首页 > 最新文献

Biodegradation最新文献

英文 中文
Differences among active toluene-degrading microbial communities in farmland soils with different levels of heavy metal pollution 不同重金属污染水平农田土壤中活性甲苯降解微生物群落的差异。
IF 3.1 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-10-17 DOI: 10.1007/s10532-023-10057-y
Fei Dou, Yundang Wu, Jibing Li, Chuanping Liu

Heavy metals can severely influence the mineralisation of organic pollutants in a compound-polluted environment. However, to date, no study has focused on the effects of heavy metals on the active organic pollutant-degrading microbial communities to understand the bioremediation mechanism. In this study, toluene was used as the model organic pollutant to explore the effects of soils with different levels of heavy metal pollution on organic contaminant degradation in the same area via stable isotope probing (SIP) and 16 S rRNA high-throughput sequencing. Heavy metals can seriously affect toluene biodegradation and regulate the abundance and diversity of microbial communities. SIP revealed a drastic difference in the community structure of active toluene degraders between the unpolluted and heavy metal-polluted soils. All SIP-identified degraders were assigned to nine bacterial classes, among which Alphaproteobacteria, Gammaproteobacteria, and Bacilli were shared by both treatments. Among all active degraders, Nitrospira, Nocardioides, Conexibacteraceae, and Singulisphaera were linked to toluene biodegradation for the first time. Notably, the type of active degrader and microbial diversity were strongly related to biodegradation efficiency, indicating their key role in toluene biodegradation. Overall, heavy metals can affect the microbial diversity and alter the functional microbial communities in soil, thereby influencing the removal efficiency of organic contaminants. Our findings provide novel insights into the biodegradation mechanism of organic pollutants in heavy metal-polluted soils and highlight the biodiversity of microbes involved in toluene biodegradation in compound-polluted environments.

在复合污染环境中,重金属会严重影响有机污染物的矿化。然而,到目前为止,还没有研究重金属对活性有机污染物降解微生物群落的影响,以了解其生物修复机制。本研究以甲苯为模型有机污染物,通过稳定同位素探测(SIP)和16S rRNA高通量测序,探讨不同重金属污染水平的土壤对同一地区有机污染物降解的影响。重金属会严重影响甲苯的生物降解,并调节微生物群落的丰度和多样性。SIP表明,未污染土壤和重金属污染土壤中活性甲苯降解菌的群落结构存在显著差异。所有SIP鉴定的降解菌被分为九个细菌类别,其中α-变形菌、γ-变形菌和芽孢杆菌为两种处理共用。在所有活性降解菌中,硝化螺旋菌、类诺卡氏菌、Conexibacteraceae和Singulisphaera首次与甲苯生物降解有关。值得注意的是,活性降解剂的类型和微生物多样性与生物降解效率密切相关,表明它们在甲苯生物降解中起着关键作用。总的来说,重金属会影响微生物多样性,改变土壤中的功能微生物群落,从而影响有机污染物的去除效率。我们的发现为重金属污染土壤中有机污染物的生物降解机制提供了新的见解,并突出了在复合污染环境中参与甲苯生物降解的微生物的生物多样性。
{"title":"Differences among active toluene-degrading microbial communities in farmland soils with different levels of heavy metal pollution","authors":"Fei Dou,&nbsp;Yundang Wu,&nbsp;Jibing Li,&nbsp;Chuanping Liu","doi":"10.1007/s10532-023-10057-y","DOIUrl":"10.1007/s10532-023-10057-y","url":null,"abstract":"<div><p>Heavy metals can severely influence the mineralisation of organic pollutants in a compound-polluted environment. However, to date, no study has focused on the effects of heavy metals on the active organic pollutant-degrading microbial communities to understand the bioremediation mechanism. In this study, toluene was used as the model organic pollutant to explore the effects of soils with different levels of heavy metal pollution on organic contaminant degradation in the same area via stable isotope probing (SIP) and 16 S rRNA high-throughput sequencing. Heavy metals can seriously affect toluene biodegradation and regulate the abundance and diversity of microbial communities. SIP revealed a drastic difference in the community structure of active toluene degraders between the unpolluted and heavy metal-polluted soils. All SIP-identified degraders were assigned to nine bacterial classes, among which Alphaproteobacteria, Gammaproteobacteria, and Bacilli were shared by both treatments. Among all active degraders, <i>Nitrospira</i>, <i>Nocardioides</i>, <i>Conexibacteraceae</i>, and <i>Singulisphaera</i> were linked to toluene biodegradation for the first time. Notably, the type of active degrader and microbial diversity were strongly related to biodegradation efficiency, indicating their key role in toluene biodegradation. Overall, heavy metals can affect the microbial diversity and alter the functional microbial communities in soil, thereby influencing the removal efficiency of organic contaminants. Our findings provide novel insights into the biodegradation mechanism of organic pollutants in heavy metal-polluted soils and highlight the biodiversity of microbes involved in toluene biodegradation in compound-polluted environments.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"35 3","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41231379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degradation of multiple PAHs and co-contaminants by microbial consortia and their toxicity assessment 微生物群落对多种多环芳烃和共污染物的降解及其毒性评估。
IF 3.1 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-10-04 DOI: 10.1007/s10532-023-10055-0
Arfin Imam, Sunil Kumar Suman, Sonpal Vasavdutta, Shruti Chatterjee, Bhanu Prasad Vempatapu, Anjan Ray, Pankaj K. Kanaujia

The anthropogenic activities toward meeting the energy requirements have resulted in an alarming rise in environmental pollution levels. Among pollutants, polycyclic aromatic hydrocarbons (PAHs) are the most predominant due to their persistent and toxic nature. Amidst the several pollutants depuration methods, bioremediation utilizing biodegradation is the most viable alternative. This study investigated the biodegradation efficacy using developed microbial consortium PBR-21 for 2–4 ringed PAHs named naphthalene (NAP), anthracene (ANT), fluorene (FLU), and pyrene (PYR). The removal efficiency was observed up to 100 ± 0.0%, 70.26 ± 4.2%, 64.23 ± 2.3%, and 61.50 ± 2.6%, respectively, for initial concentrations of 400 mg L−1 for NAP, ANT, FLU, and PYR respectively. Degradation followed first-order kinetics with rate constants of 0.39 d−1, 0.10 d−1, 0.08 d−1, and 0.07 d−1 and half-life (left({t}_{1/2}right)) of 1.8 h, 7.2 h, 8.5 h, and 10 h, respectively. The microbial consortia were found to be efficient towards the co-contaminants with 1 mM concentration. Toxicity examination indicated that microbial-treated PAHs resulted in lesser toxicity in aquatic crustaceans (Artemia salina) than untreated PAHs. Also, the study suggests that indigenous microbial consortia PBR-21 has the potential to be used in the bioremediation of PAH-contaminated environment.

Graphical abstract

为满足能源需求而进行的人为活动导致了环境污染水平的惊人上升。在污染物中,多环芳烃(PAHs)是最主要的污染物,因为它们具有持久性和毒性。在几种污染物净化方法中,利用生物降解进行生物修复是最可行的选择。本研究使用已开发的微生物群落PBR-21研究了萘(NAP)、蒽(ANT)、芴(FLU)和芘(PYR)对2-4种环状多环芳烃的生物降解效果。观察到去除效率高达100 ± 0.0%,70.26 ± 4.2%,64.23 ± 2.3%和61.50 ± NAP、ANT、FLU和PYR的初始浓度为400 mg L-1时,分别为2.6%。降解遵循一级动力学,速率常数分别为0.39d-1、0.10d-1、0.08d-1和0.07d-1,半衰期[公式:见正文]分别为1.8h、7.2h、8.5h和10h。发现微生物群落对1mM浓度的共污染物是有效的。毒性检查表明,微生物处理的PAHs对水生甲壳类动物(卤虫)的毒性比未处理的PAHs小。此外,该研究表明,本土微生物群落PBR-21有潜力用于多环芳烃污染环境的生物修复。
{"title":"Degradation of multiple PAHs and co-contaminants by microbial consortia and their toxicity assessment","authors":"Arfin Imam,&nbsp;Sunil Kumar Suman,&nbsp;Sonpal Vasavdutta,&nbsp;Shruti Chatterjee,&nbsp;Bhanu Prasad Vempatapu,&nbsp;Anjan Ray,&nbsp;Pankaj K. Kanaujia","doi":"10.1007/s10532-023-10055-0","DOIUrl":"10.1007/s10532-023-10055-0","url":null,"abstract":"<div><p>The anthropogenic activities toward meeting the energy requirements have resulted in an alarming rise in environmental pollution levels. Among pollutants, polycyclic aromatic hydrocarbons (PAHs) are the most predominant due to their persistent and toxic nature. Amidst the several pollutants depuration methods, bioremediation utilizing biodegradation is the most viable alternative. This study investigated the biodegradation efficacy using developed microbial consortium PBR-21 for 2–4 ringed PAHs named naphthalene (NAP), anthracene (ANT), fluorene (FLU), and pyrene (PYR). The removal efficiency was observed up to 100 ± 0.0%, 70.26 ± 4.2%, 64.23 ± 2.3%, and 61.50 ± 2.6%, respectively, for initial concentrations of 400 mg L<sup>−1</sup> for NAP, ANT, FLU, and PYR respectively. Degradation followed first-order kinetics with rate constants of 0.39 d<sup>−1</sup>, 0.10 d<sup>−1</sup>, 0.08 d<sup>−1</sup>, and 0.07 d<sup>−1</sup> and half-life <span>(left({t}_{1/2}right))</span> of 1.8 h, 7.2 h, 8.5 h, and 10 h, respectively. The microbial consortia were found to be efficient towards the co-contaminants with 1 mM concentration. Toxicity examination indicated that microbial-treated PAHs resulted in lesser toxicity in aquatic crustaceans (<i>Artemia salina</i>) than untreated PAHs. Also, the study suggests that indigenous microbial consortia PBR-21 has the potential to be used in the bioremediation of PAH-contaminated environment.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"35 3","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41104203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Investigating the biological degradation of the drug β-blocker atenolol from wastewater using the SBR 更正:利用 SBR 研究废水中药物 β 受体阻滞剂阿替洛尔的生物降解。
IF 3.1 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-09-11 DOI: 10.1007/s10532-023-10054-1
Reza Rezaei, Ali Ahmad Aghapour, Hassan Khorsandi
{"title":"Correction: Investigating the biological degradation of the drug β-blocker atenolol from wastewater using the SBR","authors":"Reza Rezaei,&nbsp;Ali Ahmad Aghapour,&nbsp;Hassan Khorsandi","doi":"10.1007/s10532-023-10054-1","DOIUrl":"10.1007/s10532-023-10054-1","url":null,"abstract":"","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"35 1","pages":"115 - 115"},"PeriodicalIF":3.1,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10258222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioaugmentation: an approach to biological treatment of pollutants 生物增殖:一种生物处理污染物的方法。
IF 3.1 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-09-09 DOI: 10.1007/s10532-023-10050-5
Dixita Chettri, Ashwani Kumar Verma, Anil Kumar Verma

Industrial development and the associated generation of waste requires attention for their management, treatment, and reduction without further degrading the quality of life. Microbes and plant-based bioremediation approaches are some of the sustainable strategies for the biodegradation of harmful pollutants instead of chemical-based treatment. Bioaugmentation is one such approach where microbial strains with the ability to degrade the targeted pollutant are introduced in a polluted environment. Harnessing of microbes from various locations, especially from the site of contamination (indigenous microbes), followed by optimization of the strains, inoculum size, media, and genetic engineering of the microbes along with a combination of strategies such as bio stimulation, phytoremediation is being applied to increase the efficiency of bioaugmentation. Further, bioaugmentation is influenced by various factors such as temperature, the composition of the pollutant, and microbial inoculum which needs to be considered for maximum efficiency of the treatment process. It has numerous advantages such as low cost, sustainability, and easy handling of the contaminants however, the major limitation of bioaugmentation is to increase the survival rate of the microbes involved in remediation for a longer duration in such a highly toxic environment. The review discusses these various aspects of bioaugmentation in brief for its large-scale implementation to address the global issue of pollution and environment management.

工业发展以及与之相关的废物产生需要关注其管理、处理和减少,以免进一步降低生活质量。以微生物和植物为基础的生物修复方法是替代化学处理方法对有害污染物进行生物降解的一些可持续战略。生物增殖就是这样一种方法,即在污染环境中引入具有降解目标污染物能力的微生物菌株。利用不同地点的微生物,特别是污染地点的微生物(本地微生物),然后优化菌株、接种物大小、培养基和微生物基因工程,再结合生物刺激、植物修复等策略,提高生物增效的效率。此外,生物增效还受到温度、污染物成分和微生物接种物等多种因素的影响,需要考虑这些因素才能最大限度地提高处理过程的效率。生物增量法具有成本低、可持续性强、易于处理污染物等诸多优点,但生物增量法的主要局限性在于如何提高参与修复的微生物的存活率,使其在剧毒环境中存活更长的时间。本综述简要讨论了生物增效的各个方面,以便大规模实施生物增效,解决全球污染和环境管理问题。
{"title":"Bioaugmentation: an approach to biological treatment of pollutants","authors":"Dixita Chettri,&nbsp;Ashwani Kumar Verma,&nbsp;Anil Kumar Verma","doi":"10.1007/s10532-023-10050-5","DOIUrl":"10.1007/s10532-023-10050-5","url":null,"abstract":"<div><p>Industrial development and the associated generation of waste requires attention for their management, treatment, and reduction without further degrading the quality of life. Microbes and plant-based bioremediation approaches are some of the sustainable strategies for the biodegradation of harmful pollutants instead of chemical-based treatment. Bioaugmentation is one such approach where microbial strains with the ability to degrade the targeted pollutant are introduced in a polluted environment. Harnessing of microbes from various locations, especially from the site of contamination (indigenous microbes), followed by optimization of the strains, inoculum size, media, and genetic engineering of the microbes along with a combination of strategies such as bio stimulation, phytoremediation is being applied to increase the efficiency of bioaugmentation. Further, bioaugmentation is influenced by various factors such as temperature, the composition of the pollutant, and microbial inoculum which needs to be considered for maximum efficiency of the treatment process. It has numerous advantages such as low cost, sustainability, and easy handling of the contaminants however, the major limitation of bioaugmentation is to increase the survival rate of the microbes involved in remediation for a longer duration in such a highly toxic environment. The review discusses these various aspects of bioaugmentation in brief for its large-scale implementation to address the global issue of pollution and environment management.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"35 2","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10190940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review of nomenclature and methods of analysis of polyethylene terephthalic acid hydrolyzing enzymes activity 聚对苯二甲酸水解酶活性的命名和分析方法综述。
IF 3.1 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-09-09 DOI: 10.1007/s10532-023-10048-z
Ruth Amanna, Sudip K. Rakshit

Enzymatic degradation of polyethylene terephthalic acid (PET) has been gaining increasing importance. This has resulted in a significant increase in the search for newer enzymes and the development of more efficient enzyme-based systems. Due to the lack of a standard screening process, screening new enzymes has relied on other assays to determine the presence of esterase activity. This, in turn, has led to various nomenclatures and methods used to describe them and measure their activity. Since all PET-hydrolyzing enzymes are α/β hydrolases, they catalyze a serine nucleophilic attack and cleave an ester bond. They are lipases, esterases, cutinases and hydrolases. This has been used interchangeably, leading to difficulties while comparing results and evaluating progress. This review discusses the varied enzyme nomenclature being adapted, the different assays and analysis methods reported, and the strategies used to increase PET-hydrolyzing enzyme efficiency. A section on the various ways to quantify PET hydrolysis is also covered.

聚对苯二甲酸乙二醇酯(PET)的酶降解越来越重要。因此,寻找新酶和开发更有效的酶基系统的工作大幅增加。由于缺乏标准筛选程序,筛选新酶一直依赖于其他检测方法来确定酯酶活性的存在。这反过来又导致了用于描述这些酶和测量其活性的各种命名和方法。由于所有 PET水解酶都是α/β水解酶,它们催化丝氨酸亲核攻击并裂解酯键。它们是脂肪酶、酯酶、角叉菜酶和水解酶。它们被交替使用,导致在比较结果和评估进展时遇到困难。本综述讨论了所采用的各种酶命名法、所报告的不同检测和分析方法,以及用于提高 PET水解酶效率的策略。此外,还介绍了量化 PET 水解的各种方法。
{"title":"Review of nomenclature and methods of analysis of polyethylene terephthalic acid hydrolyzing enzymes activity","authors":"Ruth Amanna,&nbsp;Sudip K. Rakshit","doi":"10.1007/s10532-023-10048-z","DOIUrl":"10.1007/s10532-023-10048-z","url":null,"abstract":"<div><p>Enzymatic degradation of polyethylene terephthalic acid (PET) has been gaining increasing importance. This has resulted in a significant increase in the search for newer enzymes and the development of more efficient enzyme-based systems. Due to the lack of a standard screening process, screening new enzymes has relied on other assays to determine the presence of esterase activity. This, in turn, has led to various nomenclatures and methods used to describe them and measure their activity. Since all PET-hydrolyzing enzymes are α/β hydrolases, they catalyze a serine nucleophilic attack and cleave an ester bond. They are lipases, esterases, cutinases and hydrolases. This has been used interchangeably, leading to difficulties while comparing results and evaluating progress. This review discusses the varied enzyme nomenclature being adapted, the different assays and analysis methods reported, and the strategies used to increase PET-hydrolyzing enzyme efficiency. A section on the various ways to quantify PET hydrolysis is also covered.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"35 4","pages":"341 - 360"},"PeriodicalIF":3.1,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10188202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Landfill leachate treatment using fungi and fungal enzymes: a review 利用真菌和真菌酶处理垃圾渗滤液:综述。
IF 3.1 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-09-09 DOI: 10.1007/s10532-023-10052-3
Anusree Nalladiyil, P. Sughosh, G. L. Sivakumar Babu, Sreenivasan Ramaswami

Landfill leachate raises a huge risk to human health and the environment as it contains a high concentration of organic and inorganic contaminants, heavy metals, ammonia, and refractory substances. Among leachate treatment techniques, the biological methods are more environmentally benign and less expensive than the physical–chemical treatment methods. Over the last few years, fungal-based treatment processes have become popular due to their ability to produce powerful oxidative enzymes like peroxidases and laccases. Fungi have shown better removal efficiency in terms of color, ammonia, and COD. However, their use in the treatment of leachate is relatively recent and still needs to be investigated. This review article assesses the potential of fungi and fungal-derived enzymes in treating landfill leachate. The review also compares different enzymes involved in the fungal catabolism of organic pollutants and the enzyme degradation mechanisms. The effect of parameters like pH, temperature, contact time, dosage variation, heavy metals and ammonia are discussed. The paper also explores the reactor configuration used in the fungal treatment and the techniques used to improve leachate treatment efficacy, like pretreatment and fungi immobilisation. Finally, the review summarises the limitations and the future direction of work required to adapt the fungal application for leachate treatment on a large scale.

垃圾填埋场沥滤液含有高浓度的有机和无机污染物、重金属、氨和难降解物质,对人类健康和环境构成巨大风险。在垃圾渗滤液处理技术中,生物处理法比物理化学处理法更环保,成本也更低。在过去几年中,基于真菌的处理工艺因其能够产生过氧化物酶和裂解酶等强大的氧化酶而变得流行起来。真菌对色度、氨氮和 COD 的去除效率更高。不过,真菌用于处理渗滤液的时间相对较短,仍有待研究。这篇综述文章评估了真菌和真菌衍生酶在处理垃圾填埋场沥滤液方面的潜力。该综述还比较了参与真菌分解有机污染物的不同酶以及酶的降解机制。还讨论了 pH 值、温度、接触时间、剂量变化、重金属和氨等参数的影响。论文还探讨了真菌处理中使用的反应器配置,以及用于提高渗滤液处理效果的技术,如预处理和真菌固定化。最后,论文总结了真菌大规模应用于渗滤液处理的局限性和未来工作方向。
{"title":"Landfill leachate treatment using fungi and fungal enzymes: a review","authors":"Anusree Nalladiyil,&nbsp;P. Sughosh,&nbsp;G. L. Sivakumar Babu,&nbsp;Sreenivasan Ramaswami","doi":"10.1007/s10532-023-10052-3","DOIUrl":"10.1007/s10532-023-10052-3","url":null,"abstract":"<div><p>Landfill leachate raises a huge risk to human health and the environment as it contains a high concentration of organic and inorganic contaminants, heavy metals, ammonia, and refractory substances. Among leachate treatment techniques, the biological methods are more environmentally benign and less expensive than the physical–chemical treatment methods. Over the last few years, fungal-based treatment processes have become popular due to their ability to produce powerful oxidative enzymes like peroxidases and laccases. Fungi have shown better removal efficiency in terms of color, ammonia, and COD. However, their use in the treatment of leachate is relatively recent and still needs to be investigated. This review article assesses the potential of fungi and fungal-derived enzymes in treating landfill leachate. The review also compares different enzymes involved in the fungal catabolism of organic pollutants and the enzyme degradation mechanisms. The effect of parameters like pH, temperature, contact time, dosage variation, heavy metals and ammonia are discussed. The paper also explores the reactor configuration used in the fungal treatment and the techniques used to improve leachate treatment efficacy, like pretreatment and fungi immobilisation. Finally, the review summarises the limitations and the future direction of work required to adapt the fungal application for leachate treatment on a large scale.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"35 3","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10181128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Myco-remediation of plastic pollution: current knowledge and future prospects 塑料污染的生态修复:现有知识与未来展望。
IF 3.1 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-09-04 DOI: 10.1007/s10532-023-10053-2
Somanjana Khatua, Jesus Simal-Gandara, Krishnendu Acharya

To date, enumerable fungi have been reported to participate in the biodegradation of several notorious plastic materials following their isolation from soil of plastic-dumping sites, marine water, waste of mulch films, landfills, plant parts and gut of wax moth. The general mechanism begins with formation of hydrophobin and biofilm proceding to secretion of specific plastic degarding enzymes (peroxidase, hydrolase, protease and urease), penetration of three dimensional substrates and mineralization of plastic polymers into harmless products. As a result, several synthetic polymers including polyethylene, polystyrene, polypropylene, polyvinyl chloride, polyurethane and/or bio-degradable plastics have been validated to deteriorate within months through the action of a wide variety of fungal strains predominantly Ascomycota (Alternaria, Aspergillus, Cladosporium, Fusarium, Penicillium spp.). Understanding the potential and mode of operation of these organisms is thus of prime importance inspiring us to furnish an up to date view on all the presently known fungal strains claimed to mitigate the plastic waste problem. Future research henceforth needs to be directed towards metagenomic approach to distinguish polymer degrading microbial diversity followed by bio-augmentation to build fascinating future of waste disposal.

迄今为止,据报道,从塑料倾倒场的土壤、海水、地膜废料、垃圾填埋场、植物部分和蜡蛾肠道中分离出的真菌参与了几种臭名昭著的塑料材料的生物降解。一般机制是先形成亲水蛋白和生物膜,然后分泌特定的塑料降解酶(过氧化物酶、水解酶、蛋白酶和脲酶),渗透三维基质,并将塑料聚合物矿化为无害产品。因此,包括聚乙烯、聚苯乙烯、聚丙烯、聚氯乙烯、聚氨酯和/或生物降解塑料在内的多种合成聚合物已被证实在以子囊菌(Alternaria、Aspergillus、Cladosporium、Fusarium、Penicillium spp.)为主的多种真菌菌株的作用下,会在几个月内变质。因此,了解这些生物的潜力和运作模式至关重要,这促使我们对目前已知的、声称能缓解塑料垃圾问题的所有真菌菌株提供最新的看法。今后的研究需要以元基因组学方法为导向,区分降解聚合物的微生物多样性,然后进行生物强化,以打造迷人的废物处理未来。
{"title":"Myco-remediation of plastic pollution: current knowledge and future prospects","authors":"Somanjana Khatua,&nbsp;Jesus Simal-Gandara,&nbsp;Krishnendu Acharya","doi":"10.1007/s10532-023-10053-2","DOIUrl":"10.1007/s10532-023-10053-2","url":null,"abstract":"<div><p>To date, enumerable fungi have been reported to participate in the biodegradation of several notorious plastic materials following their isolation from soil of plastic-dumping sites, marine water, waste of mulch films, landfills, plant parts and gut of wax moth. The general mechanism begins with formation of hydrophobin and biofilm proceding to secretion of specific plastic degarding enzymes (peroxidase, hydrolase, protease and urease), penetration of three dimensional substrates and mineralization of plastic polymers into harmless products. As a result, several synthetic polymers including polyethylene, polystyrene, polypropylene, polyvinyl chloride, polyurethane and/or bio-degradable plastics have been validated to deteriorate within months through the action of a wide variety of fungal strains predominantly Ascomycota (<i>Alternaria</i>, <i>Aspergillus</i>, <i>Cladosporium</i>, <i>Fusarium</i>, <i>Penicillium</i> spp.). Understanding the potential and mode of operation of these organisms is thus of prime importance inspiring us to furnish an up to date view on all the presently known fungal strains claimed to mitigate the plastic waste problem. Future research henceforth needs to be directed towards metagenomic approach to distinguish polymer degrading microbial diversity followed by bio-augmentation to build fascinating future of waste disposal.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"35 3","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10950981/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10144584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biodegradation of commercial textile reactive dye mixtures by industrial effluent adapted bacterial consortium VITPBC6: a potential technique for treating textile effluents 适应工业废水的细菌群 VITPBC6 对商用纺织活性染料混合物的生物降解:一种处理纺织废水的潜在技术。
IF 3.1 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-09-01 DOI: 10.1007/s10532-023-10047-0
Purbasha Saha, Kokati Venkata Bhaskara Rao

Textile industries release major fraction of dyestuffs in effluents leading to a major environmental concern. These effluents often contain more than one dyestuff, which complicates dye degradation. In this study ten reactive dyes (Reactive Yellow 145, Reactive Yellow 160, Reactive Orange 16, Reactive Orange 107, Reactive Red 195, Reactive Blue 21, Reactive Blue 198, Reactive Blue 221, Reactive Blue 250, and Reactive Black 5) that are used in textile industries were subjected to biodegradation by a bacterial consortium VITPBC6, formulated in our previous study. Consortium VITPBC6 caused single dye degradation of all the mentioned dyes except for Reactive Yellow 160. Further, VITPBC6 efficiently degraded a five-dye mixture (Reactive Red 195, Reactive Orange 16, Reactive Black 5, Reactive Blue 221, and Reactive Blue 250). Kinetic studies revealed that the five-dye mixture was decolorized by VITPBC6 following zero order reaction kinetic; Vmax and Km values of the enzyme catalyzed five-dye decolorization were 128.88 mg L−1 day−1 and 1003.226 mg L−1 respectively. VITPBC6 degraded the dye mixture into delta-3,4,5,6-Tetrachlorocyclohexene, sulfuric acid, 1,2-dichloroethane, and hydroxyphenoxyethylaminohydroxypropanol. Phytotoxicity, cytogenotoxicity, microtoxicity, and biotoxicity assays conducted with the biodegraded metabolites revealed that VITPBC6 lowered the toxicity of five-dye mixture significantly after biodegradation.

纺织工业排放的废水中含有大量染料,是一个重大的环境问题。这些废水通常含有一种以上的染料,从而使染料降解变得复杂。在本研究中,纺织工业中使用的十种活性染料(活性黄 145、活性黄 160、活性橙 16、活性橙 107、活性红 195、活性蓝 21、活性蓝 198、活性蓝 221、活性蓝 250 和活性黑 5)被我们之前研究中配制的细菌联合体 VITPBC6 进行了生物降解。除活性黄 160 外,VITPBC6 菌群可对所有上述染料进行单染降解。此外,VITPBC6 还能有效降解五种染料混合物(活性红 195、活性橙 16、活性黑 5、活性蓝 221 和活性蓝 250)。动力学研究表明,VITPBC6 按照零阶反应动力学对五种染料混合物进行脱色;该酶催化五种染料脱色的 Vmax 和 Km 值分别为 128.88 mg L-1 day-1 和 1003.226 mg L-1。VITPBC6 可将染料混合物降解为δ-3,4,5,6-四氯环己烯、硫酸、1,2-二氯乙烷和羟基苯氧乙胺羟基丙醇。对生物降解代谢物进行的植物毒性、细胞毒性、微毒性和生物毒性试验表明,VITPBC6 在生物降解后可显著降低五种染料混合物的毒性。
{"title":"Biodegradation of commercial textile reactive dye mixtures by industrial effluent adapted bacterial consortium VITPBC6: a potential technique for treating textile effluents","authors":"Purbasha Saha,&nbsp;Kokati Venkata Bhaskara Rao","doi":"10.1007/s10532-023-10047-0","DOIUrl":"10.1007/s10532-023-10047-0","url":null,"abstract":"<div><p>Textile industries release major fraction of dyestuffs in effluents leading to a major environmental concern. These effluents often contain more than one dyestuff, which complicates dye degradation. In this study ten reactive dyes (Reactive Yellow 145, Reactive Yellow 160, Reactive Orange 16, Reactive Orange 107, Reactive Red 195, Reactive Blue 21, Reactive Blue 198, Reactive Blue 221, Reactive Blue 250, and Reactive Black 5) that are used in textile industries were subjected to biodegradation by a bacterial consortium VITPBC6, formulated in our previous study. Consortium VITPBC6 caused single dye degradation of all the mentioned dyes except for Reactive Yellow 160. Further, VITPBC6 efficiently degraded a five-dye mixture (Reactive Red 195, Reactive Orange 16, Reactive Black 5, Reactive Blue 221, and Reactive Blue 250). Kinetic studies revealed that the five-dye mixture was decolorized by VITPBC6 following zero order reaction kinetic; V<sub>max</sub> and K<sub>m</sub> values of the enzyme catalyzed five-dye decolorization were 128.88 mg L<sup>−1</sup> day<sup>−1</sup> and 1003.226 mg L<sup>−1</sup> respectively. VITPBC6 degraded the dye mixture into delta-3,4,5,6-Tetrachlorocyclohexene, sulfuric acid, 1,2-dichloroethane, and hydroxyphenoxyethylaminohydroxypropanol. Phytotoxicity, cytogenotoxicity, microtoxicity, and biotoxicity assays conducted with the biodegraded metabolites revealed that VITPBC6 lowered the toxicity of five-dye mixture significantly after biodegradation.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"35 2","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10503043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Purification and characterization of extracellular PHB depolymerase enzyme from Aeromonas caviae Kuk1-(34) and their biodegradation studies with polymer films 鱼腥酵母菌 Kuk1-(34) 胞外 PHB 解聚酶的纯化和表征及其与聚合物薄膜的生物降解研究。
IF 3.1 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-08-28 DOI: 10.1007/s10532-023-10051-4
Mohd. Amir, Naushin Bano, Anamika Gupta, Mohd. Rehan Zaheer,  Roohi

PHB depolymerase enzymes are able to breakdown the PHB polymers and thereby get significant economic value in the bioplastics industry and for bioremediation as well. This study shows the purification of novel extracellular PHB depolymerase enzyme from Aeromonas caviae Kuk1-(34) using dialysis followed by gel filtration and HPLC. The purification fold and yield after HPLC were 45.92 and 27.04%, respectively. HPLC data showed a single peak with a retention time of 1.937 min. GC-MS analysis reveals the presence of three compounds, of which 1-Dodecanol was found to be most significant with 54.48% area and 8.623-min retention time (RT). The molecular weight of the purified enzyme was obtained as 35 kDa with Km and apparent Vmax values of 0.769 mg/mL and 1.89 U/mL, respectively. The enzyme was moderately active at an optimum temperature of 35 °C and at pH 8.0. The stability was detected at pH 7.0–9.0 and 35–45 °C. Complete activity loss was observed with EDTA, SDS, Tween-20 at 5 mM and with 0.1% Triton X 100. A biodegradation study of commercially available biodegradable polymer films was carried out in a liquid medium and in soil separately with pure microbial culture and with purified enzyme for 7, 14, 28, and 49 consecutive days. In a liquid medium, with a pure strain of Aeromonas caviae Kuk1-(34), the maximum degradation (89%) was achieved on the PHB film, while no changes were observed with other polymer films. With purified enzyme in the soil, 71% degradation of the PHB film was noticed, and it was only 18% in the liquid medium. All such weight analysis were confirmed by SEM images where several holes, pits, grooves, crest, and surface roughness are clearly observed. Our results demonstrated the potential utility of Aeromonas caviae Kuk1-(34) as a source of extracellular PHB depolymerase capable of degrading PHB under a wide range of natural/ lab conditions.

PHB 解聚酶能够分解 PHB 聚合物,因此在生物塑料工业和生物修复方面具有重要的经济价值。本研究显示了利用透析、凝胶过滤和 HPLC 从 Aeromonas caviae Kuk1-(34)中纯化出的新型胞外 PHB 解聚酶。高效液相色谱纯化倍数和产率分别为 45.92% 和 27.04%。HPLC 数据显示保留时间为 1.937 分钟的单峰。气相色谱-质谱(GC-MS)分析显示存在三种化合物,其中以 1-十二醇最为重要,其面积为 54.48%,保留时间(RT)为 8.623 分钟。纯化酶的分子量为 35 kDa,Km 和表观 Vmax 值分别为 0.769 mg/mL 和 1.89 U/mL。该酶在最适温度为 35 °C、pH 值为 8.0 时具有中等活性。在 pH 值为 7.0-9.0 和 35-45 °C时,该酶具有稳定性。在使用 EDTA、SDS、5 mM 的 Tween-20 和 0.1% Triton X 100 时,活性完全丧失。在液体培养基和土壤中,分别用纯微生物培养物和纯化酶对市售生物降解聚合物薄膜进行了连续 7、14、28 和 49 天的生物降解研究。在液体培养基中,使用纯菌株 Aeromonas caviae Kuk1-(34),PHB 薄膜的降解率最高(89%),而其他聚合物薄膜的降解率没有变化。在土壤中加入纯化酶后,PHB 膜的降解率为 71%,而在液体培养基中降解率仅为 18%。所有这些重量分析都得到了 SEM 图像的证实,在 SEM 图像中可以清晰地观察到一些孔洞、凹坑、沟槽、波峰和表面粗糙度。我们的研究结果表明,鱼腥酵母菌 Kuk1-(34)是一种潜在的胞外 PHB 解聚酶来源,能够在广泛的自然/实验室条件下降解 PHB。
{"title":"Purification and characterization of extracellular PHB depolymerase enzyme from Aeromonas caviae Kuk1-(34) and their biodegradation studies with polymer films","authors":"Mohd. Amir,&nbsp;Naushin Bano,&nbsp;Anamika Gupta,&nbsp;Mohd. Rehan Zaheer,&nbsp; Roohi","doi":"10.1007/s10532-023-10051-4","DOIUrl":"10.1007/s10532-023-10051-4","url":null,"abstract":"<div><p>PHB depolymerase enzymes are able to breakdown the PHB polymers and thereby get significant economic value in the bioplastics industry and for bioremediation as well. This study shows the purification of novel extracellular PHB depolymerase enzyme from <i>Aeromonas caviae</i> Kuk1-(34) using dialysis followed by gel filtration and HPLC. The purification fold and yield after HPLC were 45.92 and 27.04%, respectively. HPLC data showed a single peak with a retention time of 1.937 min. GC-MS analysis reveals the presence of three compounds, of which 1-Dodecanol was found to be most significant with 54.48% area and 8.623-min retention time (RT). The molecular weight of the purified enzyme was obtained as 35 kDa with K<sub>m</sub> and apparent V<sub>max</sub> values of 0.769 mg/mL and 1.89 U/mL, respectively. The enzyme was moderately active at an optimum temperature of 35 °C and at pH 8.0. The stability was detected at pH 7.0–9.0 and 35–45 °C. Complete activity loss was observed with EDTA, SDS, Tween-20 at 5 mM and with 0.1% Triton X 100. A biodegradation study of commercially available biodegradable polymer films was carried out in a liquid medium and in soil separately with pure microbial culture and with purified enzyme for 7, 14, 28, and 49 consecutive days. In a liquid medium, with a pure strain of <i>Aeromonas caviae</i> Kuk1-(34), the maximum degradation (89%) was achieved on the PHB film, while no changes were observed with other polymer films. With purified enzyme in the soil, 71% degradation of the PHB film was noticed, and it was only 18% in the liquid medium. All such weight analysis were confirmed by SEM images where several holes, pits, grooves, crest, and surface roughness are clearly observed. Our results demonstrated the potential utility of <i>Aeromonas caviae</i> Kuk1-(34) as a source of extracellular PHB depolymerase capable of degrading PHB under a wide range of natural/ lab conditions.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"35 2","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10440243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biooxidation of hydrogen sulfide to sulfur by moderate thermophilic acidophilic bacteria 中等嗜热嗜酸性细菌将硫化氢生物氧化成硫。
IF 3.1 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-08-28 DOI: 10.1007/s10532-023-10049-y
R. Romero, P. Viedma, D. Cotoras

The copper industry utilizes significant amounts of sulfuric acid in its processes, generating sulfate as waste. While sulfate-reducing bacteria can remove sulfate, it produces hydrogen sulfide (H2S) as a byproduct. This study examined the capability of a consortium consisting of Sulfobacillus thermosulfidooxidans and Sulfobacillus acidophilus to partially oxidize H2S to S° at a temperature of 45 °C. A fixed-bed bioreactor, with glass rings as support material and sodium thiosulfate as a model electron donor, was inoculated with the consortium. Formation of biofilms was crucial to maintain the bioreactor’s steady state, despite high flow rates. Afterward, the electron donor was changed to H2S. When the bioreactor was operated continuously and with high aeration, H2S was fully oxidized to SO42−. However, under conditions of low aeration and at a concentration of 0.26 g/L of H2S, the consortium was able to oxidize H2S to S° with a 13% yield. S° was discovered attached to the glass rings and jarosite. The results indicate that the consortium could oxidize H2S to S° with a 13% yield under low aeration and at a concentration of 0.26 g/L of H2S. The findings highlight the capability of a Sulfobacillus consortium to convert H2S into S°, providing a potential solution for addressing environmental and safety issues associated with sulfate waste generated by the mining industry.

铜业在生产过程中会使用大量硫酸,产生硫酸盐废物。虽然硫酸盐还原菌可以去除硫酸盐,但会产生副产品硫化氢(H2S)。本研究考察了由热硫化氧硫杆菌和嗜酸性硫杆菌组成的联合菌群在 45 °C 温度下将 H2S 部分氧化为 S°的能力。在以玻璃环为支撑材料、硫代硫酸钠为电子供体模型的固定床生物反应器中接种了该菌群。尽管流速很高,但生物膜的形成对于维持生物反应器的稳定状态至关重要。之后,电子供体改为 H2S。当生物反应器在高曝气条件下连续运行时,H2S 被完全氧化成 SO42-。然而,在低通气量和 0.26 克/升 H2S 浓度的条件下,联合体能够将 H2S 氧化成 S°,产率为 13%。发现 S° 附着在玻璃环和硬玉上。结果表明,在低曝气度和 0.26 克/升 H2S 浓度条件下,联合菌群可将 H2S 氧化成 S°,产率为 13%。研究结果凸显了硫杆菌联合体将 H2S 转化为 S°的能力,为解决采矿业产生的硫酸盐废物相关的环境和安全问题提供了一种潜在的解决方案。
{"title":"Biooxidation of hydrogen sulfide to sulfur by moderate thermophilic acidophilic bacteria","authors":"R. Romero,&nbsp;P. Viedma,&nbsp;D. Cotoras","doi":"10.1007/s10532-023-10049-y","DOIUrl":"10.1007/s10532-023-10049-y","url":null,"abstract":"<div><p>The copper industry utilizes significant amounts of sulfuric acid in its processes, generating sulfate as waste. While sulfate-reducing bacteria can remove sulfate, it produces hydrogen sulfide (H<sub>2</sub>S) as a byproduct. This study examined the capability of a consortium consisting of <i>Sulfobacillus thermosulfidooxidans</i> and <i>Sulfobacillus acidophilus</i> to partially oxidize H<sub>2</sub>S to S° at a temperature of 45 °C. A fixed-bed bioreactor, with glass rings as support material and sodium thiosulfate as a model electron donor, was inoculated with the consortium. Formation of biofilms was crucial to maintain the bioreactor’s steady state, despite high flow rates. Afterward, the electron donor was changed to H<sub>2</sub>S. When the bioreactor was operated continuously and with high aeration, H<sub>2</sub>S was fully oxidized to SO<sub>4</sub><sup>2−</sup>. However, under conditions of low aeration and at a concentration of 0.26 g/L of H<sub>2</sub>S, the consortium was able to oxidize H<sub>2</sub>S to S° with a 13% yield. S° was discovered attached to the glass rings and jarosite. The results indicate that the consortium could oxidize H<sub>2</sub>S to S° with a 13% yield under low aeration and at a concentration of 0.26 g/L of H<sub>2</sub>S. The findings highlight the capability of a <i>Sulfobacillus</i> consortium to convert H<sub>2</sub>S into S°, providing a potential solution for addressing environmental and safety issues associated with sulfate waste generated by the mining industry.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"35 2","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10440242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biodegradation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1