Abstract In this paper, we develop a new immersed finite element method (IFEM) for two-phase incompressible Stokes flows. We allow the interface to cut the finite elements. On the noninterface element, the standard Crouzeix–Raviart element and the P 0 {P_{0}} element pair is used. On the interface element, the basis functions developed for scalar interface problems (Kwak et al., An analysis of a broken P 1 {P_{1}} -nonconforming finite element method for interface problems, SIAM J. Numer. Anal. (2010)) are modified in such a way that the coupling between the velocity and pressure variable is different. There are two kinds of basis functions. The first kind of basis satisfies the Laplace–Young condition under the assumption of the continuity of the pressure variable. In the second kind, the velocity is of bubble type and is coupled with the discontinuous pressure, still satisfying the Laplace–Young condition. We remark that in the second kind the pressure variable has two degrees of freedom on each interface element. Therefore, our methods can handle the discontinuous pressure case. Numerical results including the case of the discontinuous pressure variable are provided. We see optimal convergence orders for all examples.
摘要本文提出了一种新的求解两相不可压缩Stokes流的浸入式有限元方法。我们允许界面切割有限元。在非接口元素上,使用标准的Crouzeix–Raviart元素和P0{P_{0}}元素对。在界面单元上,对为标量界面问题开发的基函数(Kwak et al.,An analysis of a breaked P1{P_{1}}-conformant finite element method for interface problems,SIAM J.Numer.Anal.(2010))进行了修改,使得速度和压力变量之间的耦合不同。基函数有两种。在压力变量连续性的假设下,第一类基满足拉普拉斯-杨条件。在第二种情况下,速度是气泡型的,并与不连续压力耦合,仍然满足拉普拉斯-杨条件。我们注意到,在第二类中,压力变量在每个界面元件上有两个自由度。因此,我们的方法可以处理不连续压力的情况。给出了包括不连续压力变量情况下的数值结果。我们看到所有例子的最优收敛阶。
{"title":"A New Immersed Finite Element Method for Two-Phase Stokes Problems Having Discontinuous Pressure","authors":"Gwanghyun Jo, D. Kwak","doi":"10.1515/cmam-2022-0122","DOIUrl":"https://doi.org/10.1515/cmam-2022-0122","url":null,"abstract":"Abstract In this paper, we develop a new immersed finite element method (IFEM) for two-phase incompressible Stokes flows. We allow the interface to cut the finite elements. On the noninterface element, the standard Crouzeix–Raviart element and the P 0 {P_{0}} element pair is used. On the interface element, the basis functions developed for scalar interface problems (Kwak et al., An analysis of a broken P 1 {P_{1}} -nonconforming finite element method for interface problems, SIAM J. Numer. Anal. (2010)) are modified in such a way that the coupling between the velocity and pressure variable is different. There are two kinds of basis functions. The first kind of basis satisfies the Laplace–Young condition under the assumption of the continuity of the pressure variable. In the second kind, the velocity is of bubble type and is coupled with the discontinuous pressure, still satisfying the Laplace–Young condition. We remark that in the second kind the pressure variable has two degrees of freedom on each interface element. Therefore, our methods can handle the discontinuous pressure case. Numerical results including the case of the discontinuous pressure variable are provided. We see optimal convergence orders for all examples.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47608032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract We present the self-consistent Pauli equation, a semi-relativistic model for charged spin- 1 / 2 1/2 particles with self-interaction with the electromagnetic field. The Pauli equation arises as the O ( 1 / c ) O(1/c) approximation of the relativistic Dirac equation. The fully relativistic self-consistent model is the Dirac–Maxwell equation where the description of spin and the magnetic field arises naturally. In the non-relativistic setting, the correct self-consistent equation is the Schrödinger–Poisson equation which does not describe spin and the magnetic field and where the self-interaction is with the electric field only. The Schrödinger–Poisson equation also arises as the mean field limit of the 𝑁-body Schrödinger equation with Coulomb interaction. We propose that the Pauli–Poisson equation arises as the mean field limit N → ∞ Ntoinfty of the linear 𝑁-body Pauli equation with Coulomb interaction where one has to pay extra attention to the fermionic nature of the Pauli equation. We present the semiclassical limit of the Pauli–Poisson equation by the Wigner method to the Vlasov equation with Lorentz force coupled to the Poisson equation which is also consistent with the hierarchy in 1 / c 1/c of the self-consistent Vlasov equation. This is a non-trivial extension of the groundbreaking works by Lions & Paul and Markowich & Mauser, where we need methods like magnetic Lieb–Thirring estimates.
{"title":"Nonlinear PDE Models in Semi-relativistic Quantum Physics","authors":"Jakob Möller, N. Mauser","doi":"10.1515/cmam-2023-0101","DOIUrl":"https://doi.org/10.1515/cmam-2023-0101","url":null,"abstract":"Abstract We present the self-consistent Pauli equation, a semi-relativistic model for charged spin- 1 / 2 1/2 particles with self-interaction with the electromagnetic field. The Pauli equation arises as the O ( 1 / c ) O(1/c) approximation of the relativistic Dirac equation. The fully relativistic self-consistent model is the Dirac–Maxwell equation where the description of spin and the magnetic field arises naturally. In the non-relativistic setting, the correct self-consistent equation is the Schrödinger–Poisson equation which does not describe spin and the magnetic field and where the self-interaction is with the electric field only. The Schrödinger–Poisson equation also arises as the mean field limit of the 𝑁-body Schrödinger equation with Coulomb interaction. We propose that the Pauli–Poisson equation arises as the mean field limit N → ∞ Ntoinfty of the linear 𝑁-body Pauli equation with Coulomb interaction where one has to pay extra attention to the fermionic nature of the Pauli equation. We present the semiclassical limit of the Pauli–Poisson equation by the Wigner method to the Vlasov equation with Lorentz force coupled to the Poisson equation which is also consistent with the hierarchy in 1 / c 1/c of the self-consistent Vlasov equation. This is a non-trivial extension of the groundbreaking works by Lions & Paul and Markowich & Mauser, where we need methods like magnetic Lieb–Thirring estimates.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47920744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract We formulate an initial and Dirichlet boundary value problem for a semilinear heat equation with logarithmic nonlinearity over a two-dimensional rectangular domain. We approximate its solution by employing the standard second-order finite difference method for space discretization, and a linearized backward Euler method, or, a linearized BDF2 method for time stepping. For the linearized backward Euler finite difference method, we derive an almost optimal order error estimate in the discrete L t ∞ ( L x ∞ ) L^{infty}_{t}(L^{infty}_{x}) -norm without imposing mesh conditions, and for the linearized BDF2 finite difference method, we establish an almost optimal order error estimate in the discrete L t ∞ ( H x 1 ) L^{infty}_{t}(H^{1}_{x}) -norm, allowing a mild mesh condition to be satisfied. Finally, we show the efficiency of the numerical methods proposed, by exposing results from numerical experiments. It is the first time in the literature where numerical methods for the approximation of the solution to the heat equation with logarithmic nonlinearity are applied and analysed.
{"title":"Implicit-Explicit Finite Difference Approximations of a Semilinear Heat Equation with Logarithmic Nonlinearity","authors":"Panagiotis Paraschis, G. E. Zouraris","doi":"10.1515/cmam-2022-0217","DOIUrl":"https://doi.org/10.1515/cmam-2022-0217","url":null,"abstract":"Abstract We formulate an initial and Dirichlet boundary value problem for a semilinear heat equation with logarithmic nonlinearity over a two-dimensional rectangular domain. We approximate its solution by employing the standard second-order finite difference method for space discretization, and a linearized backward Euler method, or, a linearized BDF2 method for time stepping. For the linearized backward Euler finite difference method, we derive an almost optimal order error estimate in the discrete L t ∞ ( L x ∞ ) L^{infty}_{t}(L^{infty}_{x}) -norm without imposing mesh conditions, and for the linearized BDF2 finite difference method, we establish an almost optimal order error estimate in the discrete L t ∞ ( H x 1 ) L^{infty}_{t}(H^{1}_{x}) -norm, allowing a mild mesh condition to be satisfied. Finally, we show the efficiency of the numerical methods proposed, by exposing results from numerical experiments. It is the first time in the literature where numerical methods for the approximation of the solution to the heat equation with logarithmic nonlinearity are applied and analysed.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49242850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent Advances in Boundary Element Methods","authors":"U. Langer, O. Steinbach","doi":"10.1515/cmam-2023-0037","DOIUrl":"https://doi.org/10.1515/cmam-2023-0037","url":null,"abstract":"","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41867304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-22DOI: 10.48550/arXiv.2303.12555
R. Stevenson
Abstract Inhomogeneous essential boundary conditions can be appended to a well-posed PDE to lead to a combined variational formulation. The domain of the corresponding operator is a Sobolev space on the domain Ω on which the PDE is posed, whereas the codomain is a Cartesian product of spaces, among them fractional Sobolev spaces of functions on ∂ Ω partialOmega . In this paper, easily implementable minimal residual discretizations are constructed which yield quasi-optimal approximation from the employed trial space, in which the evaluation of fractional Sobolev norms is fully avoided.
{"title":"A Convenient Inclusion of Inhomogeneous Boundary Conditions in Minimal Residual Methods","authors":"R. Stevenson","doi":"10.48550/arXiv.2303.12555","DOIUrl":"https://doi.org/10.48550/arXiv.2303.12555","url":null,"abstract":"Abstract Inhomogeneous essential boundary conditions can be appended to a well-posed PDE to lead to a combined variational formulation. The domain of the corresponding operator is a Sobolev space on the domain Ω on which the PDE is posed, whereas the codomain is a Cartesian product of spaces, among them fractional Sobolev spaces of functions on ∂ Ω partialOmega . In this paper, easily implementable minimal residual discretizations are constructed which yield quasi-optimal approximation from the employed trial space, in which the evaluation of fractional Sobolev norms is fully avoided.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41822558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract We consider the non-symmetric coupling of finite and boundary elements to solve second-order nonlinear partial differential equations defined in unbounded domains. We present a novel condition that ensures that the associated semi-linear form induces a strongly monotone operator, keeping track of the dependence on the linear combination of the interior domain equation with the boundary integral one. We show that an optimal ellipticity condition, relating the nonlinear operator to the contraction constant of the shifted double-layer integral operator, is guaranteed by choosing a particular linear combination. These results generalize those obtained by Of and Steinbach [Is the one-equation coupling of finite and boundary element methods always stable?, ZAMM Z. Angew. Math. Mech. 93 (2013), 6–7, 476–484] and [On the ellipticity of coupled finite element and one-equation boundary element methods for boundary value problems, Numer. Math. 127 (2014), 3, 567–593], and by Steinbach [A note on the stable one-equation coupling of finite and boundary elements, SIAM J. Numer. Anal. 49 (2011), 4, 1521–1531], where the simple sum of the two coupling equations has been considered. Numerical examples confirm the theoretical results on the sharpness of the presented estimates.
{"title":"Developments on the Stability of the Non-symmetric Coupling of Finite and Boundary Elements","authors":"M. Ferrari","doi":"10.1515/cmam-2022-0085","DOIUrl":"https://doi.org/10.1515/cmam-2022-0085","url":null,"abstract":"Abstract We consider the non-symmetric coupling of finite and boundary elements to solve second-order nonlinear partial differential equations defined in unbounded domains. We present a novel condition that ensures that the associated semi-linear form induces a strongly monotone operator, keeping track of the dependence on the linear combination of the interior domain equation with the boundary integral one. We show that an optimal ellipticity condition, relating the nonlinear operator to the contraction constant of the shifted double-layer integral operator, is guaranteed by choosing a particular linear combination. These results generalize those obtained by Of and Steinbach [Is the one-equation coupling of finite and boundary element methods always stable?, ZAMM Z. Angew. Math. Mech. 93 (2013), 6–7, 476–484] and [On the ellipticity of coupled finite element and one-equation boundary element methods for boundary value problems, Numer. Math. 127 (2014), 3, 567–593], and by Steinbach [A note on the stable one-equation coupling of finite and boundary elements, SIAM J. Numer. Anal. 49 (2011), 4, 1521–1531], where the simple sum of the two coupling equations has been considered. Numerical examples confirm the theoretical results on the sharpness of the presented estimates.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41847506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract This article discusses the well-posedness and error analysis of the coupling of finite and boundary elements for interface problems in nonlinear elasticity. It concerns 𝑝-Laplacian-type Hencky materials with an unbounded stress-strain relation, as they arise in the modelling of ice sheets, non-Newtonian fluids or porous media. We propose a functional analytic framework for the numerical analysis and obtain a priori and a posteriori error estimates for Galerkin approximations to the resulting boundary/domain variational inequality.
{"title":"Coupling of Finite and Boundary Elements for Singularly Nonlinear Transmission and Contact Problems","authors":"H. Gimperlein, E. Stephan","doi":"10.1515/cmam-2022-0120","DOIUrl":"https://doi.org/10.1515/cmam-2022-0120","url":null,"abstract":"Abstract This article discusses the well-posedness and error analysis of the coupling of finite and boundary elements for interface problems in nonlinear elasticity. It concerns 𝑝-Laplacian-type Hencky materials with an unbounded stress-strain relation, as they arise in the modelling of ice sheets, non-Newtonian fluids or porous media. We propose a functional analytic framework for the numerical analysis and obtain a priori and a posteriori error estimates for Galerkin approximations to the resulting boundary/domain variational inequality.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41328644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract In this paper, we present a numerical method based on the coupling between a Curved Virtual Element Method (CVEM) and a Boundary Element Method (BEM) for the simulation of wave fields scattered by obstacles immersed in homogeneous infinite media. In particular, we consider the 2D time-domain damped wave equation, endowed with a Dirichlet condition on the boundary (sound-soft scattering). To reduce the infinite domain to a finite computational one, we introduce an artificial boundary on which we impose a Boundary Integral Non-Reflecting Boundary Condition (BI-NRBC). We apply a CVEM combined with the Crank–Nicolson time integrator in the interior domain, and we discretize the BI-NRBC by a convolution quadrature formula in time and a collocation method in space. We present some numerical results to test the performance of the proposed approach and to highlight its effectiveness, especially when obstacles with complex geometries are considered.
{"title":"CVEM-BEM Coupling for the Simulation of Time-Domain Wave Fields Scattered by Obstacles with Complex Geometries","authors":"L. Desiderio, S. Falletta, M. Ferrari, L. Scuderi","doi":"10.1515/cmam-2022-0084","DOIUrl":"https://doi.org/10.1515/cmam-2022-0084","url":null,"abstract":"Abstract In this paper, we present a numerical method based on the coupling between a Curved Virtual Element Method (CVEM) and a Boundary Element Method (BEM) for the simulation of wave fields scattered by obstacles immersed in homogeneous infinite media. In particular, we consider the 2D time-domain damped wave equation, endowed with a Dirichlet condition on the boundary (sound-soft scattering). To reduce the infinite domain to a finite computational one, we introduce an artificial boundary on which we impose a Boundary Integral Non-Reflecting Boundary Condition (BI-NRBC). We apply a CVEM combined with the Crank–Nicolson time integrator in the interior domain, and we discretize the BI-NRBC by a convolution quadrature formula in time and a collocation method in space. We present some numerical results to test the performance of the proposed approach and to highlight its effectiveness, especially when obstacles with complex geometries are considered.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45931680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract We are concerned with the numerical computation of electrostatic forces/torques in only piece-wise homogeneous materials using the boundary element method (BEM). Conventional force formulas based on the Maxwell stress tensor yield functionals that fail to be continuous on natural trace spaces. Thus their use in conjunction with BEM incurs slow convergence and low accuracy. We employ the remedy discovered in [P. Panchal and R. Hiptmair, Electrostatic force computation with boundary element methods, SMAI J. Comput. Math. 8 (2022), 49–74]. Motivated by the virtual work principle which is interpreted using techniques of shape calculus, and using the adjoint method from shape optimization, we derive stable interface-based force functionals suitable for use with BEM. This is done in the framework of single-trace direct boundary integral equations for second-order transmission problems. Numerical tests confirm the fast asymptotic convergence and superior accuracy of the new formulas for the computation of total forces and torques.
{"title":"Force Computation for Dielectrics Using Shape Calculus","authors":"P. Panchal, N. Ren, R. Hiptmair","doi":"10.1515/cmam-2022-0112","DOIUrl":"https://doi.org/10.1515/cmam-2022-0112","url":null,"abstract":"Abstract We are concerned with the numerical computation of electrostatic forces/torques in only piece-wise homogeneous materials using the boundary element method (BEM). Conventional force formulas based on the Maxwell stress tensor yield functionals that fail to be continuous on natural trace spaces. Thus their use in conjunction with BEM incurs slow convergence and low accuracy. We employ the remedy discovered in [P. Panchal and R. Hiptmair, Electrostatic force computation with boundary element methods, SMAI J. Comput. Math. 8 (2022), 49–74]. Motivated by the virtual work principle which is interpreted using techniques of shape calculus, and using the adjoint method from shape optimization, we derive stable interface-based force functionals suitable for use with BEM. This is done in the framework of single-trace direct boundary integral equations for second-order transmission problems. Numerical tests confirm the fast asymptotic convergence and superior accuracy of the new formulas for the computation of total forces and torques.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48145609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}