Pub Date : 2023-11-28DOI: 10.1088/2515-7655/ad0cff
Carina Ludwig, Jan Leutner, Oswald Prucker, Jürgen Rühe, Manfred Kohl
We report on the design and characterization of a demonstrator device for miniature-scale elastocaloric (eC) cooling using a series of natural rubber (NR) foil specimens of 9 × 26.5 mm2 lateral size and thicknesses in the range of 290–900 μm. NR has the potential to meet the various challenges associated with eC cooling, as it exhibits a large adiabatic temperature change in the order of 20 K and high fatigue resistance under dynamic load, while loading forces are low. Owing to the large surface-to-volume ratio of rubber-based foils, heat transfer to heat sink and source elements is accomplished by mechanical contact enabling compact designs. Two actuators are implemented to control the performance in loading direction independent from the performance of mechanical contacting. The study of operation parameters is complemented by lumped-element modeling to understand the cycle frequency-dependent dynamics of heat transfer and resulting cooling capacity. The single-stage device operates in the strain range of 300%–700% and exhibits a temperature span up to 4.1 K, while the specific cooling power reaches 1.1 Wg−1 and the absolute cooling power 123 mW. The performance metrics show a pronounced dependence on foil thickness and heat transfer coefficient indicating a path toward future device optimization.
{"title":"Miniature-scale elastocaloric cooling by rubber-based foils","authors":"Carina Ludwig, Jan Leutner, Oswald Prucker, Jürgen Rühe, Manfred Kohl","doi":"10.1088/2515-7655/ad0cff","DOIUrl":"https://doi.org/10.1088/2515-7655/ad0cff","url":null,"abstract":"We report on the design and characterization of a demonstrator device for miniature-scale elastocaloric (eC) cooling using a series of natural rubber (NR) foil specimens of 9 × 26.5 mm<sup>2</sup> lateral size and thicknesses in the range of 290–900 <italic toggle=\"yes\">μ</italic>m. NR has the potential to meet the various challenges associated with eC cooling, as it exhibits a large adiabatic temperature change in the order of 20 K and high fatigue resistance under dynamic load, while loading forces are low. Owing to the large surface-to-volume ratio of rubber-based foils, heat transfer to heat sink and source elements is accomplished by mechanical contact enabling compact designs. Two actuators are implemented to control the performance in loading direction independent from the performance of mechanical contacting. The study of operation parameters is complemented by lumped-element modeling to understand the cycle frequency-dependent dynamics of heat transfer and resulting cooling capacity. The single-stage device operates in the strain range of 300%–700% and exhibits a temperature span up to 4.1 K, while the specific cooling power reaches 1.1 Wg<sup>−1</sup> and the absolute cooling power 123 mW. The performance metrics show a pronounced dependence on foil thickness and heat transfer coefficient indicating a path toward future device optimization.","PeriodicalId":48500,"journal":{"name":"Journal of Physics-Energy","volume":"33 1","pages":""},"PeriodicalIF":6.9,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138689778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-23DOI: 10.1088/2515-7655/ad0d00
Anthony E Phillips, Helen C Walker
We consider well-known signatures of disorder in crystallographic and inelastic neutron scattering data. We show that these can arise from different types of disorder, corresponding to different values of the system entropy. Correlating the entropy of a material with its atomistic structure and dynamics is in general a difficult problem that requires correlating information between multiple experimental techniques including crystallography, spectroscopy, and calorimetry. These comments are illustrated with particular reference to barocalorics, but are relevant to a broad range of calorics and other disordered crystalline materials.
{"title":"On (not) deriving the entropy of barocaloric phase transitions from crystallography and neutron spectroscopy","authors":"Anthony E Phillips, Helen C Walker","doi":"10.1088/2515-7655/ad0d00","DOIUrl":"https://doi.org/10.1088/2515-7655/ad0d00","url":null,"abstract":"We consider well-known signatures of disorder in crystallographic and inelastic neutron scattering data. We show that these can arise from different types of disorder, corresponding to different values of the system entropy. Correlating the entropy of a material with its atomistic structure and dynamics is in general a difficult problem that requires correlating information between multiple experimental techniques including crystallography, spectroscopy, and calorimetry. These comments are illustrated with particular reference to barocalorics, but are relevant to a broad range of calorics and other disordered crystalline materials.","PeriodicalId":48500,"journal":{"name":"Journal of Physics-Energy","volume":"1 1","pages":""},"PeriodicalIF":6.9,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138689771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-10DOI: 10.1088/2515-7655/ad0b8a
Krishna K Ghose, Yun Liu, Terry J Frankcombe
Abstract The cubic SrVO 3 perovskite oxide is an attractive candidate for high-temperature energy applications due to its favourable features, such as multiple oxidation states cations, high structural and thermal stabilities, ability to accommodate large number of oxygen vacancies, and cost-effectiveness. Herein, the temperature dependent reduction properties of SrVO 3 have been studied in terms of oxygen vacancy concentrations using accurate first-principles calculations to reveal the effects of oxygen vacancy and temperature in the reduction aptitudes of SrVO 3-δ , δ = 0−0.125. The reduction capability of SrVO 3-δ was found to be significantly impacted by increasing oxygen vacancy concentrations and temperatures. Analyses of electronic properties and vibrational properties of SrVO 3-δ in terms of δ revealed the origin of this reduction behavior. The electronic structure analysis showed that the reduction of SrVO 3-δ upon oxygen vacancy formation is highly localized to the neighboring V 4+ t 2g states at the vicinity of the oxygen defect, irrespective of δ. A comparison of the vibrational density of states of the defect-free and defective SrVO 3-δ demonstrated that the ionic contributions to the phonon density of states, and hence to the thermal contributions into the SrVO 3-δ lattices, were significantly disrupted by the introduction of oxygen vacancies, which ultimately impacted to the temperature dependent reduction behavior of SrVO 3-δ .
{"title":"High-temperature reduction thermochemistry of SrVO<sub>3-δ</sub>","authors":"Krishna K Ghose, Yun Liu, Terry J Frankcombe","doi":"10.1088/2515-7655/ad0b8a","DOIUrl":"https://doi.org/10.1088/2515-7655/ad0b8a","url":null,"abstract":"Abstract The cubic SrVO 3 perovskite oxide is an attractive candidate for high-temperature energy applications due to its favourable features, such as multiple oxidation states cations, high structural and thermal stabilities, ability to accommodate large number of oxygen vacancies, and cost-effectiveness. Herein, the temperature dependent reduction properties of SrVO 3 have been studied in terms of oxygen vacancy concentrations using accurate first-principles calculations to reveal the effects of oxygen vacancy and temperature in the reduction aptitudes of SrVO 3-δ , δ = 0−0.125. The reduction capability of SrVO 3-δ was found to be significantly impacted by increasing oxygen vacancy concentrations and temperatures. Analyses of electronic properties and vibrational properties of SrVO 3-δ in terms of δ revealed the origin of this reduction behavior. The electronic structure analysis showed that the reduction of SrVO 3-δ upon oxygen vacancy formation is highly localized to the neighboring V 4+ t 2g states at the vicinity of the oxygen defect, irrespective of δ. A comparison of the vibrational density of states of the defect-free and defective SrVO 3-δ demonstrated that the ionic contributions to the phonon density of states, and hence to the thermal contributions into the SrVO 3-δ lattices, were significantly disrupted by the introduction of oxygen vacancies, which ultimately impacted to the temperature dependent reduction behavior of SrVO 3-δ .&#xD;","PeriodicalId":48500,"journal":{"name":"Journal of Physics-Energy","volume":"82 11","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135091911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-10DOI: 10.1088/2515-7655/ad0b89
Benedetto Bozzini, Silvia Cazzanti, Raimondo Hippoliti, Zoltán Kis, Ludovica Rovatti, Francesco Tavola
Abstract Notwithstanding the in-depth understanding of lead-acid battery degradation processes developed in a time-honoured field of science, there is still wide scope for knowledge-based technological advancements, in particular, targeting positive plate durability. Non-destructive imaging of the internal morphology, structure and chemistry of these components, enabled by neutron-based methods, is capable of disclosing otherwise inaccessible observables, that can form the factual basis for new pathways to device improvement. In this study, we propose a post mortem investigation of as-formed and electrochemically aged positive plates (PP), centered on neutron tomography and complemented by X-ray radiography and scanning-electron microscopy. These complementary imaging methods, thriving on different contrast mechanisms, allow 2D/3D position-sensitive morphological analyses of the nature and evolution of the positive active material (PAM) and of the spines of the PP, including: morphology variation, crack location, porosity distribution and identification of hydrogenated compounds. Specifically, in this work, we have pinpointed the differences in degradation modes - resulting from the application of a standard ageing protocol - of positive plates fabricated in two technologically alternative ways: punching and gravity-casting, showing the superiority of the formed in terms of electrode stability upon charging abuse conditions.
{"title":"Non-destructive analysis of Pb-acid battery positive plates, based on neutron tomography","authors":"Benedetto Bozzini, Silvia Cazzanti, Raimondo Hippoliti, Zoltán Kis, Ludovica Rovatti, Francesco Tavola","doi":"10.1088/2515-7655/ad0b89","DOIUrl":"https://doi.org/10.1088/2515-7655/ad0b89","url":null,"abstract":"Abstract Notwithstanding the in-depth understanding of lead-acid battery degradation processes developed in a time-honoured field of science, there is still wide scope for knowledge-based technological advancements, in particular, targeting positive plate durability. Non-destructive imaging of the internal morphology, structure and chemistry of these components, enabled by neutron-based methods, is capable of disclosing otherwise inaccessible observables, that can form the factual basis for new pathways to device improvement. In this study, we propose a post mortem investigation of as-formed and electrochemically aged positive plates (PP), centered on neutron tomography and complemented by X-ray radiography and scanning-electron microscopy. These complementary imaging methods, thriving on different contrast mechanisms, allow 2D/3D position-sensitive morphological analyses of the nature and evolution of the positive active material (PAM) and of the spines of the PP, including: morphology variation, crack location, porosity distribution and identification of hydrogenated compounds. Specifically, in this work, we have pinpointed the differences in degradation modes - resulting from the application of a standard ageing protocol - of positive plates fabricated in two technologically alternative ways: punching and gravity-casting, showing the superiority of the formed in terms of electrode stability upon charging abuse conditions.","PeriodicalId":48500,"journal":{"name":"Journal of Physics-Energy","volume":"83 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135092084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract In the research for the decarbonization processes, electrochemistry is among the most studied routes for the conversion of carbon dioxide in added-value products, thanks to the up-scalability and the mild conditions of work of the technology. In this framework, modeling the electrochemical reactor is a powerful tool to predict and optimize important features of the electroreduction. In this study, we propose a comprehensive modeling for the whole electrochemical reactor, which has been validated through the experiments with good agreement. In particular, the performance of the cell is studied as a function of the voltage applied, for different sizes of the reactor. Furthermore, the model has been used to study the chemical conditions at the cathode surface, as well as electrochemical conditions at different applied biases and flow rates of the electrolyte.
{"title":"A comprehensive modeling for the CO<sub>2</sub> electroreduction to CO","authors":"Matteo Agliuzza, Candido Fabrizio Pirri, Adriano Sacco","doi":"10.1088/2515-7655/ad0a39","DOIUrl":"https://doi.org/10.1088/2515-7655/ad0a39","url":null,"abstract":"Abstract In the research for the decarbonization processes, electrochemistry is among the most studied routes for the conversion of carbon dioxide in added-value products, thanks to the up-scalability and the mild conditions of work of the technology. In this framework, modeling the electrochemical reactor is a powerful tool to predict and optimize important features of the electroreduction. In this study, we propose a comprehensive modeling for the whole electrochemical reactor, which has been validated through the experiments with good agreement. In particular, the performance of the cell is studied as a function of the voltage applied, for different sizes of the reactor. Furthermore, the model has been used to study the chemical conditions at the cathode surface, as well as electrochemical conditions at different applied biases and flow rates of the electrolyte.","PeriodicalId":48500,"journal":{"name":"Journal of Physics-Energy","volume":"323 12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135475314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-07DOI: 10.1088/2515-7655/ad0a3a
William I F David, Gerry D Agnew, René Bañares-Alcántara, James Barth, John Bøgild Hansen, Pierre Bréquigny, Mara de Joannon, Sofia Fürstenberg Stott, Conor Fürstenberg Stott, Andrea Guati-Rojo, Marta Hatzell, Douglas R MacFarlane, Joshua W Makepeace, Epaminondas Mastorakos, Fabian Mauss, Andrew J Medford, Christine Mounaïm-Rousselle, Duncan A Nowicki, Mark A Picciani, Rolf S Postma, Kevin H R Rouwenhorst, Pino Sabia, Nicholas Salmon, Alexandr N Simonov, Collin Smith, Laura Torrente-Murciano, Agustin Valera-Medina
Abstract The 15 short chapters that form this 2023 ammonia-for-energy roadmap provide a comprehensive assessment of the current worldwide ammonia landscape and the future opportunities and associated challenges facing the use of ammonia, not only in the part that it can play in terms of the future displacement of fossil-fuel reserves towards massive, long-term, carbon-free energy storage and heat and power provision, but also in its broader holistic impacts that touch all three components of the future global food-water-energy nexus.
{"title":"2023 Roadmap on ammonia as a carbon-free fuel","authors":"William I F David, Gerry D Agnew, René Bañares-Alcántara, James Barth, John Bøgild Hansen, Pierre Bréquigny, Mara de Joannon, Sofia Fürstenberg Stott, Conor Fürstenberg Stott, Andrea Guati-Rojo, Marta Hatzell, Douglas R MacFarlane, Joshua W Makepeace, Epaminondas Mastorakos, Fabian Mauss, Andrew J Medford, Christine Mounaïm-Rousselle, Duncan A Nowicki, Mark A Picciani, Rolf S Postma, Kevin H R Rouwenhorst, Pino Sabia, Nicholas Salmon, Alexandr N Simonov, Collin Smith, Laura Torrente-Murciano, Agustin Valera-Medina","doi":"10.1088/2515-7655/ad0a3a","DOIUrl":"https://doi.org/10.1088/2515-7655/ad0a3a","url":null,"abstract":"Abstract The 15 short chapters that form this 2023 ammonia-for-energy roadmap provide a comprehensive assessment of the current worldwide ammonia landscape and the future opportunities and associated challenges facing the use of ammonia, not only in the part that it can play in terms of the future displacement of fossil-fuel reserves towards massive, long-term, carbon-free energy storage and heat and power provision, but also in its broader holistic impacts that touch all three components of the future global food-water-energy nexus.","PeriodicalId":48500,"journal":{"name":"Journal of Physics-Energy","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135479895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-07DOI: 10.1088/2515-7655/ad0a38
Samuel McCallum, Oliver Nicholls, Kjeld Jensen, Matthew V Cowley, Jamie Lerpiniere, Alison B Walker
Abstract To overcome the challenges associated with poor temporal stability of perovskite solar cells, methods are required that allow for fast iteration of fabrication and characterisation, such that optimal device performance and stability may be actively pursued. Currently, establishing the causes of underperformance is both complex and time-consuming, and optimisation of device fabrication thus inherently slow. Here, we present a means of computational device characterisation of mobile halide ion parameters from room temperature current-voltage (J-V) measurements emph{only}, requiring $sim 2$ hours of computation on basic computing resources. With our approach, the physical parameters of the device may be reverse modelled from experimental J-V measurements. In a drift-diffusion model, the set of coupled drift-diffusion partial differential equations cannot be inverted explicitly, so a method for inverting the drift-diffusion simulation is required. We show how Bayesian Parameter Estimation (BPE) coupled with a drift-diffusion perovskite solar cell model can determine the extent to which device parameters affect performance measured by J-V characteristics. Our method is demonstrated by investigating the extent to which device performance is influenced by mobile halide ions for a specific fabricated device. The ion vacancy density $N_0$ and diffusion coefficient $D_I$ were found to be precisely characterised for both simulated and fabricated devices. This result opens up the possibility of pinpointing origins of degradation by finding which parameters most influence device J-V curves as the cell degrades.
{"title":"Bayesian parameter estimation for characterising mobile ion vacancies in perovskite solar cells","authors":"Samuel McCallum, Oliver Nicholls, Kjeld Jensen, Matthew V Cowley, Jamie Lerpiniere, Alison B Walker","doi":"10.1088/2515-7655/ad0a38","DOIUrl":"https://doi.org/10.1088/2515-7655/ad0a38","url":null,"abstract":"Abstract To overcome the challenges associated with poor temporal stability of perovskite solar cells, methods are required that allow for fast iteration of fabrication and characterisation, such that optimal device performance and stability may be actively pursued. Currently, establishing the causes of underperformance is both complex and time-consuming, and optimisation of device fabrication thus inherently slow. Here, we present a means of computational device characterisation of mobile halide ion parameters from room temperature current-voltage (J-V) measurements emph{only}, requiring $sim 2$ hours of computation on basic computing resources. With our approach, the physical parameters of the device may be reverse modelled from experimental J-V measurements. In a drift-diffusion model, the set of coupled drift-diffusion partial differential equations cannot be inverted explicitly, so a method for inverting the drift-diffusion simulation is required. We show how Bayesian Parameter Estimation (BPE) coupled with a drift-diffusion perovskite solar cell model can determine the extent to which device parameters affect performance measured by J-V characteristics. Our method is demonstrated by investigating the extent to which device performance is influenced by mobile halide ions for a specific fabricated device. The ion vacancy density $N_0$ and diffusion coefficient $D_I$ were found to be precisely characterised for both simulated and fabricated devices. This result opens up the possibility of pinpointing origins of degradation by finding which parameters most influence device J-V curves as the cell degrades.","PeriodicalId":48500,"journal":{"name":"Journal of Physics-Energy","volume":"318 11","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135475061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-03DOI: 10.1088/2515-7655/ad04f1
Nathan Skillen, Aakash Welgamage, Guan Zhang, Peter K J Robertson, John T S Irvine, Linda A Lawton
Abstract Cellulose is made up of linear polymers of glucose monomers that could be a crucial source for valuable chemicals and sustainable liquid fuels. Cellulose is however, very stable and its conversion to a useful fuel or platform chemical products remains a significant challenge (Kimura et al 2015 Sci. Rep. 5 16266; Xia et al 2016 Nat. Commun. 7 11162). Photocatalysis is a versatile technology which has demonstrated potential for solar driven processes such as water splitting or solar fuels production and has also been applied to the degradation of pollutants in air and water and for the production of useful products from biomass. Here, we focus on the products that are produced from cellulose (a glucose (C6) based polymer) photocatalysis that compliment hydrogen production. Probing the initial steps via UV-TiO 2 photocatalysis, we remarkably find that an array of oligosaccharides containing only five (C5) carbon units is initially produced. As the process continues, C6 oligo oligosaccharides grow to dominate. The photocatalytic process is generally not viewed as a controllable synthetic process; however, these findings show, on the contrary that photocatalysis at semiconductor surfaces can achieve novel reaction pathways yielding new products.
纤维素是由葡萄糖单体的线性聚合物组成的,它可能是有价值的化学品和可持续液体燃料的重要来源。然而,纤维素非常稳定,将其转化为有用的燃料或平台化学产品仍然是一个重大挑战(Kimura et al . 2015 Sci。众议员5 16266;夏等,2016 .自然科学学报,7(11162)。光催化是一项用途广泛的技术,已显示出在太阳能驱动的过程,如水分解或太阳能燃料生产方面的潜力,并已应用于空气和水中污染物的降解以及从生物质中生产有用的产品。在这里,我们关注的是由纤维素(葡萄糖(C6)基聚合物)光催化生产的产品,它补充了氢的生产。通过uv - tio2光催化探测初始步骤,我们显著地发现最初产生了一组仅含有5个(C5)碳单元的低聚糖。随着这一过程的继续,C6寡糖逐渐占据主导地位。光催化过程通常不被视为可控的合成过程;然而,这些发现表明,相反,半导体表面的光催化可以实现新的反应途径,产生新的产品。
{"title":"Photocatalytic conversion of cellulose into C5 oligosaccharides","authors":"Nathan Skillen, Aakash Welgamage, Guan Zhang, Peter K J Robertson, John T S Irvine, Linda A Lawton","doi":"10.1088/2515-7655/ad04f1","DOIUrl":"https://doi.org/10.1088/2515-7655/ad04f1","url":null,"abstract":"Abstract Cellulose is made up of linear polymers of glucose monomers that could be a crucial source for valuable chemicals and sustainable liquid fuels. Cellulose is however, very stable and its conversion to a useful fuel or platform chemical products remains a significant challenge (Kimura et al 2015 Sci. Rep. 5 16266; Xia et al 2016 Nat. Commun. 7 11162). Photocatalysis is a versatile technology which has demonstrated potential for solar driven processes such as water splitting or solar fuels production and has also been applied to the degradation of pollutants in air and water and for the production of useful products from biomass. Here, we focus on the products that are produced from cellulose (a glucose (C6) based polymer) photocatalysis that compliment hydrogen production. Probing the initial steps via UV-TiO 2 photocatalysis, we remarkably find that an array of oligosaccharides containing only five (C5) carbon units is initially produced. As the process continues, C6 oligo oligosaccharides grow to dominate. The photocatalytic process is generally not viewed as a controllable synthetic process; however, these findings show, on the contrary that photocatalysis at semiconductor surfaces can achieve novel reaction pathways yielding new products.","PeriodicalId":48500,"journal":{"name":"Journal of Physics-Energy","volume":"172 S390","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135775148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-02DOI: 10.1088/2515-7655/ad08d9
SK Mujaffar Hossain, Nikhil Kumar, Bharati Debnath, Satishchandra B Ogale
Abstract Currently, there is an emergent interest in the antiperovskite family of materials in the context of energy applications in view of their distinct and peculiar set of structural and electronic properties. This work examines the surface-modified antiperovskite nitride CuNCo3 as a high-performance anode material for Li-ion storage devices. The antiperovskite CuNCo3 was prepared by the hydrothermal method followed by calcination in the NH3 atmosphere. An amorphous layer on the surface of CuNCo3 (Cu1-xNCo3-y/a-CuFeCo) was also fabricated to enhance its performance as an anode material for Li-ion batteries. The surface-modified Cu1-xNCo3-y/a-CuFeCo material was noted to deliver an extraordinarily high reversible capacity of ~1150 mAh g-1 at a current density of 0.1 A g-1, whereas the CuNCo3 showed a reversible capacity of ~408 mAh g-1 at the same current density. The initial capacity of Cu1-xNCo3-y/a-CuFeCo exhibited excellent retention (>62%) even after 350 cycles. A ~ 6 nm thin amorphous layer around the surface of pure CuNCo3 helped almost double the specific capacity as compared to the pure CuNCo3 due to the presence of a multi-redox centre for Li-ion to react and also concomitantly improved electrical conductivity property. The cyclic stability of the Cu1-xNCo3-y/a-CuFeCo material at a higher current density (0.5 and 1.0 A g-1) was also noticeable. This work opens up new materials routes and promising processing strategies to develop high reversible capacity anodes for alkali ion batteries.
目前,由于反钙钛矿材料具有独特的结构和电子特性,在能源应用领域引起了人们的兴趣。本研究研究了表面改性的反钙钛矿氮化物CuNCo3作为锂离子存储器件的高性能阳极材料。采用水热法,在NH3气氛中煅烧法制备了反钙钛矿cuco3。为了提高其作为锂离子电池负极材料的性能,还在CuNCo3表面制备了一层非晶层(Cu1-xNCo3-y/a-CuFeCo)。表面修饰的Cu1-xNCo3-y/a- cufeco材料在0.1 a g-1电流密度下可提供高达~1150 mAh g-1的高可逆容量,而CuNCo3在相同电流密度下的可逆容量为~408 mAh g-1。经过350次循环后,Cu1-xNCo3-y/a-CuFeCo的初始容量仍保持良好(>62%)。由于存在锂离子反应的多氧化还原中心,纯CuNCo3的表面周围有一层~ 6 nm的非晶薄层,使得其比容量几乎是纯CuNCo3的两倍,同时也提高了导电性能。Cu1-xNCo3-y/a- cufeco材料在较高电流密度(0.5和1.0 a g-1)下的循环稳定性也很明显。本研究为开发高可逆容量碱离子电池阳极开辟了新的材料路线和有前途的加工策略。
{"title":"Core-shell Cu1-xNCo3-y/a-CuFeCo antiperovskite as high-performance anode for Li-ion batteries","authors":"SK Mujaffar Hossain, Nikhil Kumar, Bharati Debnath, Satishchandra B Ogale","doi":"10.1088/2515-7655/ad08d9","DOIUrl":"https://doi.org/10.1088/2515-7655/ad08d9","url":null,"abstract":"Abstract Currently, there is an emergent interest in the antiperovskite family of materials in the context of energy applications in view of their distinct and peculiar set of structural and electronic properties. This work examines the surface-modified antiperovskite nitride CuNCo3 as a high-performance anode material for Li-ion storage devices. The antiperovskite CuNCo3 was prepared by the hydrothermal method followed by calcination in the NH3 atmosphere. An amorphous layer on the surface of CuNCo3 (Cu1-xNCo3-y/a-CuFeCo) was also fabricated to enhance its performance as an anode material for Li-ion batteries. The surface-modified Cu1-xNCo3-y/a-CuFeCo material was noted to deliver an extraordinarily high reversible capacity of ~1150 mAh g-1 at a current density of 0.1 A g-1, whereas the CuNCo3 showed a reversible capacity of ~408 mAh g-1 at the same current density. The initial capacity of Cu1-xNCo3-y/a-CuFeCo exhibited excellent retention (>62%) even after 350 cycles. A ~ 6 nm thin amorphous layer around the surface of pure CuNCo3 helped almost double the specific capacity as compared to the pure CuNCo3 due to the presence of a multi-redox centre for Li-ion to react and also concomitantly improved electrical conductivity property. The cyclic stability of the Cu1-xNCo3-y/a-CuFeCo material at a higher current density (0.5 and 1.0 A g-1) was also noticeable. This work opens up new materials routes and promising processing strategies to develop high reversible capacity anodes for alkali ion batteries.","PeriodicalId":48500,"journal":{"name":"Journal of Physics-Energy","volume":"13 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135875575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-02DOI: 10.1088/2515-7655/ad064e
María Arnaiz, María Canal-Rodríguez, Silvia Martin-Fuentes, Daniel Carriazo, Aitor Villaverde, Jon Ajuria
Abstract Lithium-ion capacitors (LICs) show promise to help lithium-ion batteries (LIBs) and electrical double layer capacitors (EDLCs) in giving response to those applications that require an energy storage solution. However, pre-lithiation is a major challenge that needs to be tackled in order to develop efficient and long-lasting LIBs and LICs. In this work, we report for the first time the scale-up and utilization of sacrificial salts (dilithium squarate, Li 2 C 4 O 4 ) as a pre-lithiation strategy in a LIC prototype fabricated in a pilot line. The synthesis of the sacrificial salt is scaled-up to produce 1 kg and is later incorporated in the positive electrode during the slurry formulation. After in-depth process optimization, 12 meter of a double side electrode are fabricated, achieving a high mass loading of 5.5 mg cm −2 for the HC negative electrode, and 14 mg cm −2 for the positive electrode accounting both the activated carbon and the dilithium squarate. On account of the satisfactory mechanical and electrochemical behaviour of the electrodes, multilayer pouch cell LIC prototypes are fabricated reaching 80 F each. Pre-lithiation is completed during the first ten cycles and after the required gas exhaustion, electrochemical performance of prototypes is also satisfactory. Moreover, fabricated pouch cells overcome a float test of 1600 h at 50 °C showing a capacitance retention of 84.3%. These results give clear evidence for the potential use of this strategy in real products and can foster research in the field to promote pre-lithiation by means of sacrificial salts as the final solution to the pre-lithiation step, both for LIBs and LICs.
锂离子电容器(lic)有望帮助锂离子电池(lib)和电双层电容器(edlc)响应那些需要储能解决方案的应用。然而,为了开发高效、持久的锂离子电池和锂离子电池,预锂化是一个需要解决的重大挑战。在这项工作中,我们首次报道了牺牲盐(方二锂,Li 2c4o4)作为预锂化策略在中试生产线上制造的LIC原型中的扩大和利用。牺牲盐的合成按比例放大到生产1千克,然后在浆液配方期间纳入正极。经过深入的工艺优化,制备了12米长的双面电极,其中HC负极的质量负载为5.5 mg cm - 2,正极的质量负载为14 mg cm - 2,同时考虑了活性炭和平方二锂。由于电极的力学和电化学性能令人满意,制作了每个达到80华氏度的多层袋状电池LIC原型。预锂化在前10次循环中完成,在所需气体耗尽后,原型的电化学性能也令人满意。此外,制备的袋状电池克服了在50°C下1600小时的浮子测试,显示电容保持率为84.3%。这些结果为该策略在实际产品中的潜在应用提供了明确的证据,并可以促进该领域的研究,以牺牲盐作为lib和lic预锂化步骤的最终解决方案来促进预锂化。
{"title":"Roll-to-roll double side electrode processing for the development of pre-lithiated 80 F lithium-ion capacitor prototypes","authors":"María Arnaiz, María Canal-Rodríguez, Silvia Martin-Fuentes, Daniel Carriazo, Aitor Villaverde, Jon Ajuria","doi":"10.1088/2515-7655/ad064e","DOIUrl":"https://doi.org/10.1088/2515-7655/ad064e","url":null,"abstract":"Abstract Lithium-ion capacitors (LICs) show promise to help lithium-ion batteries (LIBs) and electrical double layer capacitors (EDLCs) in giving response to those applications that require an energy storage solution. However, pre-lithiation is a major challenge that needs to be tackled in order to develop efficient and long-lasting LIBs and LICs. In this work, we report for the first time the scale-up and utilization of sacrificial salts (dilithium squarate, Li 2 C 4 O 4 ) as a pre-lithiation strategy in a LIC prototype fabricated in a pilot line. The synthesis of the sacrificial salt is scaled-up to produce 1 kg and is later incorporated in the positive electrode during the slurry formulation. After in-depth process optimization, 12 meter of a double side electrode are fabricated, achieving a high mass loading of 5.5 mg cm −2 for the HC negative electrode, and 14 mg cm −2 for the positive electrode accounting both the activated carbon and the dilithium squarate. On account of the satisfactory mechanical and electrochemical behaviour of the electrodes, multilayer pouch cell LIC prototypes are fabricated reaching 80 F each. Pre-lithiation is completed during the first ten cycles and after the required gas exhaustion, electrochemical performance of prototypes is also satisfactory. Moreover, fabricated pouch cells overcome a float test of 1600 h at 50 °C showing a capacitance retention of 84.3%. These results give clear evidence for the potential use of this strategy in real products and can foster research in the field to promote pre-lithiation by means of sacrificial salts as the final solution to the pre-lithiation step, both for LIBs and LICs.","PeriodicalId":48500,"journal":{"name":"Journal of Physics-Energy","volume":"34 23","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135973537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}