Meiyao Wang, Jun Zhou, Jiachun Ge, Gangchun Xu, Yongkai Tang
(1) Background: Global climate change is intensifying, and the vigorous development and utilization of saline-alkali land is of great significance. As an important economic aquatic species in the context of saline-alkali aquaculture, it is highly significant to explore the regulatory mechanisms of Eriocheir sinensis under alkaline conditions. In particular, the brain (cerebral ganglion for crustaceans) serves as a vital regulatory organ in response to environmental stress; (2) Methods: In this study, a comparative transcriptome approach was employed to investigate the key regulatory genes and molecular regulatory mechanisms in the cerebral ganglion of E. sinensis under alkaline stress. (3) Results: The results demonstrated that the cerebral ganglion of E. sinensis exhibited a positive response to acute alkaline stress. Pathways associated with signal transduction and substance transportation, such as "phagosome" and "regulation of actin cytoskeleton", along with regulatory genes involved in antioxidation, were upregulated synergistically to maintain homeostasis under alkaline stress. Furthermore, it was discovered for the first time that bursicon plays a positive regulatory role in the adaptation of E. sinensis to alkalinity. (4) Conclusions: The present study elucidates the molecular regulatory pattern of the cerebral ganglion in E. sinensis under acute alkaline stress as well as revealing a novel role of bursicon in facilitating adaptation to alkalinity in E. sinensis, providing valuable theoretical insights into the molecular regulatory mechanisms underlying the responses of cerebral ganglia to saline-alkali environments. These findings also offer a theoretical reference for promoting the sustainable development of the E. sinensis breeding industry under saline-alkali conditions.
{"title":"Molecular Mechanisms Underlying Substance Transport, Signal Transduction, and Anti-Stress Regulation, as Well as Anti-Alkaline Regulation via <i>Bursicon</i> in the Cerebral Ganglion of Chinese Mitten Crab <i>Eriocheir sinensis</i> Under Alkaline Stress.","authors":"Meiyao Wang, Jun Zhou, Jiachun Ge, Gangchun Xu, Yongkai Tang","doi":"10.3390/biology14010084","DOIUrl":"10.3390/biology14010084","url":null,"abstract":"<p><p>(1) Background: Global climate change is intensifying, and the vigorous development and utilization of saline-alkali land is of great significance. As an important economic aquatic species in the context of saline-alkali aquaculture, it is highly significant to explore the regulatory mechanisms of <i>Eriocheir sinensis</i> under alkaline conditions. In particular, the brain (cerebral ganglion for crustaceans) serves as a vital regulatory organ in response to environmental stress; (2) Methods: In this study, a comparative transcriptome approach was employed to investigate the key regulatory genes and molecular regulatory mechanisms in the cerebral ganglion of <i>E. sinensis</i> under alkaline stress. (3) Results: The results demonstrated that the cerebral ganglion of <i>E. sinensis</i> exhibited a positive response to acute alkaline stress. Pathways associated with signal transduction and substance transportation, such as \"phagosome\" and \"regulation of actin cytoskeleton\", along with regulatory genes involved in antioxidation, were upregulated synergistically to maintain homeostasis under alkaline stress. Furthermore, it was discovered for the first time that <i>bursicon</i> plays a positive regulatory role in the adaptation of <i>E. sinensis</i> to alkalinity. (4) Conclusions: The present study elucidates the molecular regulatory pattern of the cerebral ganglion in <i>E. sinensis</i> under acute alkaline stress as well as revealing a novel role of <i>bursicon</i> in facilitating adaptation to alkalinity in <i>E. sinensis</i>, providing valuable theoretical insights into the molecular regulatory mechanisms underlying the responses of cerebral ganglia to saline-alkali environments. These findings also offer a theoretical reference for promoting the sustainable development of the <i>E. sinensis</i> breeding industry under saline-alkali conditions.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762361/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143042645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yujia Shu, Xuanfu Wu, Dongxu Zhang, Shuxia Jiang, Wenqiang Ma
Iron is a trace element that is indispensable for the growth and development of animals. Excessive iron supplementation may lead to iron overload and elevated reactive oxygen species (ROS) production in animals, causing cellular damage. Nevertheless, the precise mechanism by which iron overload causes cell injury remains to be fully elucidated. In this study, 16 male SD rats aged 6 to 7 weeks were randomly assigned to either a control group (CON) or an iron overload group (IO). Rats in the iron overload group received 150 mg/kg iron dextran injections every three days for a duration of four weeks. The results indicated that iron treatment with iron dextran significantly increased the scores of steatosis (p < 0.05) and inflammation (p < 0.05) in the NAS score. The integrated transcriptomic and proteomic analysis suggests that HO-1 and Lnc286.2 are potentially significant in iron overload-induced liver injury in rats. In vitro experiments utilizing ferric ammonium citrate (FAC) were conducted to establish an iron overload model in rat liver-derived BRL-3A cells. The result found that FAC treatment can significantly increase the BRL-3A cell's Fe2+ content (p < 0.05), ROS (p < 0.01), lipid ROS (p < 0.01) levels, and the expression of the HO-1 gene and protein (p < 0.01), aligning with proteomic and transcriptomic findings. HO-1 inhibition can significantly decrease BRL-3A cell vitality (p < 0.01) and promote ROS (p < 0.05) and lipid ROS (p < 0.01), thus aggravating FAC-induced BRL-3A cell iron overload damage. Using the agonist of HO-1 agonist cobalt protoporphyrin (CoPP) to induce HO-1 overexpression can significantly alleviate the decrease in FAC-induced BRL-3A cell viability (p < 0.01), ROS (p < 0.01), and lipid ROS (p < 0.01). In addition, siLnc286.2 treatment can increase HO-1 expression, alleviate the decline of FAC-induced BRL-3A cell activity, and increase lipid ROS (p < 0.05) content. In conclusion, the findings of this study suggest that by suppressing the expression of Lnc286.2, we can enhance the expression of HO-1, which in turn alleviates lipid peroxidation in cells and increases their antioxidant capacity, thereby exerting a protective effect against liver cell injury induced by iron overload.
{"title":"Exploring the Mechanisms of Iron Overload-Induced Liver Injury in Rats Based on Transcriptomics and Proteomics.","authors":"Yujia Shu, Xuanfu Wu, Dongxu Zhang, Shuxia Jiang, Wenqiang Ma","doi":"10.3390/biology14010081","DOIUrl":"10.3390/biology14010081","url":null,"abstract":"<p><p>Iron is a trace element that is indispensable for the growth and development of animals. Excessive iron supplementation may lead to iron overload and elevated reactive oxygen species (ROS) production in animals, causing cellular damage. Nevertheless, the precise mechanism by which iron overload causes cell injury remains to be fully elucidated. In this study, 16 male SD rats aged 6 to 7 weeks were randomly assigned to either a control group (CON) or an iron overload group (IO). Rats in the iron overload group received 150 mg/kg iron dextran injections every three days for a duration of four weeks. The results indicated that iron treatment with iron dextran significantly increased the scores of steatosis (<i>p</i> < 0.05) and inflammation (<i>p</i> < 0.05) in the NAS score. The integrated transcriptomic and proteomic analysis suggests that HO-1 and Lnc286.2 are potentially significant in iron overload-induced liver injury in rats. In vitro experiments utilizing ferric ammonium citrate (FAC) were conducted to establish an iron overload model in rat liver-derived BRL-3A cells. The result found that FAC treatment can significantly increase the BRL-3A cell's Fe<sup>2+</sup> content (<i>p</i> < 0.05), ROS <i>(p</i> < 0.01), lipid ROS (<i>p</i> < 0.01) levels, and the expression of the HO-1 gene and protein (<i>p</i> < 0.01), aligning with proteomic and transcriptomic findings. HO-1 inhibition can significantly decrease BRL-3A cell vitality (<i>p</i> < 0.01) and promote ROS (<i>p</i> < 0.05) and lipid ROS (<i>p</i> < 0.01), thus aggravating FAC-induced BRL-3A cell iron overload damage. Using the agonist of HO-1 agonist cobalt protoporphyrin (CoPP) to induce HO-1 overexpression can significantly alleviate the decrease in FAC-induced BRL-3A cell viability (<i>p</i> < 0.01), ROS (<i>p</i> < 0.01), and lipid ROS (<i>p</i> < 0.01). In addition, siLnc286.2 treatment can increase HO-1 expression, alleviate the decline of FAC-induced BRL-3A cell activity, and increase lipid ROS (<i>p</i> < 0.05) content. In conclusion, the findings of this study suggest that by suppressing the expression of Lnc286.2, we can enhance the expression of HO-1, which in turn alleviates lipid peroxidation in cells and increases their antioxidant capacity, thereby exerting a protective effect against liver cell injury induced by iron overload.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761193/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143042476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As global demand for sheep products increases, improving reproductive efficiency and lamb growth performance has become a priority for sheep farmers. Artificial insemination (AI) offers several advantages over natural mating, including improved genetic selection and disease control. This study contributes to understanding the impact of different mating methods and semen preservation techniques on reproductive performance and growth traits in Palestinian Assaf sheep under local breeding conditions. The research included 123 adult Assaf ewes from two farms, which were hormonally synchronized and divided into three groups for different reproductive biotechnologies. Group 1 (G1) comprised 50 ewes inseminated with frozen semen straws, while Group 2 (G2) had 37 ewes inseminated with fresh semen from genetically superior rams. Both G1 and G2 used 0.5 mL straws containing 250 million sperm, with insemination occurring 48 h post sponge removal and eCG hormone injection. Group 3 (G3) consisted of 36 ewes that underwent natural mating at a ratio of 1 ram to 6 ewes. The study revealed that insemination methods significantly affected fertility rates (45.4, 61.1, and 71.9% for G1, G2, and G3, respectively; p < 0.05). Artificial insemination notably enhanced lamb performance indicators (p < 0.05), although it did not significantly influence prolific lambing (p > 0.05). Prolific lambing significantly impacted birth weight, weaning weight, and average daily gain at 60 days across all groups (p < 0.05), but not the average daily gain or final weight at 180 days (p > 0.05). The management system significantly affected birth and weaning weights at 60 days (p < 0.05), but not the final weight at 180 days or prolific lambing (p > 0.05). Lamb sex significantly influenced average daily gains at 60 and 180 days, as well as final weight at 180 days (p < 0.05). The findings suggest that, while artificial insemination with semen from elite rams may reduce fertility rates, it significantly improves lamb performance rates. In conclusion, our study demonstrates that, while natural mating offers higher fertility rates, AI with fresh semen can be a valuable tool for improving lamb growth performance in Palestinian Assaf sheep. These findings provide valuable insights for sheep farmers in the region to optimize reproductive strategies and enhance lamb production.
{"title":"Impact of Mating Methods and Semen Preservation on Reproductive and Growth Performances in Palestinian Assaf Sheep.","authors":"Wael Halaweh, Samia Khnissi, Ikram Ben Souf, Muayad Salman, Naceur M'Hamdi","doi":"10.3390/biology14010080","DOIUrl":"10.3390/biology14010080","url":null,"abstract":"<p><p>As global demand for sheep products increases, improving reproductive efficiency and lamb growth performance has become a priority for sheep farmers. Artificial insemination (AI) offers several advantages over natural mating, including improved genetic selection and disease control. This study contributes to understanding the impact of different mating methods and semen preservation techniques on reproductive performance and growth traits in Palestinian Assaf sheep under local breeding conditions. The research included 123 adult Assaf ewes from two farms, which were hormonally synchronized and divided into three groups for different reproductive biotechnologies. Group 1 (G1) comprised 50 ewes inseminated with frozen semen straws, while Group 2 (G2) had 37 ewes inseminated with fresh semen from genetically superior rams. Both G1 and G2 used 0.5 mL straws containing 250 million sperm, with insemination occurring 48 h post sponge removal and eCG hormone injection. Group 3 (G3) consisted of 36 ewes that underwent natural mating at a ratio of 1 ram to 6 ewes. The study revealed that insemination methods significantly affected fertility rates (45.4, 61.1, and 71.9% for G1, G2, and G3, respectively; <i>p</i> < 0.05). Artificial insemination notably enhanced lamb performance indicators (<i>p</i> < 0.05), although it did not significantly influence prolific lambing (<i>p</i> > 0.05). Prolific lambing significantly impacted birth weight, weaning weight, and average daily gain at 60 days across all groups (<i>p</i> < 0.05), but not the average daily gain or final weight at 180 days (<i>p</i> > 0.05). The management system significantly affected birth and weaning weights at 60 days (<i>p</i> < 0.05), but not the final weight at 180 days or prolific lambing (<i>p</i> > 0.05). Lamb sex significantly influenced average daily gains at 60 and 180 days, as well as final weight at 180 days (<i>p</i> < 0.05). The findings suggest that, while artificial insemination with semen from elite rams may reduce fertility rates, it significantly improves lamb performance rates. In conclusion, our study demonstrates that, while natural mating offers higher fertility rates, AI with fresh semen can be a valuable tool for improving lamb growth performance in Palestinian Assaf sheep. These findings provide valuable insights for sheep farmers in the region to optimize reproductive strategies and enhance lamb production.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762498/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143042628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Delfina M P Cantatore, Martina Lisnerová, Paula S Marcotegui, María A Rossin, Astrid S Holzer
A new species of Ceratomyxa (Ceratomyxidae, Myxosporea) was found infecting the gall bladder of the Argentine croaker Umbrina canosai Berg 1895 (Sciaenidae, Perciformes) from the Argentine sea. Using an integrative taxonomic approach that combines morphological, bioecological, and molecular analyses, we provide evidence that clearly differentiates this species from known taxa and formally describe Ceratomyxa fialai as a new species. This study is the first to apply landmark-based geometric morphometrics (GM) in myxozoan research, providing a detailed analysis of conspecific morphometric variation of ceratomyxid myxospores, examining their natural variation within and among different ceratomyxids infecting the gall bladder of U. canosai. Using GM analyses, we successfully capture and quantify phenotypic variation at the organismal level. Our results suggest that myxospore shape variation may be driven by both developmental noise and phenotypic plasticity. The work highlights the utility of GM in advancing the understanding of myxozoan morphology and its evolutionary implications and emphasizes the need for further research on myxospore shape evolution and its ecological and adaptive significance in natural populations.
{"title":"Intraspecific Morphometric Variation in a New Species of <i>Ceratomyxa</i> Thélohan 1892 (Cnidaria) from the South Atlantic Ocean: An Ecomorphological Study Using Geometric Morphometrics.","authors":"Delfina M P Cantatore, Martina Lisnerová, Paula S Marcotegui, María A Rossin, Astrid S Holzer","doi":"10.3390/biology14010079","DOIUrl":"10.3390/biology14010079","url":null,"abstract":"<p><p>A new species of <i>Ceratomyxa</i> (Ceratomyxidae, Myxosporea) was found infecting the gall bladder of the Argentine croaker <i>Umbrina canosai</i> Berg 1895 (Sciaenidae, Perciformes) from the Argentine sea. Using an integrative taxonomic approach that combines morphological, bioecological, and molecular analyses, we provide evidence that clearly differentiates this species from known taxa and formally describe <i>Ceratomyxa fialai</i> as a new species. This study is the first to apply landmark-based geometric morphometrics (GM) in myxozoan research, providing a detailed analysis of conspecific morphometric variation of ceratomyxid myxospores, examining their natural variation within and among different ceratomyxids infecting the gall bladder of <i>U. canosai</i>. Using GM analyses, we successfully capture and quantify phenotypic variation at the organismal level. Our results suggest that myxospore shape variation may be driven by both developmental noise and phenotypic plasticity. The work highlights the utility of GM in advancing the understanding of myxozoan morphology and its evolutionary implications and emphasizes the need for further research on myxospore shape evolution and its ecological and adaptive significance in natural populations.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760875/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143042633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaochang Wu, Huayong Zhang, Zhongyu Wang, Wang Tian, Zhao Liu
Minor and trace elements in soil play a crucial role in regulating ecological processes that sustain the functionality of forest ecosystems. In this study, we have selected three conifer forests (Pinus sylvestris, Picea asperata, Larix principis-rupprechtii), one broadleaf forest (Betula Platyfilla) and one mixed forest of Betula Platyfilla and Larix principis-rupprechtii in the Winter Olympic core area and determined the pattern of 12 typical elements (B, Fe, V, Cr, Ni, Co, Mn, As, Cu, Zn, Sn and Se) in soils and their main drivers in the three different soil layers (A, B and C horizon) in each soil profile. Our results showed that the concentrations of B, Fe, Cr, Cu, Ni and Sn were mainly enriched in the broadleaf forest and mixed broadleaf-conifer forest zones, and the average concentrations of Co, Mn, V, Zn, As and Se were mainly enriched in coniferous forest zones in contrast. We have observed that the mean concentrations of Fe, Cr, Ni, Zn, As, Sn and Co increase with soil depth in the BP forest. The concentrations of Se and Cu were higher in the A layer than the C layer. The piecewise structural equation modeling (piecewiseSEM) results visualized a direct and negative effect on B, Fe, V, Cr and Ni concentrations due to soil temperature, while the concentrations of Se is mainly influenced by soil temperature and soil properties.
{"title":"Climate and Soil Properties Drive the Distribution of Minor and Trace Elements in Forest Soils of the Winter Olympic Core Area.","authors":"Xiaochang Wu, Huayong Zhang, Zhongyu Wang, Wang Tian, Zhao Liu","doi":"10.3390/biology14010082","DOIUrl":"10.3390/biology14010082","url":null,"abstract":"<p><p>Minor and trace elements in soil play a crucial role in regulating ecological processes that sustain the functionality of forest ecosystems. In this study, we have selected three conifer forests (<i>Pinus sylvestris</i>, <i>Picea asperata</i>, <i>Larix principis-rupprechtii</i>), one broadleaf forest (<i>Betula Platyfilla</i>) and one mixed forest of <i>Betula Platyfilla</i> and <i>Larix principis-rupprechtii</i> in the Winter Olympic core area and determined the pattern of 12 typical elements (B, Fe, V, Cr, Ni, Co, Mn, As, Cu, Zn, Sn and Se) in soils and their main drivers in the three different soil layers (A, B and C horizon) in each soil profile. Our results showed that the concentrations of B, Fe, Cr, Cu, Ni and Sn were mainly enriched in the broadleaf forest and mixed broadleaf-conifer forest zones, and the average concentrations of Co, Mn, V, Zn, As and Se were mainly enriched in coniferous forest zones in contrast. We have observed that the mean concentrations of Fe, Cr, Ni, Zn, As, Sn and Co increase with soil depth in the BP forest. The concentrations of Se and Cu were higher in the A layer than the C layer. The piecewise structural equation modeling (piecewiseSEM) results visualized a direct and negative effect on B, Fe, V, Cr and Ni concentrations due to soil temperature, while the concentrations of Se is mainly influenced by soil temperature and soil properties.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763068/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143042551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chiara Maria Motta, Rosa Carotenuto, Chiara Fogliano, Luigi Rosati, Pabitra Denre, Raffaele Panzuto, Rossana Romano, Gianluca Miccoli, Palma Simoniello, Bice Avallone
Anthropic activities have significantly elevated cadmium levels, making it a significant stressor in aquatic ecosystems. Present in high concentrations across water bodies, cadmium is known to bioaccumulate and biomagnify throughout the food chain. While the toxic effects of cadmium on the organs and tissues of aquatic species are well-documented, little is known about its impact on sensory systems crucial for survival. Consequently, this study investigated the impact of short-term exposure (96 h) to 25 µM cadmium chloride on the olfactory system of adult zebrafish. The research aimed to assess structural and functional changes in the zebrafish's olfactory lamellae, providing a deeper understanding of how cadmium affects the sense of smell in this aquatic species. After exposure, cyto-anatomical alterations in the lamellae were analysed using light microscopy and immunocytochemistry. They revealed severe lamellar edema, epithelial thickening, and an increased number of apoptotic and crypt cells. Rodlet and goblet cells also increased by 3.5- and 2.5-fold, respectively, compared to control lamellae, and collagen density in the lamina propria increased 1.7-fold. Cadmium upregulated metallothioneins and increased the number of PCNA-positive cells. The olfactory function was assessed through a behavioural odour recognition test, followed by a recovery phase in which zebrafish exposed to cadmium were placed in clean water for six days. The exposed fish performed poorly, failing to reach food in five consecutive trials. However, lamellar damage was reduced after the recovery period, and their performance improved, becoming comparable to the control group. These results suggest that cadmium disrupts the sense of smell, and that recovery is possible after short-term exposure. This evidence sheds light on aspects of animal survival that are often overlooked when assessing environmental pollution.
{"title":"Olfactory Impairment and Recovery in Zebrafish (<i>Danio rerio</i>) Following Cadmium Exposure.","authors":"Chiara Maria Motta, Rosa Carotenuto, Chiara Fogliano, Luigi Rosati, Pabitra Denre, Raffaele Panzuto, Rossana Romano, Gianluca Miccoli, Palma Simoniello, Bice Avallone","doi":"10.3390/biology14010077","DOIUrl":"10.3390/biology14010077","url":null,"abstract":"<p><p>Anthropic activities have significantly elevated cadmium levels, making it a significant stressor in aquatic ecosystems. Present in high concentrations across water bodies, cadmium is known to bioaccumulate and biomagnify throughout the food chain. While the toxic effects of cadmium on the organs and tissues of aquatic species are well-documented, little is known about its impact on sensory systems crucial for survival. Consequently, this study investigated the impact of short-term exposure (96 h) to 25 µM cadmium chloride on the olfactory system of adult zebrafish. The research aimed to assess structural and functional changes in the zebrafish's olfactory lamellae, providing a deeper understanding of how cadmium affects the sense of smell in this aquatic species. After exposure, cyto-anatomical alterations in the lamellae were analysed using light microscopy and immunocytochemistry. They revealed severe lamellar edema, epithelial thickening, and an increased number of apoptotic and crypt cells. Rodlet and goblet cells also increased by 3.5- and 2.5-fold, respectively, compared to control lamellae, and collagen density in the lamina propria increased 1.7-fold. Cadmium upregulated metallothioneins and increased the number of PCNA-positive cells. The olfactory function was assessed through a behavioural odour recognition test, followed by a recovery phase in which zebrafish exposed to cadmium were placed in clean water for six days. The exposed fish performed poorly, failing to reach food in five consecutive trials. However, lamellar damage was reduced after the recovery period, and their performance improved, becoming comparable to the control group. These results suggest that cadmium disrupts the sense of smell, and that recovery is possible after short-term exposure. This evidence sheds light on aspects of animal survival that are often overlooked when assessing environmental pollution.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761868/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143042722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Robab Salami, Abbas Saidi, Mohammad Amin Hejazi, Bahman Panahi, Rasmieh Hamid
Lake Urmia is one of the world's most unique and hypersaline aquatic ecosystems. The aim of this study was to investigate the diversity, abundance and frequency of these microorganisms in water samples from the eastern regions of the lake over four seasons. Amplicon sequencing for the 16S rRNA gene was performed to examine bacterial communities in the samples. The study revealed significant seasonal variations in water quality parameters and their influence on the microbial communities. Majority and rarity analyses showed that winter and spring had higher core abundance and higher Gini index values, indicating a greater dominance of certain genera, while autumn and summer had a more balanced distribution. Analysis of beta diversity using the Bray-Curtis dissimilarity index emphasized that bacterial communities diverge most strongly in summer and winter, reflecting the significant changes in the environment with the season. Overall, understanding the seasonal variation in water chemistry and bacterial communities is critical for effective ecosystem management and conservation efforts.
{"title":"Seasonal Dynamics of the Bacterial Community in Lake Urmia, a Hypersaline Ecosystem.","authors":"Robab Salami, Abbas Saidi, Mohammad Amin Hejazi, Bahman Panahi, Rasmieh Hamid","doi":"10.3390/biology14010075","DOIUrl":"10.3390/biology14010075","url":null,"abstract":"<p><p>Lake Urmia is one of the world's most unique and hypersaline aquatic ecosystems. The aim of this study was to investigate the diversity, abundance and frequency of these microorganisms in water samples from the eastern regions of the lake over four seasons. Amplicon sequencing for the 16S rRNA gene was performed to examine bacterial communities in the samples. The study revealed significant seasonal variations in water quality parameters and their influence on the microbial communities. Majority and rarity analyses showed that winter and spring had higher core abundance and higher Gini index values, indicating a greater dominance of certain genera, while autumn and summer had a more balanced distribution. Analysis of beta diversity using the Bray-Curtis dissimilarity index emphasized that bacterial communities diverge most strongly in summer and winter, reflecting the significant changes in the environment with the season. Overall, understanding the seasonal variation in water chemistry and bacterial communities is critical for effective ecosystem management and conservation efforts.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759779/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143041639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Saffron (Crocus sativus L.), a perennial geophyte from the Iridaceae family, blooms in autumn and thrives in Mediterranean-like climates. It is highly valued for its therapeutic and commercial uses. While saffron cultivation generally requires minimal water, insufficient irrigation can negatively impact its yield. Although numerous studies have explored the detrimental impact of drought on saffron under field conditions, its impact in vitro remains largely unexplored. The present study aims to investigate the effects of polyethylene glycol (PEG) 6000 at concentrations of 0%, 5%, and 10% in inducing drought stress on saffron shoots under controlled conditions. The research focuses on evaluating morphological, physiological, and biochemical changes and analyzing the expression of drought-responsive genes. Shoot establishment was carried out on Murashige and Skoog (MS) medium supplemented with 6 mg/L 6-benzyladenine (BAP) and 1 mg/L naphthaleneacetic acid (NAA), while PEG 6000 was used to induce drought stress. Various morphological, biochemical, and molecular parameters were assessed 30 days after stress induction. Increasing PEG concentrations in the medium significantly reduced shoot regeneration, leading to increased apical tissue browning. Significant chlorophyll and carotenoid level changes were observed in shoots exposed to higher PEG concentrations. PEG-induced drought led to decreased plant growth and biomass and lowered relative water content of leaves. Lipid peroxidation, membrane damage, and H2O2 content increased, indicating heightened stress levels. Proline concentration significantly increased in plants subjected to 5% and 10% PEG compared to controls. Non-enzymatic antioxidant activity (phenolics, flavonoids, % inhibition, total reducing power, and total antioxidant activity) also increased with the severity of stress. In contrast, a decrease in the activity of superoxide dismutase (SOD) and peroxidase was observed in PEG-treated shoots. Significant changes in the expression of drought-related genes, such as DREB1, DREB2, AREB1, DHN1 (Dehydrin), and SnRK2, were observed in shoots exposed to 5% and 10% PEG. In conclusion, the study highlights that PEG, as an inducer of drought stress, negatively impacts saffron's growth and physiological responses under in vitro conditions. It also triggers significant changes in biochemical and molecular mechanisms, indicating the plant's susceptibility to water scarcity.
{"title":"Morphological, Physiological, and Transcriptional Changes in <i>Crocus sativus</i> L. Under In Vitro Polyethylene Glycol-Induced Water Stress.","authors":"Suman Gusain, Rohit Joshi","doi":"10.3390/biology14010078","DOIUrl":"10.3390/biology14010078","url":null,"abstract":"<p><p>Saffron (<i>Crocus sativus</i> L.), a perennial geophyte from the Iridaceae family, blooms in autumn and thrives in Mediterranean-like climates. It is highly valued for its therapeutic and commercial uses. While saffron cultivation generally requires minimal water, insufficient irrigation can negatively impact its yield. Although numerous studies have explored the detrimental impact of drought on saffron under field conditions, its impact in vitro remains largely unexplored. The present study aims to investigate the effects of polyethylene glycol (PEG) 6000 at concentrations of 0%, 5%, and 10% in inducing drought stress on saffron shoots under controlled conditions. The research focuses on evaluating morphological, physiological, and biochemical changes and analyzing the expression of drought-responsive genes. Shoot establishment was carried out on Murashige and Skoog (MS) medium supplemented with 6 mg/L 6-benzyladenine (BAP) and 1 mg/L naphthaleneacetic acid (NAA), while PEG 6000 was used to induce drought stress. Various morphological, biochemical, and molecular parameters were assessed 30 days after stress induction. Increasing PEG concentrations in the medium significantly reduced shoot regeneration, leading to increased apical tissue browning. Significant chlorophyll and carotenoid level changes were observed in shoots exposed to higher PEG concentrations. PEG-induced drought led to decreased plant growth and biomass and lowered relative water content of leaves. Lipid peroxidation, membrane damage, and H<sub>2</sub>O<sub>2</sub> content increased, indicating heightened stress levels. Proline concentration significantly increased in plants subjected to 5% and 10% PEG compared to controls. Non-enzymatic antioxidant activity (phenolics, flavonoids, % inhibition, total reducing power, and total antioxidant activity) also increased with the severity of stress. In contrast, a decrease in the activity of superoxide dismutase (SOD) and peroxidase was observed in PEG-treated shoots. Significant changes in the expression of drought-related genes, such as <i>DREB1</i>, <i>DREB2</i>, <i>AREB1</i>, <i>DHN1</i> (<i>Dehydrin</i>), and <i>SnRK2</i>, were observed in shoots exposed to 5% and 10% PEG. In conclusion, the study highlights that PEG, as an inducer of drought stress, negatively impacts saffron's growth and physiological responses under in vitro conditions. It also triggers significant changes in biochemical and molecular mechanisms, indicating the plant's susceptibility to water scarcity.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760865/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143042674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Evgenii Balakin, Ksenia Yurku, Mark Ivanov, Alexander Izotov, Valeriya Nakhod, Vasiliy Pustovoyt
Understanding the regulatory mechanisms of stress-induced immunosuppression and developing reliable diagnostic methods are important tasks in clinical medicine. This will allow for the development of effective strategies for the prevention and treatment of conditions associated with immune system dysfunction induced by chronic stress. The purpose of this review is to conduct a comprehensive analysis and synthesis of existing data on the regulatory mechanisms of stress-induced immunosuppression. The review is aimed at identifying key neuroendocrine, cytokine, and cellular processes underlying the suppression of the immune response under stress. This study involved a search of scientific literature covering the neuroendocrine, cellular, and molecular mechanisms of stress-induced immunosuppression regulation, as well as modern methods for its diagnosis. Major international bibliographic databases covering publications in biomedicine, psychophysiology, and immunology were selected for the search. The results of the analysis identified key mechanisms regulating stress-induced immunosuppression. The reviewed publications provided detailed descriptions of the neuroendocrine and cytokine processes underlying immune response suppression under stress. A significant portion of the data confirms that the activation of the hypothalamic-pituitary-adrenal (HPA) axis and subsequent elevation of cortisol levels exert substantial immunosuppressive effects on immune cells, particularly macrophages and lymphocytes, leading to the suppression of innate and adaptive immune responses. The data also highlight the crucial role of cortisol and catecholamines (adrenaline and noradrenaline) in initiating immunosuppressive mechanisms under chronic stress.
{"title":"Regulation of Stress-Induced Immunosuppression in the Context of Neuroendocrine, Cytokine, and Cellular Processes.","authors":"Evgenii Balakin, Ksenia Yurku, Mark Ivanov, Alexander Izotov, Valeriya Nakhod, Vasiliy Pustovoyt","doi":"10.3390/biology14010076","DOIUrl":"10.3390/biology14010076","url":null,"abstract":"<p><p>Understanding the regulatory mechanisms of stress-induced immunosuppression and developing reliable diagnostic methods are important tasks in clinical medicine. This will allow for the development of effective strategies for the prevention and treatment of conditions associated with immune system dysfunction induced by chronic stress. The purpose of this review is to conduct a comprehensive analysis and synthesis of existing data on the regulatory mechanisms of stress-induced immunosuppression. The review is aimed at identifying key neuroendocrine, cytokine, and cellular processes underlying the suppression of the immune response under stress. This study involved a search of scientific literature covering the neuroendocrine, cellular, and molecular mechanisms of stress-induced immunosuppression regulation, as well as modern methods for its diagnosis. Major international bibliographic databases covering publications in biomedicine, psychophysiology, and immunology were selected for the search. The results of the analysis identified key mechanisms regulating stress-induced immunosuppression. The reviewed publications provided detailed descriptions of the neuroendocrine and cytokine processes underlying immune response suppression under stress. A significant portion of the data confirms that the activation of the hypothalamic-pituitary-adrenal (HPA) axis and subsequent elevation of cortisol levels exert substantial immunosuppressive effects on immune cells, particularly macrophages and lymphocytes, leading to the suppression of innate and adaptive immune responses. The data also highlight the crucial role of cortisol and catecholamines (adrenaline and noradrenaline) in initiating immunosuppressive mechanisms under chronic stress.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760489/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143042744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In many areas where larval Pacific lampreys currently rear, maximum stream temperatures may approach 27-31 °C during the next 75 years. Whether larval Pacific lampreys in natural conditions can tolerate these temperatures is unknown. To evaluate this ability, we conducted Direct Acute Exposure (DAE) experiments using simulated natural daily temperature (SNT) cycles in the laboratory and occupancy surveys in the Umatilla River (river). When evaluated relative to daily maximum temperatures, after seven days in DAE experiments, 78-100% of larvae survived in 29.1 °C, only larvae acclimated to 26.8 °C survived in 31.0 °C, and no larvae survived in 33.6 °C. Based on daily maximum temperatures, the ultimate upper incipient lethal temperature was estimated to be >30.8 °C using a time to death analysis and >32.0 °C using a percent mortality analysis. Some larvae acclimated to 31.0 °C were also able to survive four consecutive days with a daily maximum temperature of 33.6 °C. In 2018-2020, warm areas of the river experienced maximum temperatures in July and August that ranged from 27.7 to 33.9 °C, while cool areas experienced maximum temperatures <27.7 °C. Before, during and after the period of maximum temperatures each year, larvae occupied both areas. Detection probabilities ranged from 0.83 to 1.00 and were similar for each area and for all survey periods. This work suggests that ectothermic, larval Pacific lampreys in natural environments may be resilient to the water temperatures that are likely to result from climate warming. It is unclear whether relatively high but sublethal temperatures may impact the behavior, and ultimately survival, of larval Pacific lampreys.
在太平洋灯鱼幼鱼目前觅食的许多地区,未来 75 年内溪流的最高温度可能接近 27-31 °C。太平洋灯鱼幼体在自然条件下能否承受这样的温度尚不清楚。为了评估这种能力,我们在实验室中使用模拟自然日温度周期(SNT)进行了直接急性暴露(DAE)实验,并在乌马蒂拉河(河流)中进行了占位调查。根据日最高温度进行评估,DAE 实验中,7 天后,78%-100% 的幼虫在 29.1 °C 下存活,只有适应 26.8 °C 的幼虫在 31.0 °C 下存活,没有幼虫在 33.6 °C 下存活。根据日最高气温,采用死亡时间分析法,估计最终的萌发致死上限温度>30.8 °C;采用死亡率百分比分析法,估计最终的萌发致死上限温度>32.0 °C。一些适应 31.0 °C温度的幼虫也能在日最高温度为 33.6 °C的情况下连续存活四天。2018-2020 年,河流温暖地区 7 月和 8 月的最高气温介于 27.7 到 33.9 °C,而凉爽地区的最高气温为
{"title":"Climate Projections and Pacific Lamprey Conservation: Evidence That Larvae in Natural Conditions May Be Resilient to Climate Warming.","authors":"Timothy A Whitesel, Paul M Sankovich","doi":"10.3390/biology14010074","DOIUrl":"10.3390/biology14010074","url":null,"abstract":"<p><p>In many areas where larval Pacific lampreys currently rear, maximum stream temperatures may approach 27-31 °C during the next 75 years. Whether larval Pacific lampreys in natural conditions can tolerate these temperatures is unknown. To evaluate this ability, we conducted Direct Acute Exposure (DAE) experiments using simulated natural daily temperature (SNT) cycles in the laboratory and occupancy surveys in the Umatilla River (river). When evaluated relative to daily maximum temperatures, after seven days in DAE experiments, 78-100% of larvae survived in 29.1 °C, only larvae acclimated to 26.8 °C survived in 31.0 °C, and no larvae survived in 33.6 °C. Based on daily maximum temperatures, the ultimate upper incipient lethal temperature was estimated to be >30.8 °C using a time to death analysis and >32.0 °C using a percent mortality analysis. Some larvae acclimated to 31.0 °C were also able to survive four consecutive days with a daily maximum temperature of 33.6 °C. In 2018-2020, warm areas of the river experienced maximum temperatures in July and August that ranged from 27.7 to 33.9 °C, while cool areas experienced maximum temperatures <27.7 °C. Before, during and after the period of maximum temperatures each year, larvae occupied both areas. Detection probabilities ranged from 0.83 to 1.00 and were similar for each area and for all survey periods. This work suggests that ectothermic, larval Pacific lampreys in natural environments may be resilient to the water temperatures that are likely to result from climate warming. It is unclear whether relatively high but sublethal temperatures may impact the behavior, and ultimately survival, of larval Pacific lampreys.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761618/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143042554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}