This study investigates the diversity, distribution, and relative abundance of medium and large-sized mammals in the biodiverse Chukala Mountain Forest of East Shoa, Oromia, Ethiopia, during March to August 2020. Three distinct habitat types-Montane forest with grassland (Panthera pardus, Papio anubis), woodland (Lepus fagani), and riverine forest (Procavia capensis)-were surveyed using line transects. Over four months, surveys were conducted bi-monthly, focusing on parameters such as species richness, and population distribution. Analysis revealed twelve mammal species spanning five orders and eight families, with olive baboons (Papio anubis) prevailing as the most abundant species, while leopards (Panthera pardus), bush hares (Lepus fagani), and rock hyraxes (Procavia capensis) were less frequently encountered. Woodland habitats exhibited the highest species richness (H = 1.700), followed by montane forest with grassland (H = 1.156) and riverine forest (H = 1.070). Notably, montane forest with grassland and riverine forest habitats shared similar species compositions across seasons (SI = 1). In conclusion, these findings provide valuable insights into the mammalian diversity and ecology of the Chukala Mountain Forest, highlighting the importance of ongoing conservation efforts in the region. Based on the findings, it is recommended to implement conservation measures focusing on preserving and enhancing the habitats of less common species such as the leopard, bush hare, and rock hyrax. Continual monitoring and research are recommended to track population dynamics and guide conservation initiatives for long-term ecosystem preservation. Overall, this study emphasizes the importance of proactive conservation measures in maintaining the ecological integrity of this vital ecosystem.
Background: Hair characterization is critical for determining animal individuality throughout life. This study aimed to assess the morphological features of dromedary camel hair in relation to age.
Materials and methods: Hair samples were obtained from the camel humps of 30 dromedary camels separated into three groups: G1 (n:10) aged one-year, G2 (n:10) aged 3-5 years, and G3 (n:10) at the age of 8-10 years. The hair was examined using light microscopy, SEM, and SEM-EDX.
Results: The Maghrebi camel had varied medulla patterns and structures across the ages. In the G1 group 75% had continuous medulla patterns and amorphous medulla structures, compared to 70% in G2, and 90% in G3. The medulla index increased with age, rising from 0.3 to 0.77%. The shaft width grew in size from G1 to G2, then fell to approximately one-third of the G2 size at G3. The cortex and cuticle widths were also determined by age, and they increased in the G1 compared to G3 camels. The shape of the cuticle scales in G1 camels was wavy, like mountain tops with irregular edges, within G2 camels the scales were particularly long, oval-shaped scales with smooth, wavy borders. The scales of the older G3 camels were quite long and rectangular. SEM-EDX spectra recognized carbon, oxygen, nitrogen, sulfur, calcium, aluminum, silicon, and potassium at the medulla and cortex. Sulfur levels were highest in the G2 samples but lowest in the G1 samples.
Conclusion: The dromedary camel's hair structure and mineral content, particularly carbon and nitrogen, differed as camels aged.
Background: Knowledge about home range size is vital to understand social systems and population dynamics of small mammals, as well as dispersal and a species' landscape use. Home ranges have been mapped for some species of voles (subfamily Microtinae) but remain virtually unknown for many species, including the grey-sided vole Craseomys rufocanus.
Results: A small pilot study was carried out in an inland valley of northern Norway, where six adult C. rufocanus were radio-tracked with one male and one female in each of the summers 2021-2023. Despite the small sample size, a large variation in home range size was found; males 2 294 - 36 887 m2 and females 1 728-7 392 m2 (100% MCP). Three of the voles tracked over a prolonged period of time showed a dynamic use and shifting of the range. Home range size and use was mostly related to reproduction. The male with the smallest range had probably not yet become reproductively active, whereas the male with the largest range was searching for females at a time when vole density was very low. The third male reduced his range when the reproductive season ended. For females the most important limitations were food, shelter and dependent young, those with young needed to return frequently and spend more time at the nest site. When the reproductive season ended, one female increased her range, perhaps exploring sites to overwinter.
Conclusions: Home range use in this population appears to be more dynamic than has previously been reported for C. rufocanus. The large ranges of males most likely resulted from the search of reproductively active females, outside of the reproductive season male ranges approximated female ranges. Female ranges most likely were limited by the need to feed close to their nest with dependent young, being able to roam more freely when reproduction ended.
Terrestrial organisms are likely to face hypoxic stress during natural disasters such as floods or landslides, which can lead to inevitable hypoxic conditions for those commonly residing within soil. Pardosa pseudoannulata often inhabits soil crevices and has been extensively studied, yet research on its response to hypoxic stress remains unclear. Therefore, we investigated the adaptive strategies of Pardosa pseudoannulata under hypoxic stress using metabolomics and transcriptomics approaches. The results indicated that under hypoxic stress, metabolites related to energy and antioxidants such as ATP, D-glucose 6-phosphate, flavin adenine dinucleotide (FAD), and reduced L-glutathione were significantly differentially expressed. Pathways such as the citric acid (TCA) cycle and oxidative phosphorylation were significantly enriched. Transcriptome analysis and related assessments also revealed a significant enrichment of pathways associated with energy metabolism, suggesting that Pardosa pseudoannulata primarily copes with hypoxic environments by modulating energy metabolism and antioxidant-related substances.
Background: The wild boar (Sus scrofa) was extinct in Sweden when a few animals established in the 1970s. Over the past 35 years, the species has made a substantial comeback. In this paper, we analyse wild boar population growth using three indices of population size. We also map the legislative decisions and research prompted by the expanding population. We discuss to what extent, in the eyes of the state, the view of wild boar and the management focus has shifted over time, from a perceived pest (eradication) to scarce (conservation), overabundant (reduction/control) or somewhere in between (sustainable management).
Results: Wild boar harvest started in the early 1990s with a few hundred animals annually and peaked at 161,000 in 2020/2021. The distribution now comprises most of southern Sweden. Analyses of harvest and traffic accidents involving wild boar showed that the population grew exponentially until 2010/2011, after which the increase levelled off. Thus, logistic growth models showed the best fit for the full study period. We recorded 38 legislative decisions or commissions to government agencies regarding wild boar. The first decision in 1981 was to eradicate the free-ranging population. In 1987 however, the parliament decided that wild boar is native to Sweden and should be allowed in restricted extent. Later decisions mainly concerned hunting regulations and hunting methods as direct means to increase harvest and regulate the population. Another topic, increasing in importance over time, was to facilitate the use of wild boar meat to indirectly stimulate harvest. A local outbreak of African swine fever in 2023 necessitated a stamping out strategy in the affected area. We found 44 scientific papers regarding the present free-ranging population. Topics include movements and feeding patterns, hunting, reproduction, and population development.
Conclusions: The state historically regarded wild boar as a pest to be eradicated. This changed with the decision that wild boar should be allowed in restricted extent, suggesting a conservation approach. In response to population growth, the focus shifted to means facilitating sustainable management and, lately, reducing growth. The story of wild boar in Sweden illustrates attempts to mitigate conflicts and balance interests in wildlife management.
The Middle Eastern endemic genus Asaccus comprises Southwest Asian leaf-toed geckos. To date, this genus includes 19 species of leaf-toed geckos (seven in Arabia and 12 in the Zagros Mountains). Despite a recent study on the taxonomy and phylogeny of Asaccus species in Iran, controversies still remain surrounding the phylogeny and phylogeography of the genus. Here, we used an integrative approach to determine the phylogeny and phylogeography of Asaccus species using two mitochondrial genes (12 S and Cyt b), and one nuclear gene (c-mos). Our results uncovered 22 distinct lineages, demonstrating a significant cryptic diversity that challenges the current morphological classifications of these species. Phylogenetic analyses reinforce the monophyly of the Asaccus group, positioning A. montanus as a basal lineage, which supports a deep evolutionary divergence dating back to the Late Oligocene, approximately 27.94 million years ago. This genetic diversity also highlights the impact of historical climatic and geographical changes on species diversification. The findings advocate for an integrative approach combining both molecular and morphological data to resolve species identities accurately, thereby enhancing conservation strategies to protect these genetically distinct lineages.