped absolute deviation regularization term, a nonconvex penalty with proven oracle properties in model selection, into temporal fusion transformers. Finally, we employ the proposed model to integrate point forecasts to give probabilistic forecasts. To evaluate the proposed forecasting model, real-data experiments are conducted in the Nord Pool electricity market and the Polish Power Exchange market. Empirical results show that the proposed model has demonstrated superior probabilistic forecasting performances compared with other competitors and has proven its effectiveness in real-world applications.

在放松管制的电力市场中,准确预测波动、非线性和高频率的电价对市场决策越来越重要。然而,与电价相关的不确定性,如非平稳性、非线性和高波动性,给电价预测(EPF)带来了严重困难。点预测只能提供对未来价格的单一、确定性估计,而概率预测则不同,它能更全面、更细致地反映未来的价格动态,从而帮助市场参与者在面临不确定性时做出更明智的决策。因此,在本文中,我们提出了一种用于多步骤概率预测的稳健深度学习方法。首先,我们在专家模型中使用最小绝对收缩和选择算子(LASSO)来生成点预测。其次,我们在时态融合变换器中引入了平滑剪切绝对偏差正则化项,这是一种非凸惩罚,在模型选择方面具有公认的神谕特性。最后,我们利用提出的模型整合点预测,给出概率预测。为了评估所提出的预测模型,我们在 Nord Pool 电力市场和波兰电力交易市场进行了真实数据实验。实证结果表明,与其他竞争者相比,所提出的模型具有卓越的概率预测性能,并在实际应用中证明了其有效性。
{"title":"Probabilistic electricity price forecasting based on penalized temporal fusion transformer","authors":"He Jiang,&nbsp;Sheng Pan,&nbsp;Yao Dong,&nbsp;Jianzhou Wang","doi":"10.1002/for.3084","DOIUrl":"https://doi.org/10.1002/for.3084","url":null,"abstract":"<div>\u0000 \u0000 <p>In the deregulated electricity market, it is increasingly important to accurately predict the fluctuating, nonlinear, and high-frequent electricity price for market decision-making. However, the uncertainties associated with electricity prices, such as non-stationarity, nonlinearity, and high volatility, pose critical difficulties for electricity price forecasting (EPF). Unlike point forecasting, which provides only a single, deterministic estimate of future prices, probabilistic forecasting gives a more comprehensive and nuanced picture of future price dynamics, which can help market participants make better-informed decisions when facing uncertainty. Therefore, in this paper, we propose a robust deep learning method for multi-step probabilistic forecasting. First, we use the least absolute shrinkage and selection operator (LASSO) in the expert model to generate point forecasts. Second, we introduce the smoothly clipped absolute deviation regularization term, a nonconvex penalty with proven oracle properties in model selection, into temporal fusion transformers. Finally, we employ the proposed model to integrate point forecasts to give probabilistic forecasts. To evaluate the proposed forecasting model, real-data experiments are conducted in the Nord Pool electricity market and the Polish Power Exchange market. Empirical results show that the proposed model has demonstrated superior probabilistic forecasting performances compared with other competitors and has proven its effectiveness in real-world applications.</p>\u0000 </div>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"43 5","pages":"1465-1491"},"PeriodicalIF":3.4,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141536922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Forecasting realized volatility of crude oil futures prices based on machine learning 基于机器学习预测原油期货价格的实际波动率
IF 3.4 3区 经济学 Q1 ECONOMICS Pub Date : 2024-02-19 DOI: 10.1002/for.3077
Jiawen Luo, Tony Klein, Thomas Walther, Qiang Ji

Extending the popular HAR model with additional information channels to forecast realized volatility of WTI futures prices, we show that machine learning-generated forecasts provide better forecasting quality and that portfolios that are constructed with these forecasts outperform their competing models resulting in economic gains. Analyzing the selection process, we show that information channels vary across forecasting horizon. Variable selection produces clusters and provides evidence that there are structural changes with regard to the significance of information channels.

我们用额外的信息渠道扩展了流行的 HAR 模型,以预测 WTI 期货价格的已实现波动率,结果表明机器学习生成的预测提供了更好的预测质量,用这些预测构建的投资组合优于其竞争模型,从而带来经济收益。在分析选择过程时,我们发现信息渠道在不同的预测范围内会有所不同。变量选择会产生集群,并证明信息渠道的重要性存在结构性变化。
{"title":"Forecasting realized volatility of crude oil futures prices based on machine learning","authors":"Jiawen Luo,&nbsp;Tony Klein,&nbsp;Thomas Walther,&nbsp;Qiang Ji","doi":"10.1002/for.3077","DOIUrl":"10.1002/for.3077","url":null,"abstract":"<p>Extending the popular HAR model with additional information channels to forecast realized volatility of WTI futures prices, we show that machine learning-generated forecasts provide better forecasting quality and that portfolios that are constructed with these forecasts outperform their competing models resulting in economic gains. Analyzing the selection process, we show that information channels vary across forecasting horizon. Variable selection produces clusters and provides evidence that there are structural changes with regard to the significance of information channels.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"43 5","pages":"1422-1446"},"PeriodicalIF":3.4,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/for.3077","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139953367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Forecasting
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1