Purpose This study aims to predict China's carbon emission intensity and put forward a set of policy recommendations for further development of a low-carbon economy in China. Design/methodology/approach In this paper, the Interaction Effect Grey Power Model of N Variables (IEGPM(1,N)) is developed, and the Dragonfly algorithm (DA) is used to select the best power index for the model. Specific model construction methods and rigorous mathematical proofs are given. In order to verify the applicability and validity, this paper compares the model with the traditional grey model and simulates the carbon emission intensity of China from 2014 to 2021. In addition, the new model is used to predict the carbon emission intensity of China from 2022 to 2025, which can provide a reference for the 14th Five-Year Plan to develop a scientific emission reduction path. Findings The results show that if the Chinese government does not take effective policy measures in the future, carbon emission intensity will not achieve the set goals. The IEGPM(1,N) model also provides reliable results and works well in simulation and prediction. Originality/value The paper considers the nonlinear and interactive effect of input variables in the system's behavior and proposes an improved grey multivariable model, which fills the gap in previous studies.
{"title":"Forecasting Chinese carbon emission intensity based on the interactive effect GM(1,N) power model","authors":"Yuhong Wang, Qi Si","doi":"10.1108/gs-02-2023-0015","DOIUrl":"https://doi.org/10.1108/gs-02-2023-0015","url":null,"abstract":"Purpose This study aims to predict China's carbon emission intensity and put forward a set of policy recommendations for further development of a low-carbon economy in China. Design/methodology/approach In this paper, the Interaction Effect Grey Power Model of N Variables (IEGPM(1,N)) is developed, and the Dragonfly algorithm (DA) is used to select the best power index for the model. Specific model construction methods and rigorous mathematical proofs are given. In order to verify the applicability and validity, this paper compares the model with the traditional grey model and simulates the carbon emission intensity of China from 2014 to 2021. In addition, the new model is used to predict the carbon emission intensity of China from 2022 to 2025, which can provide a reference for the 14th Five-Year Plan to develop a scientific emission reduction path. Findings The results show that if the Chinese government does not take effective policy measures in the future, carbon emission intensity will not achieve the set goals. The IEGPM(1,N) model also provides reliable results and works well in simulation and prediction. Originality/value The paper considers the nonlinear and interactive effect of input variables in the system's behavior and proposes an improved grey multivariable model, which fills the gap in previous studies.","PeriodicalId":48597,"journal":{"name":"Grey Systems-Theory and Application","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136059086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Yang, Manman Zhang, Linjian Shangguan, Jinfa Shi
Purpose The possibility function-based grey clustering model has evolved into a complete approach for dealing with uncertainty evaluation problems. Existing models still have problems with the choice dilemma of the maximum criteria and instances when the possibility function may not accurately capture the data's randomness. This study aims to propose a multi-stage skewed grey cloud clustering model that blends grey and randomness to overcome these problems. Design/methodology/approach First, the skewed grey cloud possibility (SGCP) function is defined, and its digital characteristics demonstrate that a normal cloud is a particular instance of a skewed cloud. Second, the border of the decision paradox of the maximum criterion is established. Third, using the skewed grey cloud kernel weight (SGCKW) transformation as a tool, the multi-stage skewed grey cloud clustering coefficient (SGCCC) vector is calculated and research items are clustered according to this multi-stage SGCCC vector with overall features. Finally, the multi-stage skewed grey cloud clustering model's solution steps are then provided. Findings The results of applying the model to the assessment of college students' capacity for innovation and entrepreneurship revealed that, in comparison to the traditional grey clustering model and the two-stage grey cloud clustering evaluation model, the proposed model's clustering results have higher identification and stability, which partially resolves the decision paradox of the maximum criterion. Originality/value Compared with current models, the proposed model in this study can dynamically depict the clustering process through multi-stage clustering, ensuring the stability and integrity of the clustering results and advancing grey system theory.
{"title":"Multi-stage skewed grey cloud clustering model and its application","authors":"Jie Yang, Manman Zhang, Linjian Shangguan, Jinfa Shi","doi":"10.1108/gs-05-2023-0043","DOIUrl":"https://doi.org/10.1108/gs-05-2023-0043","url":null,"abstract":"Purpose The possibility function-based grey clustering model has evolved into a complete approach for dealing with uncertainty evaluation problems. Existing models still have problems with the choice dilemma of the maximum criteria and instances when the possibility function may not accurately capture the data's randomness. This study aims to propose a multi-stage skewed grey cloud clustering model that blends grey and randomness to overcome these problems. Design/methodology/approach First, the skewed grey cloud possibility (SGCP) function is defined, and its digital characteristics demonstrate that a normal cloud is a particular instance of a skewed cloud. Second, the border of the decision paradox of the maximum criterion is established. Third, using the skewed grey cloud kernel weight (SGCKW) transformation as a tool, the multi-stage skewed grey cloud clustering coefficient (SGCCC) vector is calculated and research items are clustered according to this multi-stage SGCCC vector with overall features. Finally, the multi-stage skewed grey cloud clustering model's solution steps are then provided. Findings The results of applying the model to the assessment of college students' capacity for innovation and entrepreneurship revealed that, in comparison to the traditional grey clustering model and the two-stage grey cloud clustering evaluation model, the proposed model's clustering results have higher identification and stability, which partially resolves the decision paradox of the maximum criterion. Originality/value Compared with current models, the proposed model in this study can dynamically depict the clustering process through multi-stage clustering, ensuring the stability and integrity of the clustering results and advancing grey system theory.","PeriodicalId":48597,"journal":{"name":"Grey Systems-Theory and Application","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135303316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose Competition in the banking sector is more complex than in the past, and survival has become more difficult than before. The purpose of this paper is to propose a grey methodology for evaluating, clustering and ranking the performance of bank branches with imprecise and uncertain data in order to determine the relative status of each branch. Design/methodology/approach In this study, the two-stage data envelopment analysis model with grey data is applied to assess the efficiency of bank branches in terms of operations. The result of grey two-stage data envelopment analysis model is a grey number as efficiency value of each branch. In the following, the branches are classified into three grey categories of performance by grey clustering method, and the complete grey ranking of branches are performed using “minimax regret-based approach” and “whitening value rating”. Findings The results show that after grey clustering of 22 branches based on grey efficiency value obtained from the grey two-stage DEA model, 6 branches are assigned to “excellent” class, 4 branches to “good” class and 12 branches to “poor” class. Moreover, the results of MRA and whitening value rating models are integrated, and a complete ranking of 22 branches are presented. Practical implications Grey clustering of branches based on grey efficiency value can facilitate planning and policy-making for branches so that there is no need to plan separately for each branch. The grey ranking helps the branches find their current position compared to other branches, and the results can be a dashboard to find the best practices for benchmarking. Originality/value Compared with traditional DEA methods which use deterministic data and consider decision-making units as black boxes, in this research, a grey two-stage DEA model is proposed to evaluate the efficiency of bank branches. Furthermore, grey clustering and grey ranking of efficiency values are used as a novel solution for improving the accuracy of grey two-stage DEA results.
{"title":"Grey clustering and grey ranking of bank branches based on grey efficiency","authors":"Tooraj Karimi, Mohamad Ahmadian","doi":"10.1108/gs-04-2023-0034","DOIUrl":"https://doi.org/10.1108/gs-04-2023-0034","url":null,"abstract":"Purpose Competition in the banking sector is more complex than in the past, and survival has become more difficult than before. The purpose of this paper is to propose a grey methodology for evaluating, clustering and ranking the performance of bank branches with imprecise and uncertain data in order to determine the relative status of each branch. Design/methodology/approach In this study, the two-stage data envelopment analysis model with grey data is applied to assess the efficiency of bank branches in terms of operations. The result of grey two-stage data envelopment analysis model is a grey number as efficiency value of each branch. In the following, the branches are classified into three grey categories of performance by grey clustering method, and the complete grey ranking of branches are performed using “minimax regret-based approach” and “whitening value rating”. Findings The results show that after grey clustering of 22 branches based on grey efficiency value obtained from the grey two-stage DEA model, 6 branches are assigned to “excellent” class, 4 branches to “good” class and 12 branches to “poor” class. Moreover, the results of MRA and whitening value rating models are integrated, and a complete ranking of 22 branches are presented. Practical implications Grey clustering of branches based on grey efficiency value can facilitate planning and policy-making for branches so that there is no need to plan separately for each branch. The grey ranking helps the branches find their current position compared to other branches, and the results can be a dashboard to find the best practices for benchmarking. Originality/value Compared with traditional DEA methods which use deterministic data and consider decision-making units as black boxes, in this research, a grey two-stage DEA model is proposed to evaluate the efficiency of bank branches. Furthermore, grey clustering and grey ranking of efficiency values are used as a novel solution for improving the accuracy of grey two-stage DEA results.","PeriodicalId":48597,"journal":{"name":"Grey Systems-Theory and Application","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135353919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PurposeTourism demand forecasting is vital for the airline industry and tourism sector. Combination forecasting has the advantage of fusing several forecasts to reduce the risk of inappropriate model selection for analyzing decisions. This paper investigated the effects of a time-varying weighting strategy on the performance of linear and nonlinear forecast combinations in the context of tourism.Design/methodology/approachThis study used grey prediction models, which did not require that the available data satisfy statistical assumptions, to generate forecasts. A quality-control technique was applied to determine when to change the combination weights to generate combined forecasts by using linear and nonlinear methods.FindingsThe empirical results showed that except for when the Choquet fuzzy integral was used, forecast combination with time-varying weights did not significantly outperform that with fixed weights. The Choquet integral with time-varying weights significantly outperformed that with fixed weights for all model combinations, and had a superior forecasting accuracy to those of other combination methods.Practical implicationsThe tourism sector can benefit from the use of the Choquet integral with time-varying weights, by using it to formulate suitable strategies for tourist destinations.Originality/valueCombining forecasts with time-varying weights may improve the accuracy of the predictions. This study investigated incorporating a time-varying weighting strategy into combination forecasting by using CUSUM. The results verified the effectiveness of the time-varying Choquet integral for tourism forecast combination.
{"title":"Forecast combination using grey prediction with fuzzy integral and time-varying weighting in tourism","authors":"Yi-Chung Hu","doi":"10.1108/gs-04-2023-0037","DOIUrl":"https://doi.org/10.1108/gs-04-2023-0037","url":null,"abstract":"PurposeTourism demand forecasting is vital for the airline industry and tourism sector. Combination forecasting has the advantage of fusing several forecasts to reduce the risk of inappropriate model selection for analyzing decisions. This paper investigated the effects of a time-varying weighting strategy on the performance of linear and nonlinear forecast combinations in the context of tourism.Design/methodology/approachThis study used grey prediction models, which did not require that the available data satisfy statistical assumptions, to generate forecasts. A quality-control technique was applied to determine when to change the combination weights to generate combined forecasts by using linear and nonlinear methods.FindingsThe empirical results showed that except for when the Choquet fuzzy integral was used, forecast combination with time-varying weights did not significantly outperform that with fixed weights. The Choquet integral with time-varying weights significantly outperformed that with fixed weights for all model combinations, and had a superior forecasting accuracy to those of other combination methods.Practical implicationsThe tourism sector can benefit from the use of the Choquet integral with time-varying weights, by using it to formulate suitable strategies for tourist destinations.Originality/valueCombining forecasts with time-varying weights may improve the accuracy of the predictions. This study investigated incorporating a time-varying weighting strategy into combination forecasting by using CUSUM. The results verified the effectiveness of the time-varying Choquet integral for tourism forecast combination.","PeriodicalId":48597,"journal":{"name":"Grey Systems-Theory and Application","volume":"39 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78689397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hamid Asnaashari, Abbas Sheikh Aboumasoudi, M. Mozaffari, M. Feylizadeh
PurposeThe application of correct contractor selection strategies leads to the selection of a qualified contractor and, as a result, the on-time delivery of the project with the desired quality and within the predetermined budgetary constraints. For this reason, evaluating and qualifying contractors before reviewing the proposed prices has been considered an important issue. One factor that disrupts the project completion process and the failure to achieve pre-planned goals effectively is the occurrence of contractors' disputes and claims in projects. To this end, the present study explores claim-reduction strategies for selecting effective contractors in an uncertain environment to reduce possible problems.Design/methodology/approachThe two-step grey data envelopment analysis (GDEA) approach was used to measure efficiency as a powerful tool in selecting efficient contractors during tenders. This approach can extend the applications of multi-criteria decision-making (MCDM) models. In other words, given some uncertainties, the unavailability of some data, and the problems with the DEA model, the two-step GDEA model was used to rank the contractors. The data confirmed the satisfactory outcomes from the selected model.FindingsThe preliminary assessment of contractors is a pre-tendering process and a step in categorizing contractors, excluding contractors lacking required qualifications, and selecting efficient contractors. At first, it will help the employer to exclude inexperienced and unqualified contractors, save resources and time, reduce threats, replace opportunities with threats, and reduce material and non-material costs during the completion of the project until the projects are put into operation. Consequently, this approach reduces claims to a minimum level and increases the organization's effective material and non-material profit.Originality/valueOil and gas plans and projects have a significant, sensitive, and decisive role in the economic, social, political, cultural, infrastructural, and all-round development of Iran; This is while most of the financial resources needed to implement the development and programs across the country come from oil revenues. Studies have indicated that despite the importance of these plans and projects, many of them are not completed successfully, and this causes irreparable losses to the country's economy and development in various fields.HighlightThe findings of this study can be used by organizations to select more effective contractors to assign projects and plans to them.The preliminary assessment of contractors is a pre-tendering process and a step in categorizing contractors, excluding contractors who lack required qualifications, and finally selecting efficient contractors.At first, it will help the employer to exclude inexperienced and unqualified contractors, save resources and time, reduce threats, replace opportunities with threats, and reduce material and non-material costs during the complet
{"title":"Applying claim reduction criteria in selecting efficient contractors with the two-step grey data envelopment analysis approach","authors":"Hamid Asnaashari, Abbas Sheikh Aboumasoudi, M. Mozaffari, M. Feylizadeh","doi":"10.1108/gs-03-2023-0027","DOIUrl":"https://doi.org/10.1108/gs-03-2023-0027","url":null,"abstract":"PurposeThe application of correct contractor selection strategies leads to the selection of a qualified contractor and, as a result, the on-time delivery of the project with the desired quality and within the predetermined budgetary constraints. For this reason, evaluating and qualifying contractors before reviewing the proposed prices has been considered an important issue. One factor that disrupts the project completion process and the failure to achieve pre-planned goals effectively is the occurrence of contractors' disputes and claims in projects. To this end, the present study explores claim-reduction strategies for selecting effective contractors in an uncertain environment to reduce possible problems.Design/methodology/approachThe two-step grey data envelopment analysis (GDEA) approach was used to measure efficiency as a powerful tool in selecting efficient contractors during tenders. This approach can extend the applications of multi-criteria decision-making (MCDM) models. In other words, given some uncertainties, the unavailability of some data, and the problems with the DEA model, the two-step GDEA model was used to rank the contractors. The data confirmed the satisfactory outcomes from the selected model.FindingsThe preliminary assessment of contractors is a pre-tendering process and a step in categorizing contractors, excluding contractors lacking required qualifications, and selecting efficient contractors. At first, it will help the employer to exclude inexperienced and unqualified contractors, save resources and time, reduce threats, replace opportunities with threats, and reduce material and non-material costs during the completion of the project until the projects are put into operation. Consequently, this approach reduces claims to a minimum level and increases the organization's effective material and non-material profit.Originality/valueOil and gas plans and projects have a significant, sensitive, and decisive role in the economic, social, political, cultural, infrastructural, and all-round development of Iran; This is while most of the financial resources needed to implement the development and programs across the country come from oil revenues. Studies have indicated that despite the importance of these plans and projects, many of them are not completed successfully, and this causes irreparable losses to the country's economy and development in various fields.HighlightThe findings of this study can be used by organizations to select more effective contractors to assign projects and plans to them.The preliminary assessment of contractors is a pre-tendering process and a step in categorizing contractors, excluding contractors who lack required qualifications, and finally selecting efficient contractors.At first, it will help the employer to exclude inexperienced and unqualified contractors, save resources and time, reduce threats, replace opportunities with threats, and reduce material and non-material costs during the complet","PeriodicalId":48597,"journal":{"name":"Grey Systems-Theory and Application","volume":"61 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84031342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Santonab Chakraborty, Rakesh D. Raut, T. M. Rofin, S. Chakraborty
PurposeIncreasing public consciousness and demand for sustainable environment make selection of a safe location for effective disposal of healthcare waste (HCW) a challenging issue. This problem becomes more complicated due to involvement of multiple decision makers having varying knowledge and interest, conflicting quantitative and qualitative evaluation criteria, and presence of several alternative locations.Design/methodology/approachTo efficiently resolve the problem, the past researchers have already coupled different multi-criteria decision-making tools with uncertainty models and criteria weight measurement techniques, which are time-consuming and highly computationally complex. Based on involvement of a group of experts expressing their opinions with respect to relative importance of criteria and performance of alternative locations against each criterion, this paper proposes application of ordinal priority approach (OPA) integrated with grey numbers to solve an HCW disposal location selection problem.FindingsThe grey OPA can simultaneously estimate weights of the experts, criteria and locations relieving the decision makers from complicated computational steps. The potentiality of grey OPA in solving an HCW disposal location selection problem is demonstrated here using an illustrative example consisting of three experts, six criteria and four alternative locations.Originality/valueThe derived results show that it can be employed to deal with real-time HCW disposal location selection problems in uncertain environment providing acceptable and robust decisions. It relieves the experts from pair-wise comparisons of criteria, normalization of data, identification of ideal and anti-ideal solutions, aggregation of information and so on, while arriving at the most consistent decision with minimum computational effort.
{"title":"A grey ordinal priority approach for healthcare waste disposal location selection","authors":"Santonab Chakraborty, Rakesh D. Raut, T. M. Rofin, S. Chakraborty","doi":"10.1108/gs-05-2023-0040","DOIUrl":"https://doi.org/10.1108/gs-05-2023-0040","url":null,"abstract":"PurposeIncreasing public consciousness and demand for sustainable environment make selection of a safe location for effective disposal of healthcare waste (HCW) a challenging issue. This problem becomes more complicated due to involvement of multiple decision makers having varying knowledge and interest, conflicting quantitative and qualitative evaluation criteria, and presence of several alternative locations.Design/methodology/approachTo efficiently resolve the problem, the past researchers have already coupled different multi-criteria decision-making tools with uncertainty models and criteria weight measurement techniques, which are time-consuming and highly computationally complex. Based on involvement of a group of experts expressing their opinions with respect to relative importance of criteria and performance of alternative locations against each criterion, this paper proposes application of ordinal priority approach (OPA) integrated with grey numbers to solve an HCW disposal location selection problem.FindingsThe grey OPA can simultaneously estimate weights of the experts, criteria and locations relieving the decision makers from complicated computational steps. The potentiality of grey OPA in solving an HCW disposal location selection problem is demonstrated here using an illustrative example consisting of three experts, six criteria and four alternative locations.Originality/valueThe derived results show that it can be employed to deal with real-time HCW disposal location selection problems in uncertain environment providing acceptable and robust decisions. It relieves the experts from pair-wise comparisons of criteria, normalization of data, identification of ideal and anti-ideal solutions, aggregation of information and so on, while arriving at the most consistent decision with minimum computational effort.","PeriodicalId":48597,"journal":{"name":"Grey Systems-Theory and Application","volume":"14 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81687379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenhao Zhou, Haizhou Li, Liping Zhang, Huimin Tian, Meng Fu
PurposeThe purpose of this work is to construct a grey entropy comprehensive evaluation model to measure the regional green innovation vitality (GIV) of 31 provinces in China.Design/methodology/approachThe traditional grey relational proximity and grey relational similarity degree are integrated into the novel comprehensive grey evaluation framework. The evaluation system of regional green innovation vitality is constructed from three dimensions: economic development vitality, innovative transformation power and environmental protection efficacy. The weights of each indicator are obtained by the entropy weight method. The GIV of 31 provinces in China is measured based on provincial panel data from 2016 to 2020. The ward clustering and K-nearest-neighbor (KNN) algorithms are utilized to explore the regional green innovation discrepancies and promotion paths.FindingsThe novel grey evaluation method exhibits stronger ability to capture intrinsic patterns compared with two separate traditional grey relational models. Green innovation vitality shows obvious regional discrepancies. The Matthew effect of China's regional GIV is obvious, showing a basic trend of strong in the eastern but weak in the western areas. The comprehensive innovation vitality of economically developed provinces exhibits steady increasing trend year by year, while the innovation vitality of less developed regions shows an overall steady state of no fluctuation.Practical implicationsThe grey entropy comprehensive relational model in this study is applied for the measurement and evaluation of regional GIV, which improves the one-sidedness of traditional grey relational analysis on the proximity or similarity among sequences. In addition, a three-dimensional evaluation system of regional GIV is constructed, which provides the practical guidance for the research of regional development strategic planning as well as promotion paths.Originality/valueA comprehensive grey entropy relational model based on traditional grey incidence analysis (GIA) in terms of proximity and similarity is proposed. The three-dimensional evaluation system of China's regional GIV is constructed, which provides a new research perspective for regional innovation evaluation and expands the application scope of grey system theory.
{"title":"Evaluation analysis and promotion paths of regional green innovation vitality in China","authors":"Wenhao Zhou, Haizhou Li, Liping Zhang, Huimin Tian, Meng Fu","doi":"10.1108/gs-02-2023-0008","DOIUrl":"https://doi.org/10.1108/gs-02-2023-0008","url":null,"abstract":"PurposeThe purpose of this work is to construct a grey entropy comprehensive evaluation model to measure the regional green innovation vitality (GIV) of 31 provinces in China.Design/methodology/approachThe traditional grey relational proximity and grey relational similarity degree are integrated into the novel comprehensive grey evaluation framework. The evaluation system of regional green innovation vitality is constructed from three dimensions: economic development vitality, innovative transformation power and environmental protection efficacy. The weights of each indicator are obtained by the entropy weight method. The GIV of 31 provinces in China is measured based on provincial panel data from 2016 to 2020. The ward clustering and K-nearest-neighbor (KNN) algorithms are utilized to explore the regional green innovation discrepancies and promotion paths.FindingsThe novel grey evaluation method exhibits stronger ability to capture intrinsic patterns compared with two separate traditional grey relational models. Green innovation vitality shows obvious regional discrepancies. The Matthew effect of China's regional GIV is obvious, showing a basic trend of strong in the eastern but weak in the western areas. The comprehensive innovation vitality of economically developed provinces exhibits steady increasing trend year by year, while the innovation vitality of less developed regions shows an overall steady state of no fluctuation.Practical implicationsThe grey entropy comprehensive relational model in this study is applied for the measurement and evaluation of regional GIV, which improves the one-sidedness of traditional grey relational analysis on the proximity or similarity among sequences. In addition, a three-dimensional evaluation system of regional GIV is constructed, which provides the practical guidance for the research of regional development strategic planning as well as promotion paths.Originality/valueA comprehensive grey entropy relational model based on traditional grey incidence analysis (GIA) in terms of proximity and similarity is proposed. The three-dimensional evaluation system of China's regional GIV is constructed, which provides a new research perspective for regional innovation evaluation and expands the application scope of grey system theory.","PeriodicalId":48597,"journal":{"name":"Grey Systems-Theory and Application","volume":"32 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85791631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PurposeAccording to the fact that the single function transformation which can both reduce the class ratio dispersion and keep the relative error no enlargement after the inverse transformation does not exist, this paper provides the separable binary function transformation F(x(k),k)=f(x(k))⋅g(k). The authors select the appropriate f(x(k)) and g(k) to get F(x(k),k)=f(x(k))⋅g(k). The sequence {F(x(k),k)}k=1n can not only improve the modeling accuracy but also ensure that the inverse transformation relative error has no enlargement.Design/methodology/approachFirst of all, to meet that the sequence reduces the class ratio dispersion after binary function transformation, the sufficient and necessary condition of binary function transformation with reduced class ratio dispersion is obtained. Secondly, to meet the condition that the inverse transformation relative error is not enlarged, the necessary condition of separable binary function transformation is obtained respectively for monotonically increasing and monotonically decreasing function f(x). Finally, the feasibility and correctness of this method are illustrated by example analysis and application.FindingsThe sufficient and necessary condition of binary function transformation with reduced class ratio dispersion and the necessary condition of separable binary function transformation with the inverse transformation relative error no enlargement.Practical implicationsAccording to the properties of separable binary function transformation provided in this paper, the grey prediction function model is established, which can improve the modeling accuracy.Originality/valueThis paper provides a binary function transformation, and researches the sufficient and necessary condition of binary function transformation with reduced class ratio dispersion and the necessary condition of separable binary function transformation with the inverse transformation relative error no enlargement. It is easy for scholars to carry out the pretest before selecting the separable binary function transformation. The binary function transformation is the further extension of single function transformation, which broadens and enriches the choice of function transformation.
{"title":"Research on the properties of separable binary functions","authors":"Zhi Cheng Jiang, Yong Wei","doi":"10.1108/gs-11-2022-0109","DOIUrl":"https://doi.org/10.1108/gs-11-2022-0109","url":null,"abstract":"PurposeAccording to the fact that the single function transformation which can both reduce the class ratio dispersion and keep the relative error no enlargement after the inverse transformation does not exist, this paper provides the separable binary function transformation F(x(k),k)=f(x(k))⋅g(k). The authors select the appropriate f(x(k)) and g(k) to get F(x(k),k)=f(x(k))⋅g(k). The sequence {F(x(k),k)}k=1n can not only improve the modeling accuracy but also ensure that the inverse transformation relative error has no enlargement.Design/methodology/approachFirst of all, to meet that the sequence reduces the class ratio dispersion after binary function transformation, the sufficient and necessary condition of binary function transformation with reduced class ratio dispersion is obtained. Secondly, to meet the condition that the inverse transformation relative error is not enlarged, the necessary condition of separable binary function transformation is obtained respectively for monotonically increasing and monotonically decreasing function f(x). Finally, the feasibility and correctness of this method are illustrated by example analysis and application.FindingsThe sufficient and necessary condition of binary function transformation with reduced class ratio dispersion and the necessary condition of separable binary function transformation with the inverse transformation relative error no enlargement.Practical implicationsAccording to the properties of separable binary function transformation provided in this paper, the grey prediction function model is established, which can improve the modeling accuracy.Originality/valueThis paper provides a binary function transformation, and researches the sufficient and necessary condition of binary function transformation with reduced class ratio dispersion and the necessary condition of separable binary function transformation with the inverse transformation relative error no enlargement. It is easy for scholars to carry out the pretest before selecting the separable binary function transformation. The binary function transformation is the further extension of single function transformation, which broadens and enriches the choice of function transformation.","PeriodicalId":48597,"journal":{"name":"Grey Systems-Theory and Application","volume":"57 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73317020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PurposeIn order to improve the estimation accuracy of soil organic matter, this paper aims to establish a modified model for hyperspectral estimation of soil organic matter content based on the positive and inverse grey relational degrees.Design/methodology/approachBased on 82 soil sample data collected in Daiyue District, Tai'an City, Shandong Province, firstly, the spectral data of soil samples are transformed by the first order differential and logarithmic reciprocal first order differential and so on, the correlation coefficients between the transformed spectral data and soil organic matter content are calculated, and the estimation factors are selected according to the principle of maximum correlation. Secondly, the positive and inverse grey relational degree model is used to identify the samples to be identified, and the initial estimated values of the organic matter content are obtained. Finally, based on the difference information between the samples to be identified and their corresponding known patterns, a modified model for the initial estimation of soil organic matter content is established, and the estimation accuracy of the model is evaluated using the mean relative error and the determination coefficient.FindingsThe results show that the methods of logarithmic reciprocal first order differential and the first-order differential of the square root for transforming the original spectral data are more effective, which could significantly improve the correlation between soil organic matter content and spectral data. The modified model for hyperspectral estimation of soil organic matter has high estimation accuracy, the average relative error (MRE) of 11 test samples is 4.091%, and the determination coefficient (R2) is 0.936. The estimation precision is higher than that of linear regression model, BP neural network and support vector machine model. The application examples show that the modified model for hyperspectral estimation of soil organic matter content based on positive and inverse grey relational degree proposed in this article is feasible and effective.Social implicationsThe model in this paper has clear mathematical and physics meaning, simple calculation and easy programming. The model not only fully excavates and utilizes the internal information of known pattern samples with “insufficient and incomplete information”, but also effectively overcomes the randomness and grey uncertainty in the spectral estimation of soil organic matter. The research results not only enrich the grey system theory and methods, but also provide a new approach for hyperspectral estimation of soil properties such as soil organic matter content, water content and so on.Originality/valueThe paper succeeds in realizing both a modified model for hyperspectral estimation of soil organic matter based on the positive and inverse grey relational degrees and effectively dealing with the randomness and grey uncertainty in spectral estimation.
{"title":"The modified model for hyperspectral estimation of soil organic matter using positive and inverse grey relational degree","authors":"Guozhi Xu, Xican Li, Hong Che","doi":"10.1108/gs-05-2023-0041","DOIUrl":"https://doi.org/10.1108/gs-05-2023-0041","url":null,"abstract":"PurposeIn order to improve the estimation accuracy of soil organic matter, this paper aims to establish a modified model for hyperspectral estimation of soil organic matter content based on the positive and inverse grey relational degrees.Design/methodology/approachBased on 82 soil sample data collected in Daiyue District, Tai'an City, Shandong Province, firstly, the spectral data of soil samples are transformed by the first order differential and logarithmic reciprocal first order differential and so on, the correlation coefficients between the transformed spectral data and soil organic matter content are calculated, and the estimation factors are selected according to the principle of maximum correlation. Secondly, the positive and inverse grey relational degree model is used to identify the samples to be identified, and the initial estimated values of the organic matter content are obtained. Finally, based on the difference information between the samples to be identified and their corresponding known patterns, a modified model for the initial estimation of soil organic matter content is established, and the estimation accuracy of the model is evaluated using the mean relative error and the determination coefficient.FindingsThe results show that the methods of logarithmic reciprocal first order differential and the first-order differential of the square root for transforming the original spectral data are more effective, which could significantly improve the correlation between soil organic matter content and spectral data. The modified model for hyperspectral estimation of soil organic matter has high estimation accuracy, the average relative error (MRE) of 11 test samples is 4.091%, and the determination coefficient (R2) is 0.936. The estimation precision is higher than that of linear regression model, BP neural network and support vector machine model. The application examples show that the modified model for hyperspectral estimation of soil organic matter content based on positive and inverse grey relational degree proposed in this article is feasible and effective.Social implicationsThe model in this paper has clear mathematical and physics meaning, simple calculation and easy programming. The model not only fully excavates and utilizes the internal information of known pattern samples with “insufficient and incomplete information”, but also effectively overcomes the randomness and grey uncertainty in the spectral estimation of soil organic matter. The research results not only enrich the grey system theory and methods, but also provide a new approach for hyperspectral estimation of soil properties such as soil organic matter content, water content and so on.Originality/valueThe paper succeeds in realizing both a modified model for hyperspectral estimation of soil organic matter based on the positive and inverse grey relational degrees and effectively dealing with the randomness and grey uncertainty in spectral estimation.","PeriodicalId":48597,"journal":{"name":"Grey Systems-Theory and Application","volume":"455 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82947395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PurposeThis paper aims to investigate the grey scheduling, which is the combination of grey system theory and scheduling problems with uncertain processing time. Based on the interval grey number and its related definitions, properties, and theorems, the single machine scheduling with uncertain processing time and its general forms are studied as the research object. Then several single machine scheduling models are reconstructed, and an actual production case is developed to illustrate the rationality of the research.Design/methodology/approachIn this paper, the authors first summarize the definitions and properties related to interval grey numbers, especially the transitivity of the partial order of interval grey numbers, and give an example to illustrate that the transitivity has a positive effect on the computational time complexity of multiple interval grey number comparisons. Second, the authors redefine the general form of the single machine scheduling problem with uncertain processing time according to the definitions and theorems of interval grey numbers. The authors then reconstruct three single machine scheduling models with uncertain processing time, give the corresponding heuristic algorithms based on the interval grey numbers and prove them. Finally, the authors develop a case study based on the engine test shop of K Company, the results show that the proposed single machine scheduling models and algorithms with uncertain processing time can provide effective guidance for actual production in an uncertain environment.FindingsThe main findings of this paper are as follows: (1) summarize the definitions and theorems related to interval grey numbers and prove the transitivity of the partial order of interval grey numbers; (2) define the general form of the single machine scheduling problem with interval grey processing time; (3) reconstruct three single machine scheduling models with uncertain processing time and give the corresponding heuristic algorithms; (4) develop a case study to illustrate the rationality of the research.Research limitations/implicationsIn the further research, the authors will continue to summarize more advanced general forms of grey scheduling, improve the theory of grey scheduling and prove it, and further explore the application of grey scheduling in the real world. In general, grey scheduling needs to be further combined with grey system theory to form a complete theoretical system.Originality/valueIt is a fundamental work to define the general form of single machine scheduling with uncertain processing time used the interval grey number. However, it can be seen as an important theoretical basis for the grey scheduling, and it is also beneficial to expand the application of grey system theory in real world.
{"title":"Single machine scheduling with interval grey processing time","authors":"Nai-ming Xie, Yuquan Wang","doi":"10.1108/gs-03-2023-0030","DOIUrl":"https://doi.org/10.1108/gs-03-2023-0030","url":null,"abstract":"PurposeThis paper aims to investigate the grey scheduling, which is the combination of grey system theory and scheduling problems with uncertain processing time. Based on the interval grey number and its related definitions, properties, and theorems, the single machine scheduling with uncertain processing time and its general forms are studied as the research object. Then several single machine scheduling models are reconstructed, and an actual production case is developed to illustrate the rationality of the research.Design/methodology/approachIn this paper, the authors first summarize the definitions and properties related to interval grey numbers, especially the transitivity of the partial order of interval grey numbers, and give an example to illustrate that the transitivity has a positive effect on the computational time complexity of multiple interval grey number comparisons. Second, the authors redefine the general form of the single machine scheduling problem with uncertain processing time according to the definitions and theorems of interval grey numbers. The authors then reconstruct three single machine scheduling models with uncertain processing time, give the corresponding heuristic algorithms based on the interval grey numbers and prove them. Finally, the authors develop a case study based on the engine test shop of K Company, the results show that the proposed single machine scheduling models and algorithms with uncertain processing time can provide effective guidance for actual production in an uncertain environment.FindingsThe main findings of this paper are as follows: (1) summarize the definitions and theorems related to interval grey numbers and prove the transitivity of the partial order of interval grey numbers; (2) define the general form of the single machine scheduling problem with interval grey processing time; (3) reconstruct three single machine scheduling models with uncertain processing time and give the corresponding heuristic algorithms; (4) develop a case study to illustrate the rationality of the research.Research limitations/implicationsIn the further research, the authors will continue to summarize more advanced general forms of grey scheduling, improve the theory of grey scheduling and prove it, and further explore the application of grey scheduling in the real world. In general, grey scheduling needs to be further combined with grey system theory to form a complete theoretical system.Originality/valueIt is a fundamental work to define the general form of single machine scheduling with uncertain processing time used the interval grey number. However, it can be seen as an important theoretical basis for the grey scheduling, and it is also beneficial to expand the application of grey system theory in real world.","PeriodicalId":48597,"journal":{"name":"Grey Systems-Theory and Application","volume":"43 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77341795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}