Abstract This paper investigates a nonlinear axisymmetric magneto-heat coupling problem described by the quasi-static Maxwell’s equations and a heat equation. The coupling between them is provided through the temperature-dependent electric conductivity. The behavior of the material is defined by an anhysteretic 𝑯-𝑩 curve. The magnetic flux across a meridian section of the medium gives rise to the magnetic field equation with the unknown nonlocal boundary condition. We present a variational formulation for this coupling problem and prove its solvability in terms of the Rothe method. The nonlinearity is handled by the theory of monotone operators. We also suggest a discrete decoupled scheme to solve this problem by employing the finite element method and show some numerical results in the final section.
{"title":"A Formulation for a Nonlinear Axisymmetric Magneto-Heat Coupling Problem with an Unknown Nonlocal Boundary Condition","authors":"Ran Wang, Huai Zhang, T. Kang","doi":"10.1515/cmam-2022-0093","DOIUrl":"https://doi.org/10.1515/cmam-2022-0093","url":null,"abstract":"Abstract This paper investigates a nonlinear axisymmetric magneto-heat coupling problem described by the quasi-static Maxwell’s equations and a heat equation. The coupling between them is provided through the temperature-dependent electric conductivity. The behavior of the material is defined by an anhysteretic 𝑯-𝑩 curve. The magnetic flux across a meridian section of the medium gives rise to the magnetic field equation with the unknown nonlocal boundary condition. We present a variational formulation for this coupling problem and prove its solvability in terms of the Rothe method. The nonlinearity is handled by the theory of monotone operators. We also suggest a discrete decoupled scheme to solve this problem by employing the finite element method and show some numerical results in the final section.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45803053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract In this paper, we apply a Landweber iterative regularization method to determine a space-dependent source for a time-space fractional diffusion-wave equation from the final measurement. In general, this problem is ill-posed, and a Landweber iterative regularization method is used to obtain the regularization solution. Under the a priori parameter choice rule and the a posteriori parameter choice rule, we give the error estimates between the regularization solution and the exact solution, respectively. Some numerical results in the one-dimensional and two-dimensional cases show the utility of the used regularization method.
{"title":"Landweber Iterative Method for an Inverse Source Problem of Time-Space Fractional Diffusion-Wave Equation","authors":"Fan Yang, Yan Zhang, Xiao-Xiao Li","doi":"10.1515/cmam-2022-0240","DOIUrl":"https://doi.org/10.1515/cmam-2022-0240","url":null,"abstract":"Abstract In this paper, we apply a Landweber iterative regularization method to determine a space-dependent source for a time-space fractional diffusion-wave equation from the final measurement. In general, this problem is ill-posed, and a Landweber iterative regularization method is used to obtain the regularization solution. Under the a priori parameter choice rule and the a posteriori parameter choice rule, we give the error estimates between the regularization solution and the exact solution, respectively. Some numerical results in the one-dimensional and two-dimensional cases show the utility of the used regularization method.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49388099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Information based complexity analysis in computing the solution of various practical problems is of great importance in recent years. The amount of discrete information required to compute the solution plays an important role in the computational complexity of the problem. Although this approach has been applied successfully for linear problems, no effort has been made in literature to apply it to nonlinear problems. This article addresses this problem by considering an efficient discretization scheme to discretize nonlinear ill-posed problems. We apply the discretization scheme in the context of a simplified Gauss–Newton iterative method and show that our scheme requires only less amount of information for computing the solution. The convergence analysis and error estimates are derived. Numerical examples are provided to illustrate the fact that the scheme can be implemented successfully. The theoretical and numerical study asserts that the scheme can be employed to nonlinear problems.
{"title":"An Efficient Discretization Scheme for Solving Nonlinear Ill-Posed Problems","authors":"M. Rajan, J. Jose","doi":"10.1515/cmam-2021-0146","DOIUrl":"https://doi.org/10.1515/cmam-2021-0146","url":null,"abstract":"Abstract Information based complexity analysis in computing the solution of various practical problems is of great importance in recent years. The amount of discrete information required to compute the solution plays an important role in the computational complexity of the problem. Although this approach has been applied successfully for linear problems, no effort has been made in literature to apply it to nonlinear problems. This article addresses this problem by considering an efficient discretization scheme to discretize nonlinear ill-posed problems. We apply the discretization scheme in the context of a simplified Gauss–Newton iterative method and show that our scheme requires only less amount of information for computing the solution. The convergence analysis and error estimates are derived. Numerical examples are provided to illustrate the fact that the scheme can be implemented successfully. The theoretical and numerical study asserts that the scheme can be employed to nonlinear problems.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42522485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract In this paper, using Sinc-Galerkin method and TSVD regularization, an approximation of the quasi-solution to an inverse source problem is obtained. To do so, the solution of direct problem is obtained by the Sinc-Galerkin method, and this solution is applied in a least squares cost functional. Then, to obtain an approximation of the quasi-solution, we minimize the cost functional by TSVD regularization. Error analysis and convergence of the proposed method are investigated. In addition, at the end, four numerical examples are given in details to show the efficiency and accuracy of the proposed method.
{"title":"Identification of an Inverse Source Problem in a Fractional Partial Differential Equation Based on Sinc-Galerkin Method and TSVD Regularization","authors":"A. Safaie, A. H. Salehi Shayegan, M. Shahriari","doi":"10.1515/cmam-2022-0178","DOIUrl":"https://doi.org/10.1515/cmam-2022-0178","url":null,"abstract":"Abstract In this paper, using Sinc-Galerkin method and TSVD regularization, an approximation of the quasi-solution to an inverse source problem is obtained. To do so, the solution of direct problem is obtained by the Sinc-Galerkin method, and this solution is applied in a least squares cost functional. Then, to obtain an approximation of the quasi-solution, we minimize the cost functional by TSVD regularization. Error analysis and convergence of the proposed method are investigated. In addition, at the end, four numerical examples are given in details to show the efficiency and accuracy of the proposed method.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41993212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The Miura ori is a very classical origami pattern used in numerous applications in engineering. A study of the shapes that surfaces using this pattern can assume is still lacking. A constrained nonlinear partial differential equation (PDE) that models the possible shapes that a periodic Miura tessellation can take in the homogenization limit has been established recently and solved only in specific cases. In this paper, the existence and uniqueness of a solution to the unconstrained PDE is proved for general Dirichlet boundary conditions. Then an H 2 H^{2} -conforming discretization is introduced to approximate the solution of the PDE coupled to a Newton method to solve the associated discrete problem. A convergence proof for the method is given as well as a convergence rate. Finally, numerical experiments show the robustness of the method and that nontrivial shapes can be achieved using periodic Miura tessellations.
{"title":"𝐻2-Conformal Approximation of Miura Surfaces","authors":"F. Marazzato","doi":"10.1515/cmam-2022-0259","DOIUrl":"https://doi.org/10.1515/cmam-2022-0259","url":null,"abstract":"Abstract The Miura ori is a very classical origami pattern used in numerous applications in engineering. A study of the shapes that surfaces using this pattern can assume is still lacking. A constrained nonlinear partial differential equation (PDE) that models the possible shapes that a periodic Miura tessellation can take in the homogenization limit has been established recently and solved only in specific cases. In this paper, the existence and uniqueness of a solution to the unconstrained PDE is proved for general Dirichlet boundary conditions. Then an H 2 H^{2} -conforming discretization is introduced to approximate the solution of the PDE coupled to a Newton method to solve the associated discrete problem. A convergence proof for the method is given as well as a convergence rate. Finally, numerical experiments show the robustness of the method and that nontrivial shapes can be achieved using periodic Miura tessellations.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45319008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julian Roth, Jan Philipp Thiele, Uwe Köcher, Thomas Wick
Abstract In this work, the dual-weighted residual method is applied to a space-time formulation of nonstationary Stokes and Navier–Stokes flow. Tensor-product space-time finite elements are being used to discretize the variational formulation with discontinuous Galerkin finite elements in time and inf-sup stable Taylor–Hood finite element pairs in space. To estimate the error in a quantity of interest and drive adaptive refinement in time and space, we demonstrate how the dual-weighted residual method for incompressible flow can be extended to a partition-of-unity based error localization. We substantiate our methodology on 2D benchmark problems from computational fluid mechanics.
{"title":"Tensor-Product Space-Time Goal-Oriented Error Control and Adaptivity With Partition-of-Unity Dual-Weighted Residuals for Nonstationary Flow Problems","authors":"Julian Roth, Jan Philipp Thiele, Uwe Köcher, Thomas Wick","doi":"10.1515/cmam-2022-0200","DOIUrl":"https://doi.org/10.1515/cmam-2022-0200","url":null,"abstract":"Abstract In this work, the dual-weighted residual method is applied to a space-time formulation of nonstationary Stokes and Navier–Stokes flow. Tensor-product space-time finite elements are being used to discretize the variational formulation with discontinuous Galerkin finite elements in time and inf-sup stable Taylor–Hood finite element pairs in space. To estimate the error in a quantity of interest and drive adaptive refinement in time and space, we demonstrate how the dual-weighted residual method for incompressible flow can be extended to a partition-of-unity based error localization. We substantiate our methodology on 2D benchmark problems from computational fluid mechanics.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135394952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract In the current work, we build a difference analog of the Caputo fractional derivative with generalized memory kernel (𝜇L2-1𝜎 formula). The fundamental features of this difference operator are studied, and on its ground, some difference schemes generating approximations of the second order in time for the generalized time-fractional diffusion equation with variable coefficients are worked out. We have proved stability and convergence of the given schemes in the grid L 2 L_{2} -norm with the rate equal to the order of the approximation error. The achieved results are supported by the numerical computations performed for some test problems.
{"title":"A Second-Order Difference Scheme for Generalized Time-Fractional Diffusion Equation with Smooth Solutions","authors":"A. Khibiev, A. Alikhanov, Chengming Huang","doi":"10.1515/cmam-2022-0089","DOIUrl":"https://doi.org/10.1515/cmam-2022-0089","url":null,"abstract":"Abstract In the current work, we build a difference analog of the Caputo fractional derivative with generalized memory kernel (𝜇L2-1𝜎 formula). The fundamental features of this difference operator are studied, and on its ground, some difference schemes generating approximations of the second order in time for the generalized time-fractional diffusion equation with variable coefficients are worked out. We have proved stability and convergence of the given schemes in the grid L 2 L_{2} -norm with the rate equal to the order of the approximation error. The achieved results are supported by the numerical computations performed for some test problems.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43628392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract We study variants of the mixed finite element method (mixed FEM) and the first-order system least-squares finite element (FOSLS) for the Poisson problem where we replace the load by a suitable regularization which permits to use H − 1 H^{-1} loads. We prove that any bounded H − 1 H^{-1} projector onto piecewise constants can be used to define the regularization and yields quasi-optimality of the lowest-order mixed FEM resp. FOSLS in weaker norms. Examples for the construction of such projectors are given. One is based on the adjoint of a weighted Clément quasi-interpolator. We prove that this Clément operator has second-order approximation properties. For the modified mixed method, we show optimal convergence rates of a postprocessed solution under minimal regularity assumptions—a result not valid for the lowest-order mixed FEM without regularization. Numerical examples conclude this work.
{"title":"On a Mixed FEM and a FOSLS with 𝐻−1 Loads","authors":"T. Führer","doi":"10.1515/cmam-2022-0215","DOIUrl":"https://doi.org/10.1515/cmam-2022-0215","url":null,"abstract":"Abstract We study variants of the mixed finite element method (mixed FEM) and the first-order system least-squares finite element (FOSLS) for the Poisson problem where we replace the load by a suitable regularization which permits to use H − 1 H^{-1} loads. We prove that any bounded H − 1 H^{-1} projector onto piecewise constants can be used to define the regularization and yields quasi-optimality of the lowest-order mixed FEM resp. FOSLS in weaker norms. Examples for the construction of such projectors are given. One is based on the adjoint of a weighted Clément quasi-interpolator. We prove that this Clément operator has second-order approximation properties. For the modified mixed method, we show optimal convergence rates of a postprocessed solution under minimal regularity assumptions—a result not valid for the lowest-order mixed FEM without regularization. Numerical examples conclude this work.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66871017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract We study frequency domain acoustic scattering at a bounded, penetrable, and inhomogeneous obstacle Ω − ⊂ R d Omega^{-}subsetmathbb{R}^{d} , d = 2 , 3 d=2,3 . By defining constant reference coefficients, a representation formula for the pressure field is derived. It contains a volume integral operator, related to the one in the Lippmann–Schwinger equation. Besides, it features integral operators defined on ∂ Ω − partialOmega^{-} and closely related to boundary integral equations of single-trace formulations (STF) for transmission problems with piecewise constant coefficients. We show well-posedness of the continuous variational formulation and asymptotic convergence of Galerkin discretizations. Numerical experiments in 2D validate our expected convergence rates.
{"title":"Volume Integral Equations and Single-Trace Formulations for Acoustic Wave Scattering in an Inhomogeneous Medium","authors":"Ignacio Labarca, R. Hiptmair","doi":"10.1515/cmam-2022-0119","DOIUrl":"https://doi.org/10.1515/cmam-2022-0119","url":null,"abstract":"Abstract We study frequency domain acoustic scattering at a bounded, penetrable, and inhomogeneous obstacle Ω − ⊂ R d Omega^{-}subsetmathbb{R}^{d} , d = 2 , 3 d=2,3 . By defining constant reference coefficients, a representation formula for the pressure field is derived. It contains a volume integral operator, related to the one in the Lippmann–Schwinger equation. Besides, it features integral operators defined on ∂ Ω − partialOmega^{-} and closely related to boundary integral equations of single-trace formulations (STF) for transmission problems with piecewise constant coefficients. We show well-posedness of the continuous variational formulation and asymptotic convergence of Galerkin discretizations. Numerical experiments in 2D validate our expected convergence rates.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46463057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract In this work, a cost-efficient space-time adaptive algorithm based on the Dual Weighted Residual (DWR) method is developed and studied for a coupled model problem of flow and convection-dominated transport. Key ingredients are a multirate approach adapted to varying dynamics in time of the subproblems, weighted and non-weighted error indicators for the transport and flow problem, respectively, and the concept of space-time slabs based on tensor product spaces for the data structure. In numerical examples, the performance of the underlying algorithm is studied for benchmark problems and applications of practical interest. Moreover, the interaction of stabilization and goal-oriented adaptivity is investigated for strongly convection-dominated transport.
{"title":"A Cost-Efficient Space-Time Adaptive Algorithm for Coupled Flow and Transport","authors":"Marius Paul Bruchhäuser, Markus Bause","doi":"10.1515/cmam-2022-0245","DOIUrl":"https://doi.org/10.1515/cmam-2022-0245","url":null,"abstract":"Abstract In this work, a cost-efficient space-time adaptive algorithm based on the Dual Weighted Residual (DWR) method is developed and studied for a coupled model problem of flow and convection-dominated transport. Key ingredients are a multirate approach adapted to varying dynamics in time of the subproblems, weighted and non-weighted error indicators for the transport and flow problem, respectively, and the concept of space-time slabs based on tensor product spaces for the data structure. In numerical examples, the performance of the underlying algorithm is studied for benchmark problems and applications of practical interest. Moreover, the interaction of stabilization and goal-oriented adaptivity is investigated for strongly convection-dominated transport.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134922897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}