Pub Date : 2023-06-01DOI: 10.1007/s11465-023-0747-1
Wendi Gao, B. Tian, Cunlang Liu, Yingbiao Mi, Chen Jia, Libo Zhao, Tao Liu, Nan Zhu, Ping Yang, Qijing Lin, Zhuangde Jiang, D. Sun
{"title":"A bionic approach for the mechanical and electrical decoupling of an MEMS capacitive sensor in ultralow force measurement","authors":"Wendi Gao, B. Tian, Cunlang Liu, Yingbiao Mi, Chen Jia, Libo Zhao, Tao Liu, Nan Zhu, Ping Yang, Qijing Lin, Zhuangde Jiang, D. Sun","doi":"10.1007/s11465-023-0747-1","DOIUrl":"https://doi.org/10.1007/s11465-023-0747-1","url":null,"abstract":"","PeriodicalId":48635,"journal":{"name":"Frontiers of Mechanical Engineering","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43274098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-24DOI: 10.1007/s11465-022-0741-z
Biying Xu, Xuehe Zhang, Yue Ou, Kuan Zhang, Zhenming Xing, He-gao Cai, Jie Zhao, Jizhuang Fan
{"title":"High-efficiency inspecting method for mobile robots based on task planning for heat transfer tubes in a steam generator","authors":"Biying Xu, Xuehe Zhang, Yue Ou, Kuan Zhang, Zhenming Xing, He-gao Cai, Jie Zhao, Jizhuang Fan","doi":"10.1007/s11465-022-0741-z","DOIUrl":"https://doi.org/10.1007/s11465-022-0741-z","url":null,"abstract":"","PeriodicalId":48635,"journal":{"name":"Frontiers of Mechanical Engineering","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48437264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-24DOI: 10.1007/s11465-022-0736-9
Shuhui Wang, Y. Lei, Na Lu, Xiang Li, Bin Yang
{"title":"A multi-sensor relation model for recognizing and localizing faults of machines based on network analysis","authors":"Shuhui Wang, Y. Lei, Na Lu, Xiang Li, Bin Yang","doi":"10.1007/s11465-022-0736-9","DOIUrl":"https://doi.org/10.1007/s11465-022-0736-9","url":null,"abstract":"","PeriodicalId":48635,"journal":{"name":"Frontiers of Mechanical Engineering","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47246704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical simulation and experimental research on the wheel brush sampling process of an asteroid sampler","authors":"Haitao Luo, Qiming Wei, Yuxin Li, Junlin Li, Wei Zhang, Weijia Zhou","doi":"10.1007/s11465-022-0732-0","DOIUrl":"https://doi.org/10.1007/s11465-022-0732-0","url":null,"abstract":"","PeriodicalId":48635,"journal":{"name":"Frontiers of Mechanical Engineering","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45744275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-23DOI: 10.3389/fmech.2023.1189860
N. Patel, S. Pawar, V. Bhojwani
Conventional cold storage systems increase the risk of damage and are no longer used for the long-term storage of agricultural products. Thus, newer affordable and energy-efficient storage systems are required for enhancing the shelf life of farm produce. We investigated the coefficient of performance (COP) of an earthen clay pot refrigerator with a thermoelectric cooler (TEC) and explored cooling strategies to enhance cooling and electrical performance for increasing the shelf life of farm produce. We used MATLAB Simulink to analyze Peltier TEC module efficiency. The intrinsic characteristics, including the Seebeck coefficient (α), thermal conductivity (K), and electrical resistance (R), were determined, forming the basis of the Peltier module in MATLAB Simulink. Thermal characteristics such as COP and cooling capacity were studied as a function of system voltage (Vin) and current (Iin). The model was equipped with a 12 V/6 A, 60 W TEC and was verified by simulation investigation. We also used psychrometric measures (e.g., wet bulb, dry bulb, and dew point temperatures and relative humidity) to determine the extent of wetness or dryness of an object and monitor other temperatures of the clay pot refrigerator. The results revealed that the ambient temperature and cold and hot side temperatures fundamentally affected TEC performance. The TEC extended the shelf life of tomatoes, potatoes, and spinach by 60% compared to those stored under ambient conditions, thereby reducing their wastage. In conclusion, earthen refrigeration using TEC doubled the shelf life of farm produce compared to storage under ambient conditions, saving money, resources, labor, and supplies and enabling the development of efficient and environmentally friendly refrigeration systems.
{"title":"Use of an earthen clay pot refrigerator with a thermoelectric cooler for extending farm produce shelf life","authors":"N. Patel, S. Pawar, V. Bhojwani","doi":"10.3389/fmech.2023.1189860","DOIUrl":"https://doi.org/10.3389/fmech.2023.1189860","url":null,"abstract":"Conventional cold storage systems increase the risk of damage and are no longer used for the long-term storage of agricultural products. Thus, newer affordable and energy-efficient storage systems are required for enhancing the shelf life of farm produce. We investigated the coefficient of performance (COP) of an earthen clay pot refrigerator with a thermoelectric cooler (TEC) and explored cooling strategies to enhance cooling and electrical performance for increasing the shelf life of farm produce. We used MATLAB Simulink to analyze Peltier TEC module efficiency. The intrinsic characteristics, including the Seebeck coefficient (α), thermal conductivity (K), and electrical resistance (R), were determined, forming the basis of the Peltier module in MATLAB Simulink. Thermal characteristics such as COP and cooling capacity were studied as a function of system voltage (Vin) and current (Iin). The model was equipped with a 12 V/6 A, 60 W TEC and was verified by simulation investigation. We also used psychrometric measures (e.g., wet bulb, dry bulb, and dew point temperatures and relative humidity) to determine the extent of wetness or dryness of an object and monitor other temperatures of the clay pot refrigerator. The results revealed that the ambient temperature and cold and hot side temperatures fundamentally affected TEC performance. The TEC extended the shelf life of tomatoes, potatoes, and spinach by 60% compared to those stored under ambient conditions, thereby reducing their wastage. In conclusion, earthen refrigeration using TEC doubled the shelf life of farm produce compared to storage under ambient conditions, saving money, resources, labor, and supplies and enabling the development of efficient and environmentally friendly refrigeration systems.","PeriodicalId":48635,"journal":{"name":"Frontiers of Mechanical Engineering","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47913007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-23DOI: 10.3389/fmech.2023.1145305
M. Sinner, V. Petrović, David Stockhouse, A. Langidis, M. Pusch, M. Kühn, L. Pao
Lidar scanners are capable of taking measurements of a wind field upstream of a wind turbine. The wind turbine controller can use these measurements as a “preview” of future disturbances impacting the turbine. Such preview-enabled (or feedforward) controllers show superior performance to standard wind turbine control configurations based purely on a feedback architecture. To capitalize on the performance improvements that preview wind measurements can provide, feedforward control actions should be timed to coincide with the arrival of the wind field at the wind turbine location. However, the time of propagation of the wind field between the lidar measurement location and the wind turbine is not perfectly known. Moreover, the best time to take feedforward control action may not perfectly coincide with the true arrival time of the wind disturbance. This contribution presents results from an experiment where preview-enabled model predictive control was deployed on a fully-actuated, scaled model wind turbine operating in a wind tunnel testbed. In the study, we investigate the sensitivity of the controller performance to the assumed propagation delay using a range of wind input sequences. We find that the preview-enabled controller outperforms the feedback only case across a wide range of assumed propagation delays, demonstrating a level of robustness to the time alignment of the incoming disturbances.
{"title":"Insensitivity to propagation timing in a preview-enabled wind turbine control experiment","authors":"M. Sinner, V. Petrović, David Stockhouse, A. Langidis, M. Pusch, M. Kühn, L. Pao","doi":"10.3389/fmech.2023.1145305","DOIUrl":"https://doi.org/10.3389/fmech.2023.1145305","url":null,"abstract":"Lidar scanners are capable of taking measurements of a wind field upstream of a wind turbine. The wind turbine controller can use these measurements as a “preview” of future disturbances impacting the turbine. Such preview-enabled (or feedforward) controllers show superior performance to standard wind turbine control configurations based purely on a feedback architecture. To capitalize on the performance improvements that preview wind measurements can provide, feedforward control actions should be timed to coincide with the arrival of the wind field at the wind turbine location. However, the time of propagation of the wind field between the lidar measurement location and the wind turbine is not perfectly known. Moreover, the best time to take feedforward control action may not perfectly coincide with the true arrival time of the wind disturbance. This contribution presents results from an experiment where preview-enabled model predictive control was deployed on a fully-actuated, scaled model wind turbine operating in a wind tunnel testbed. In the study, we investigate the sensitivity of the controller performance to the assumed propagation delay using a range of wind input sequences. We find that the preview-enabled controller outperforms the feedback only case across a wide range of assumed propagation delays, demonstrating a level of robustness to the time alignment of the incoming disturbances.","PeriodicalId":48635,"journal":{"name":"Frontiers of Mechanical Engineering","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46075553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-22DOI: 10.3389/fmech.2023.1148246
A. Nasr, Ahmed Nassif, A. Al-Ghamdi
The ammonia-water film condensation is used as an efficient working fluid in industrial applications such as refrigeration, plate condenser and evaporator, absorber/generator heat exchange, air-conditioning, heat pumps and separation processes. The present work focuses on a numerical investigation of water-ammonia condensation on a falling binary liquid film inside a parallel plate condenser by mixed convection. The parallel plate condenser is composed by two parallel vertical plates. One of the plates is wetted by liquidfilm and cooled by the thermal flux cooling while the other plate is isothermal and dry. Parametric computations were performed to investigate the effects of the inlet parameters of gas, the properties of the binary liquid film as well as the thermal flux cooling on the combined mass and heat transfer and on the efficiency of the parallel plate condenser. The results show that an increase in the inlet vapor of ammonia as well as of vapor water enhances the efficiency of the parallel plate condenser. It is shown also that an enhancement of efficiency of the parallel plate condenser has been recorded when the thermal flux cooling and inlet liquid flow rate is elevated. Whereas the increase of the inlet liquid concentration of ammonia inhibits the efficiency of the parallel plate condenser.
{"title":"Binary liquid film condensation from water-ammonia vapors mixture flowing downward along a parallel plate condenser","authors":"A. Nasr, Ahmed Nassif, A. Al-Ghamdi","doi":"10.3389/fmech.2023.1148246","DOIUrl":"https://doi.org/10.3389/fmech.2023.1148246","url":null,"abstract":"The ammonia-water film condensation is used as an efficient working fluid in industrial applications such as refrigeration, plate condenser and evaporator, absorber/generator heat exchange, air-conditioning, heat pumps and separation processes. The present work focuses on a numerical investigation of water-ammonia condensation on a falling binary liquid film inside a parallel plate condenser by mixed convection. The parallel plate condenser is composed by two parallel vertical plates. One of the plates is wetted by liquidfilm and cooled by the thermal flux cooling while the other plate is isothermal and dry. Parametric computations were performed to investigate the effects of the inlet parameters of gas, the properties of the binary liquid film as well as the thermal flux cooling on the combined mass and heat transfer and on the efficiency of the parallel plate condenser. The results show that an increase in the inlet vapor of ammonia as well as of vapor water enhances the efficiency of the parallel plate condenser. It is shown also that an enhancement of efficiency of the parallel plate condenser has been recorded when the thermal flux cooling and inlet liquid flow rate is elevated. Whereas the increase of the inlet liquid concentration of ammonia inhibits the efficiency of the parallel plate condenser.","PeriodicalId":48635,"journal":{"name":"Frontiers of Mechanical Engineering","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45053518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-17DOI: 10.1007/s11465-022-0739-6
Guoxin Li, Jingjun Yu, Yichao Tang, Jie Pan, S. Cao, X. Pei
{"title":"Design and modeling of continuum robot based on virtual-center of motion mechanism","authors":"Guoxin Li, Jingjun Yu, Yichao Tang, Jie Pan, S. Cao, X. Pei","doi":"10.1007/s11465-022-0739-6","DOIUrl":"https://doi.org/10.1007/s11465-022-0739-6","url":null,"abstract":"","PeriodicalId":48635,"journal":{"name":"Frontiers of Mechanical Engineering","volume":"18 1","pages":"1-17"},"PeriodicalIF":4.5,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46055852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-17DOI: 10.1007/s11465-022-0737-8
Hongsheng Sheng, Jinghua Xu, Shuyou Zhang, Jianrong Tan, Kang Wang
{"title":"Build orientation determination of multi-feature mechanical parts in selective laser melting via multi-objective decision making","authors":"Hongsheng Sheng, Jinghua Xu, Shuyou Zhang, Jianrong Tan, Kang Wang","doi":"10.1007/s11465-022-0737-8","DOIUrl":"https://doi.org/10.1007/s11465-022-0737-8","url":null,"abstract":"","PeriodicalId":48635,"journal":{"name":"Frontiers of Mechanical Engineering","volume":"18 1","pages":"1-25"},"PeriodicalIF":4.5,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48415784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}