Pub Date : 2024-01-01DOI: 10.1177/23312165241261480
Tal Honigman, Sharon L Cushing, Blake C Papsin, Susan Waltzman, Jennifer Woodard, Sara Neumann, Matthew B Fitzgerald, Karen A Gordon
This multi-center study examined the safety and effectiveness of cochlear implantation of children between 9 and 11 months of age. The intended impact was to support practice regarding candidacy assessment and prognostic counseling of pediatric cochlear implant candidates. Data in the clinical chart of children implanted at 9-11 months of age with Cochlear Ltd devices at five cochlear implant centers in the United States and Canada were included in analyses. The study included data from two cohorts implanted with one or two Nucleus devices during the periods of January 1, 2012-December 31, 2017 (Cohort 1, n = 83) or between January 1, 2018 and May 15, 2020 (Cohort 2, n = 50). Major adverse events (requiring another procedure/hospitalization) and minor adverse events (managed with medication alone or underwent an expected course of treatment that did not require surgery or hospitalization) out to 2 years post-implant were monitored and outcomes measured by audiometric thresholds and parent-reports on the IT-MAIS and LittlEARS questionnaires were collected. Results revealed 60 adverse events in 41 children and 227 ears implanted (26%) of which 14 major events occurred in 11 children; all were transitory and resolved. Improved hearing with cochlear implant use was shown in all outcome measures. Findings reveal that the procedure is safe for infants and that they show clear benefits of cochlear implantation including increased audibility and hearing development.
{"title":"Safety and Early Outcomes of Cochlear Implantation of Nucleus Devices in Infants: A Multi-Centre Study.","authors":"Tal Honigman, Sharon L Cushing, Blake C Papsin, Susan Waltzman, Jennifer Woodard, Sara Neumann, Matthew B Fitzgerald, Karen A Gordon","doi":"10.1177/23312165241261480","DOIUrl":"10.1177/23312165241261480","url":null,"abstract":"<p><p>This multi-center study examined the safety and effectiveness of cochlear implantation of children between 9 and 11 months of age. The intended impact was to support practice regarding candidacy assessment and prognostic counseling of pediatric cochlear implant candidates. Data in the clinical chart of children implanted at 9-11 months of age with Cochlear Ltd devices at five cochlear implant centers in the United States and Canada were included in analyses. The study included data from two cohorts implanted with one or two Nucleus devices during the periods of January 1, 2012-December 31, 2017 (Cohort 1, n = 83) or between January 1, 2018 and May 15, 2020 (Cohort 2, n = 50). Major adverse events (requiring another procedure/hospitalization) and minor adverse events (managed with medication alone or underwent an expected course of treatment that did not require surgery or hospitalization) out to 2 years post-implant were monitored and outcomes measured by audiometric thresholds and parent-reports on the IT-MAIS and LittlEARS questionnaires were collected. Results revealed 60 adverse events in 41 children and 227 ears implanted (26%) of which 14 major events occurred in 11 children; all were transitory and resolved. Improved hearing with cochlear implant use was shown in all outcome measures. Findings reveal that the procedure is safe for infants and that they show clear benefits of cochlear implantation including increased audibility and hearing development.</p>","PeriodicalId":48678,"journal":{"name":"Trends in Hearing","volume":"28 ","pages":"23312165241261480"},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11185016/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141421496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study investigates the effect of spatial release from masking (SRM) in bilateral bone conduction (BC) stimulation at the mastoid. Nine adults with normal hearing were tested to determine SRM based on speech recognition thresholds (SRTs) in simulated spatial configurations ranging from 0 to 180 degrees. These configurations were based on nonindividualized head-related transfer functions. The participants were subjected to sound stimulation through either air conduction (AC) via headphones or BC. The results indicated that both the angular separation between the target and the masker, and the modality of sound stimulation, significantly influenced speech recognition performance. As the angular separation between the target and the masker increased up to 150°, both BC and AC SRTs decreased, indicating improved performance. However, performance slightly deteriorated when the angular separation exceeded 150°. For spatial separations less than 75°, BC stimulation provided greater spatial benefits than AC, although this difference was not statistically significant. For separations greater than 75°, AC stimulation offered significantly more spatial benefits than BC. When speech and noise originated from the same side of the head, the "better ear effect" did not significantly contribute to SRM. However, when speech and noise were located on opposite sides of the head, this effect became dominant in SRM.
本研究调查了在乳突处进行双侧骨传导(BC)刺激时,掩蔽的空间释放(SRM)效果。九名听力正常的成年人接受了测试,以确定在 0 到 180 度的模拟空间配置中基于语音识别阈值 (SRT) 的 SRM。这些配置基于非个性化的头部相关传递函数。参与者通过耳机或 BC 接受空气传导(AC)的声音刺激。结果表明,目标和掩蔽者之间的角度间隔以及声音刺激方式都会对语音识别成绩产生显著影响。当目标与掩蔽者之间的角度间隔增加到 150°时,BC 和 AC SRT 均下降,表明语音识别能力有所提高。但是,当角度间隔超过 150° 时,语音识别能力略有下降。当空间间隔小于 75°时,BC 刺激比 AC 刺激带来的空间益处更大,尽管这种差异在统计学上并不显著。当空间间隔大于 75°时,交流刺激的空间效益明显高于 BC。当语音和噪声来自头部的同一侧时,"顺耳效应 "对 SRM 的影响不大。然而,当语言和噪声位于头部的两侧时,这种效应在 SRM 中变得占主导地位。
{"title":"Spatial Release From Masking With Bilateral Bone Conduction Stimulation at Mastoid for Normal Hearing Subjects.","authors":"Jie Wang, Sijia Xie, Stefan Stenfelt, Huali Zhou, Xiaoya Wang, Jinqiu Sang","doi":"10.1177/23312165241234202","DOIUrl":"10.1177/23312165241234202","url":null,"abstract":"<p><p>This study investigates the effect of spatial release from masking (SRM) in bilateral bone conduction (BC) stimulation at the mastoid. Nine adults with normal hearing were tested to determine SRM based on speech recognition thresholds (SRTs) in simulated spatial configurations ranging from 0 to 180 degrees. These configurations were based on nonindividualized head-related transfer functions. The participants were subjected to sound stimulation through either air conduction (AC) via headphones or BC. The results indicated that both the angular separation between the target and the masker, and the modality of sound stimulation, significantly influenced speech recognition performance. As the angular separation between the target and the masker increased up to 150°, both BC and AC SRTs decreased, indicating improved performance. However, performance slightly deteriorated when the angular separation exceeded 150°. For spatial separations less than 75°, BC stimulation provided greater spatial benefits than AC, although this difference was not statistically significant. For separations greater than 75°, AC stimulation offered significantly more spatial benefits than BC. When speech and noise originated from the same side of the head, the \"better ear effect\" did not significantly contribute to SRM. However, when speech and noise were located on opposite sides of the head, this effect became dominant in SRM.</p>","PeriodicalId":48678,"journal":{"name":"Trends in Hearing","volume":"28 ","pages":"23312165241234202"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10981249/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140319549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1177/23312165241286742
Rebecca C Felsheim, Mathias Dietz
Most neural models produce a spiking output and often represent the stochastic nature of the spike generation process via a stochastic output. Nonspiking neural models, on the other hand, predict the probability of a spike occurring in response to a stimulus. We propose a nonspiking model for an electrically stimulated auditory nerve fiber, which not only predicts the total probability of a spike occurring in response to a biphasic pulse but also the distribution of the spike time. Our adaptive leaky-integrate and firing probability (aLIFP) model can account for refractoriness, facilitation, accommodation, and long-term adaptation. All model parameters have been fitted to single cell recordings from electrically stimulated cat auditory nerve fibers. Afterward, the model was validated on recordings from auditory nerve fibers from cats and guinea pigs. The nonspiking nature of the model makes it fast and deterministic while still accounting for the stochastic nature of the spike generation process. Therefore, the relationship between the input to the model or model parameters and the model's output can be observed more directly than with stochastically spiking models.
{"title":"An Adaptive Leaky-Integrate and Firing Probability Model of an Electrically Stimulated Auditory Nerve Fiber.","authors":"Rebecca C Felsheim, Mathias Dietz","doi":"10.1177/23312165241286742","DOIUrl":"10.1177/23312165241286742","url":null,"abstract":"<p><p>Most neural models produce a spiking output and often represent the stochastic nature of the spike generation process via a stochastic output. Nonspiking neural models, on the other hand, predict the probability of a spike occurring in response to a stimulus. We propose a nonspiking model for an electrically stimulated auditory nerve fiber, which not only predicts the total probability of a spike occurring in response to a biphasic pulse but also the distribution of the spike time. Our adaptive leaky-integrate and firing probability (aLIFP) model can account for refractoriness, facilitation, accommodation, and long-term adaptation. All model parameters have been fitted to single cell recordings from electrically stimulated cat auditory nerve fibers. Afterward, the model was validated on recordings from auditory nerve fibers from cats and guinea pigs. The nonspiking nature of the model makes it fast and deterministic while still accounting for the stochastic nature of the spike generation process. Therefore, the relationship between the input to the model or model parameters and the model's output can be observed more directly than with stochastically spiking models.</p>","PeriodicalId":48678,"journal":{"name":"Trends in Hearing","volume":"28 ","pages":"23312165241286742"},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536406/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Subjective reports indicate that hearing aids can disrupt sound externalization and/or reduce the perceived distance of sounds. Here we conducted an experiment to explore this phenomenon and to quantify how frequently it occurs for different hearing-aid styles. Of particular interest were the effects of microphone position (behind the ear vs. in the ear) and dome type (closed vs. open). Participants were young adults with normal hearing or with bilateral hearing loss, who were fitted with hearing aids that allowed variations in the microphone position and the dome type. They were seated in a large sound-treated booth and presented with monosyllabic words from loudspeakers at a distance of 1.5 m. Their task was to rate the perceived externalization of each word using a rating scale that ranged from 10 (at the loudspeaker in front) to 0 (in the head) to -10 (behind the listener). On average, compared to unaided listening, hearing aids tended to reduce perceived distance and lead to more in-the-head responses. This was especially true for closed domes in combination with behind-the-ear microphones. The behavioral data along with acoustical recordings made in the ear canals of a manikin suggest that increased low-frequency ear-canal levels (with closed domes) and ambiguous spatial cues (with behind-the-ear microphones) may both contribute to breakdowns of externalization.
{"title":"Externalization of Speech When Listening With Hearing Aids.","authors":"Virginia Best, Elin Roverud","doi":"10.1177/23312165241229572","DOIUrl":"10.1177/23312165241229572","url":null,"abstract":"<p><p>Subjective reports indicate that hearing aids can disrupt sound externalization and/or reduce the perceived distance of sounds. Here we conducted an experiment to explore this phenomenon and to quantify how frequently it occurs for different hearing-aid styles. Of particular interest were the effects of microphone position (behind the ear vs. in the ear) and dome type (closed vs. open). Participants were young adults with normal hearing or with bilateral hearing loss, who were fitted with hearing aids that allowed variations in the microphone position and the dome type. They were seated in a large sound-treated booth and presented with monosyllabic words from loudspeakers at a distance of 1.5 m. Their task was to rate the perceived externalization of each word using a rating scale that ranged from 10 (at the loudspeaker in front) to 0 (in the head) to -10 (behind the listener). On average, compared to unaided listening, hearing aids tended to reduce perceived distance and lead to more in-the-head responses. This was especially true for closed domes in combination with behind-the-ear microphones. The behavioral data along with acoustical recordings made in the ear canals of a manikin suggest that increased low-frequency ear-canal levels (with closed domes) and ambiguous spatial cues (with behind-the-ear microphones) may both contribute to breakdowns of externalization.</p>","PeriodicalId":48678,"journal":{"name":"Trends in Hearing","volume":"28 ","pages":"23312165241229572"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10865954/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139724586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1177/23312165241263485
Dana Cherri, David A Eddins, Erol J Ozmeral
Older adults with normal hearing or with age-related hearing loss face challenges when listening to speech in noisy environments. To better serve individuals with communication difficulties, precision diagnostics are needed to characterize individuals' auditory perceptual and cognitive abilities beyond pure tone thresholds. These abilities can be heterogenous across individuals within the same population. The goal of the present study is to consider the suprathreshold variability and develop characteristic profiles for older adults with normal hearing (ONH) and with hearing loss (OHL). Auditory perceptual and cognitive abilities were tested on ONH (n = 20) and OHL (n = 20) on an abbreviated test battery using portable automated rapid testing. Using cluster analyses, three main profiles were revealed for each group, showing differences in auditory perceptual and cognitive abilities despite similar audiometric thresholds. Analysis of variance showed that ONH profiles differed in spatial release from masking, speech-in-babble testing, cognition, tone-in-noise, and binaural temporal processing abilities. The OHL profiles differed in spatial release from masking, speech-in-babble testing, cognition, and tolerance to background noise performance. Correlation analyses showed significant relationships between auditory and cognitive abilities in both groups. This study showed that auditory perceptual and cognitive deficits can be present to varying degrees in the presence of audiometrically normal hearing and among listeners with similar degrees of hearing loss. The results of this study inform the need for taking individual differences into consideration and developing targeted intervention options beyond pure tone thresholds and speech testing.
{"title":"A Step Toward Precision Audiology: Individual Differences and Characteristic Profiles From Auditory Perceptual and Cognitive Abilities.","authors":"Dana Cherri, David A Eddins, Erol J Ozmeral","doi":"10.1177/23312165241263485","DOIUrl":"10.1177/23312165241263485","url":null,"abstract":"<p><p>Older adults with normal hearing or with age-related hearing loss face challenges when listening to speech in noisy environments. To better serve individuals with communication difficulties, precision diagnostics are needed to characterize individuals' auditory perceptual and cognitive abilities beyond pure tone thresholds. These abilities can be heterogenous across individuals within the same population. The goal of the present study is to consider the suprathreshold variability and develop characteristic profiles for older adults with normal hearing (ONH) and with hearing loss (OHL). Auditory perceptual and cognitive abilities were tested on ONH (<i>n</i> = 20) and OHL (<i>n</i> = 20) on an abbreviated test battery using portable automated rapid testing. Using cluster analyses, three main profiles were revealed for each group, showing differences in auditory perceptual and cognitive abilities despite similar audiometric thresholds. Analysis of variance showed that ONH profiles differed in spatial release from masking, speech-in-babble testing, cognition, tone-in-noise, and binaural temporal processing abilities. The OHL profiles differed in spatial release from masking, speech-in-babble testing, cognition, and tolerance to background noise performance. Correlation analyses showed significant relationships between auditory and cognitive abilities in both groups. This study showed that auditory perceptual and cognitive deficits can be present to varying degrees in the presence of audiometrically normal hearing and among listeners with similar degrees of hearing loss. The results of this study inform the need for taking individual differences into consideration and developing targeted intervention options beyond pure tone thresholds and speech testing.</p>","PeriodicalId":48678,"journal":{"name":"Trends in Hearing","volume":"28 ","pages":"23312165241263485"},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301744/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141890636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1177/23312165241292215
Stefanie E Kuchinsky, Frederick J Gallun, Adrian K C Lee
People regularly communicate in complex environments, requiring them to flexibly shift their attention across multiple sources of sensory information. Increasing recruitment of the executive functions that support successful speech comprehension in these multitasking settings is thought to contribute to the sense of effort that listeners often experience. One common research method employed to quantify listening effort is the dual-task paradigm in which individuals recognize speech and concurrently perform a secondary (often visual) task. Effort is operationalized as performance decrements on the secondary task as speech processing demands increase. However, recent reviews have noted critical inconsistencies in the results of dual-task experiments, likely in part due to how and when the two tasks place demands on a common set of mental resources and how flexibly individuals can allocate their attention to them. We propose that in order to move forward to address this gap, we need to first look backward: better integrating theoretical models of resource capacity and allocation as well as of task-switching that have been historically developed in domains outside of hearing research (viz., cognitive psychology and neuroscience). With this context in mind, we describe how dual-task experiments could be designed and interpreted such that they provide better and more robust insights into the mechanisms that contribute to effortful listening.
{"title":"Note on the Dual-Task Paradigm and its Use to Measure Listening Effort.","authors":"Stefanie E Kuchinsky, Frederick J Gallun, Adrian K C Lee","doi":"10.1177/23312165241292215","DOIUrl":"10.1177/23312165241292215","url":null,"abstract":"<p><p>People regularly communicate in complex environments, requiring them to flexibly shift their attention across multiple sources of sensory information. Increasing recruitment of the executive functions that support successful speech comprehension in these multitasking settings is thought to contribute to the sense of effort that listeners often experience. One common research method employed to quantify listening effort is the dual-task paradigm in which individuals recognize speech and concurrently perform a secondary (often visual) task. Effort is operationalized as performance decrements on the secondary task as speech processing demands increase. However, recent reviews have noted critical inconsistencies in the results of dual-task experiments, likely in part due to how and when the two tasks place demands on a common set of mental resources and how flexibly individuals can allocate their attention to them. We propose that in order to move forward to address this gap, we need to first look backward: better integrating theoretical models of resource capacity and allocation as well as of task-switching that have been historically developed in domains outside of hearing research (viz., cognitive psychology and neuroscience). With this context in mind, we describe how dual-task experiments could be designed and interpreted such that they provide better and more robust insights into the mechanisms that contribute to effortful listening.</p>","PeriodicalId":48678,"journal":{"name":"Trends in Hearing","volume":"28 ","pages":"23312165241292215"},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11626669/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142548411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recent studies suggest that sound amplification via hearing aids can improve postural control in adults with hearing impairments. Unfortunately, only a few studies used well-defined posturography measures to assess balance in adults with hearing loss with and without their hearing aids. Of these, only two examined postural control specifically in the elderly with hearing loss. The present study examined the impact of hearing aid use on postural control during various sensory perturbations in older adults with age-related hearing loss. Thirty individuals with age-related hearing impairments and using hearing aids bilaterally were tested. Participants were asked to perform a modified clinical sensory integration in balance test on a force platform with and without hearing aids. The experiment was conducted in the presence of a broadband noise ranging from 0.1 to 4 kHz presented through a loudspeaker. As expected, hearing aid use had a beneficial impact on postural control, but only when visual and somatosensory inputs were both reduced. Data also suggest that hearing aid use decreases the dependence on somatosensory input for maintaining postural control. This finding can be of particular importance in older adults considering the reduction of tactile and proprioceptive sensitivity and acuity often associated with aging. These results provide an additional argument for encouraging early hearing aid fitting for people with hearing loss.
{"title":"Hearing Aid Amplification Improves Postural Control for Older Adults With Hearing Loss When Other Sensory Cues Are Impoverished.","authors":"L Behtani, D Paromov, K Moïn-Darbari, M S Houde, B A Bacon, M Maheu, T Leroux, F Champoux","doi":"10.1177/23312165241232219","DOIUrl":"10.1177/23312165241232219","url":null,"abstract":"<p><p>Recent studies suggest that sound amplification via hearing aids can improve postural control in adults with hearing impairments. Unfortunately, only a few studies used well-defined posturography measures to assess balance in adults with hearing loss with and without their hearing aids. Of these, only two examined postural control specifically in the elderly with hearing loss. The present study examined the impact of hearing aid use on postural control during various sensory perturbations in older adults with age-related hearing loss. Thirty individuals with age-related hearing impairments and using hearing aids bilaterally were tested. Participants were asked to perform a modified clinical sensory integration in balance test on a force platform with and without hearing aids. The experiment was conducted in the presence of a broadband noise ranging from 0.1 to 4 kHz presented through a loudspeaker. As expected, hearing aid use had a beneficial impact on postural control, but only when visual and somatosensory inputs were both reduced. Data also suggest that hearing aid use decreases the dependence on somatosensory input for maintaining postural control. This finding can be of particular importance in older adults considering the reduction of tactile and proprioceptive sensitivity and acuity often associated with aging. These results provide an additional argument for encouraging early hearing aid fitting for people with hearing loss.</p>","PeriodicalId":48678,"journal":{"name":"Trends in Hearing","volume":"28 ","pages":"23312165241232219"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10868491/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139736482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cochlear implantation successfully improves hearing in most adult recipients. However, in rare cases, post-implant rehabilitation is required to maximize benefit. The primary aim of this investigation was to test if self-reports by cochlear implant users indicate the need for post-implant rehabilitation. Listening performance was assessed with the Speech, Spatial and Qualities short-form SSQ12, which was self-administered via a web-based survey. Subjects included over 2000 adult bilateral or unilateral cochlear implant users with at least one year of experience. A novel application of regression tree analysis identified core SSQ12 items that serve as first steps in establishing a plan for further rehabilitation: items 1, 8, and 11 dealing with single-talker situations, loudness perception, and clarity, respectively. Further regression and classification tree analyses revealed that SSQ12 item scores were weakly related to age, degree of tinnitus, and use of bilateral versus unilateral implants. Conversely, SSQ12 scores were strongly associated with self-rated satisfaction and confidence in using their cochlear implant. The SSQ12 total scores did not vary significantly over 1-9 or more years' experience. These findings suggest that the SSQ12 may be a useful tool to guide rehabilitation at any time after cochlear implantation. Identification of poor performance may have implications for timely management to improve the outcomes, through various techniques such as device fitting adjustments, counseling, active sound exposure, and training spatial hearing.
{"title":"Relationships Between Speech, Spatial and Qualities of Hearing Short Form SSQ12 Item Scores and their Use in Guiding Rehabilitation for Cochlear Implant Recipients.","authors":"Dianne J Mecklenburg, Petra L Graham, Chris J James","doi":"10.1177/23312165231224643","DOIUrl":"10.1177/23312165231224643","url":null,"abstract":"<p><p>Cochlear implantation successfully improves hearing in most adult recipients. However, in rare cases, post-implant rehabilitation is required to maximize benefit. The primary aim of this investigation was to test if self-reports by cochlear implant users indicate the need for post-implant rehabilitation. Listening performance was assessed with the Speech, Spatial and Qualities short-form SSQ12, which was self-administered via a web-based survey. Subjects included over 2000 adult bilateral or unilateral cochlear implant users with at least one year of experience. A novel application of regression tree analysis identified core SSQ12 items that serve as first steps in establishing a plan for further rehabilitation: items 1, 8, and 11 dealing with single-talker situations, loudness perception, and clarity, respectively. Further regression and classification tree analyses revealed that SSQ12 item scores were weakly related to age, degree of tinnitus, and use of bilateral versus unilateral implants. Conversely, SSQ12 scores were strongly associated with self-rated satisfaction and confidence in using their cochlear implant. The SSQ12 total scores did not vary significantly over 1-9 or more years' experience. These findings suggest that the SSQ12 may be a useful tool to guide rehabilitation at any time after cochlear implantation. Identification of poor performance may have implications for timely management to improve the outcomes, through various techniques such as device fitting adjustments, counseling, active sound exposure, and training spatial hearing.</p>","PeriodicalId":48678,"journal":{"name":"Trends in Hearing","volume":"28 ","pages":"23312165231224643"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10874150/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1177/23312165231224597
Michal Fereczkowski, Raul H Sanchez-Lopez, Stine Christiansen, Tobias Neher
Hearing aids provide nonlinear amplification to improve speech audibility and loudness perception. While more audibility typically increases speech intelligibility at low levels, the same is not true for above-conversational levels, where decreases in intelligibility ("rollover") can occur. In a previous study, we found rollover in speech intelligibility measurements made in quiet for 35 out of 74 test ears with a hearing loss. Furthermore, we found rollover occurrence in quiet to be associated with poorer speech intelligibility in noise as measured with linear amplification. Here, we retested 16 participants with rollover with three amplitude-compression settings. Two were designed to prevent rollover by applying slow- or fast-acting compression with a 5:1 compression ratio around the "sweet spot," that is, the area in an individual performance-intensity function with high intelligibility and listening comfort. The third, reference setting used gains and compression ratios prescribed by the "National Acoustic Laboratories Non-Linear 1" rule. Speech intelligibility was assessed in quiet and in noise. Pairwise preference judgments were also collected. For speech levels of 70 dB SPL and above, slow-acting sweet-spot compression gave better intelligibility in quiet and noise than the reference setting. Additionally, the participants clearly preferred slow-acting sweet-spot compression over the other settings. At lower levels, the three settings gave comparable speech intelligibility, and the participants preferred the reference setting over both sweet-spot settings. Overall, these results suggest that, for listeners with rollover, slow-acting sweet-spot compression is beneficial at 70 dB SPL and above, while at lower levels clinically established gain targets are more suited.
{"title":"Amplitude Compression for Preventing Rollover at Above-Conversational Speech Levels.","authors":"Michal Fereczkowski, Raul H Sanchez-Lopez, Stine Christiansen, Tobias Neher","doi":"10.1177/23312165231224597","DOIUrl":"10.1177/23312165231224597","url":null,"abstract":"<p><p>Hearing aids provide nonlinear amplification to improve speech audibility and loudness perception. While more audibility typically increases speech intelligibility at low levels, the same is not true for above-conversational levels, where decreases in intelligibility (\"rollover\") can occur. In a previous study, we found rollover in speech intelligibility measurements made in quiet for 35 out of 74 test ears with a hearing loss. Furthermore, we found rollover occurrence in quiet to be associated with poorer speech intelligibility in noise as measured with linear amplification. Here, we retested 16 participants with rollover with three amplitude-compression settings. Two were designed to prevent rollover by applying slow- or fast-acting compression with a 5:1 compression ratio around the \"sweet spot,\" that is, the area in an individual performance-intensity function with high intelligibility and listening comfort. The third, reference setting used gains and compression ratios prescribed by the \"National Acoustic Laboratories Non-Linear 1\" rule. Speech intelligibility was assessed in quiet and in noise. Pairwise preference judgments were also collected. For speech levels of 70 dB SPL and above, slow-acting sweet-spot compression gave better intelligibility in quiet and noise than the reference setting. Additionally, the participants clearly preferred slow-acting sweet-spot compression over the other settings. At lower levels, the three settings gave comparable speech intelligibility, and the participants preferred the reference setting over both sweet-spot settings. Overall, these results suggest that, for listeners with rollover, slow-acting sweet-spot compression is beneficial at 70 dB SPL and above, while at lower levels clinically established gain targets are more suited.</p>","PeriodicalId":48678,"journal":{"name":"Trends in Hearing","volume":"28 ","pages":"23312165231224597"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10771052/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139099037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cochlear synaptopathy, a form of cochlear deafferentation, has been demonstrated in a number of animal species, including non-human primates. Both age and noise exposure contribute to synaptopathy in animal models, indicating that it may be a common type of auditory dysfunction in humans. Temporal bone and auditory physiological data suggest that age and occupational/military noise exposure also lead to synaptopathy in humans. The predicted perceptual consequences of synaptopathy include tinnitus, hyperacusis, and difficulty with speech-in-noise perception. However, confirming the perceptual impacts of this form of cochlear deafferentation presents a particular challenge because synaptopathy can only be confirmed through post-mortem temporal bone analysis and auditory perception is difficult to evaluate in animals. Animal data suggest that deafferentation leads to increased central gain, signs of tinnitus and abnormal loudness perception, and deficits in temporal processing and signal-in-noise detection. If equivalent changes occur in humans following deafferentation, this would be expected to increase the likelihood of developing tinnitus, hyperacusis, and difficulty with speech-in-noise perception. Physiological data from humans is consistent with the hypothesis that deafferentation is associated with increased central gain and a greater likelihood of tinnitus perception, while human data on the relationship between deafferentation and hyperacusis is extremely limited. Many human studies have investigated the relationship between physiological correlates of deafferentation and difficulty with speech-in-noise perception, with mixed findings. A non-linear relationship between deafferentation and speech perception may have contributed to the mixed results. When differences in sample characteristics and study measurements are considered, the findings may be more consistent.
{"title":"Perceptual Consequences of Cochlear Deafferentation in Humans.","authors":"Naomi F Bramhall, Garnett P McMillan","doi":"10.1177/23312165241239541","DOIUrl":"10.1177/23312165241239541","url":null,"abstract":"<p><p>Cochlear synaptopathy, a form of cochlear deafferentation, has been demonstrated in a number of animal species, including non-human primates. Both age and noise exposure contribute to synaptopathy in animal models, indicating that it may be a common type of auditory dysfunction in humans. Temporal bone and auditory physiological data suggest that age and occupational/military noise exposure also lead to synaptopathy in humans. The predicted perceptual consequences of synaptopathy include tinnitus, hyperacusis, and difficulty with speech-in-noise perception. However, confirming the perceptual impacts of this form of cochlear deafferentation presents a particular challenge because synaptopathy can only be confirmed through post-mortem temporal bone analysis and auditory perception is difficult to evaluate in animals. Animal data suggest that deafferentation leads to increased central gain, signs of tinnitus and abnormal loudness perception, and deficits in temporal processing and signal-in-noise detection. If equivalent changes occur in humans following deafferentation, this would be expected to increase the likelihood of developing tinnitus, hyperacusis, and difficulty with speech-in-noise perception. Physiological data from humans is consistent with the hypothesis that deafferentation is associated with increased central gain and a greater likelihood of tinnitus perception, while human data on the relationship between deafferentation and hyperacusis is extremely limited. Many human studies have investigated the relationship between physiological correlates of deafferentation and difficulty with speech-in-noise perception, with mixed findings. A non-linear relationship between deafferentation and speech perception may have contributed to the mixed results. When differences in sample characteristics and study measurements are considered, the findings may be more consistent.</p>","PeriodicalId":48678,"journal":{"name":"Trends in Hearing","volume":"28 ","pages":"23312165241239541"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11092548/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140913237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}