首页 > 最新文献

Annual Review of Virology最新文献

英文 中文
The Knowns and Unknowns of Herpesvirus Nuclear Egress. 疱疹病毒核出口的已知与未知。
IF 11.3 1区 医学 Q1 VIROLOGY Pub Date : 2023-09-29 Epub Date: 2023-04-11 DOI: 10.1146/annurev-virology-111821-105518
Barbara G Klupp, Thomas C Mettenleiter

Nuclear egress of herpesvirus capsids across the intact nuclear envelope is an exceptional vesicle-mediated nucleocytoplasmic translocation resulting in the delivery of herpesvirus capsids into the cytosol. Budding of the (nucleo)capsid at and scission from the inner nuclear membrane (INM) is mediated by the viral nuclear egress complex (NEC) resulting in a transiently enveloped virus particle in the perinuclear space followed by fusion of the primary envelope with the outer nuclear membrane (ONM). The dimeric NEC oligomerizes into a honeycomb-shaped coat underlining the INM to induce membrane curvature and scission. Mutational analyses complemented structural data defining functionally important regions. Questions remain, including where and when the NEC is formed and how membrane curvature is mediated, vesicle formation is regulated, and directionality is secured. The composition of the primary enveloped virion and the machinery mediating fusion of the primary envelope with the ONM is still debated. While NEC-mediated budding apparently follows a highly conserved mechanism, species and/or cell type-specific differences complicate understanding of later steps.

疱疹病毒衣壳穿过完整核膜的核出口是一种特殊的囊泡介导的核质易位,导致疱疹病毒衣衣壳进入胞质溶胶。病毒核出口复合物(NEC)介导(核)衣壳在内核膜(INM)上出芽和从内核膜上断裂,导致核周空间中的瞬时包膜病毒颗粒,随后初级包膜与外核膜(ONM)融合。二聚体NEC低聚成蜂窝状涂层,在INM下面,以诱导膜弯曲和断裂。突变分析补充了定义功能重要区域的结构数据。问题仍然存在,包括NEC在哪里和何时形成,以及如何介导膜弯曲,调节囊泡形成,以及确保方向性。初级包膜病毒粒子的组成以及介导初级包膜与ONM融合的机制仍存在争议。虽然NEC介导的出芽明显遵循高度保守的机制,但物种和/或细胞类型的特异性差异使对后续步骤的理解复杂化。
{"title":"The Knowns and Unknowns of Herpesvirus Nuclear Egress.","authors":"Barbara G Klupp,&nbsp;Thomas C Mettenleiter","doi":"10.1146/annurev-virology-111821-105518","DOIUrl":"10.1146/annurev-virology-111821-105518","url":null,"abstract":"<p><p>Nuclear egress of herpesvirus capsids across the intact nuclear envelope is an exceptional vesicle-mediated nucleocytoplasmic translocation resulting in the delivery of herpesvirus capsids into the cytosol. Budding of the (nucleo)capsid at and scission from the inner nuclear membrane (INM) is mediated by the viral nuclear egress complex (NEC) resulting in a transiently enveloped virus particle in the perinuclear space followed by fusion of the primary envelope with the outer nuclear membrane (ONM). The dimeric NEC oligomerizes into a honeycomb-shaped coat underlining the INM to induce membrane curvature and scission. Mutational analyses complemented structural data defining functionally important regions. Questions remain, including where and when the NEC is formed and how membrane curvature is mediated, vesicle formation is regulated, and directionality is secured. The composition of the primary enveloped virion and the machinery mediating fusion of the primary envelope with the ONM is still debated. While NEC-mediated budding apparently follows a highly conserved mechanism, species and/or cell type-specific differences complicate understanding of later steps.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":" ","pages":"305-323"},"PeriodicalIF":11.3,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9283338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Structures and Mechanisms of Nonsegmented, Negative-Strand RNA Virus Polymerases. 非分段负链RNA病毒聚合酶的结构和机制。
IF 11.3 1区 医学 Q1 VIROLOGY Pub Date : 2023-09-29 Epub Date: 2023-05-03 DOI: 10.1146/annurev-virology-111821-102603
Mohamed Ouizougun-Oubari, Rachel Fearns

The nonsegmented, negative-strand RNA viruses (nsNSVs), also known as the order Mononegavirales, have a genome consisting of a single strand of negative-sense RNA. Integral to the nsNSV replication cycle is the viral polymerase, which is responsible for transcribing the viral genome, to produce an array of capped and polyadenylated messenger RNAs, and replicating it to produce new genomes. To perform the different steps that are necessary for these processes, the nsNSV polymerases undergo a series of coordinated conformational transitions. While much is still to be learned regarding the intersection of nsNSV polymerase dynamics, structure, and function, recently published polymerase structures, combined with a history of biochemical and molecular biology studies, have provided new insights into how nsNSV polymerases function as dynamic machines. In this review, we consider each of the steps involved in nsNSV transcription and replication and suggest how these relate to solved polymerase structures.

非片段负链RNA病毒(nsNSV),也称为单阴性病毒目,其基因组由单链负义RNA组成。nsNSV复制周期中不可或缺的是病毒聚合酶,它负责转录病毒基因组,产生一系列带帽和多腺苷酸化的信使RNA,并将其复制以产生新的基因组。为了进行这些过程所需的不同步骤,nsNSV聚合酶经历一系列配位构象转变。尽管关于nsNSV聚合酶动力学、结构和功能的交叉还有很多需要了解,但最近发表的聚合酶结构,结合生物化学和分子生物学研究的历史,为nsNSV多聚酶如何作为动态机器发挥作用提供了新的见解。在这篇综述中,我们考虑了nsNSV转录和复制所涉及的每一个步骤,并提出了这些步骤与已解决的聚合酶结构的关系。
{"title":"Structures and Mechanisms of Nonsegmented, Negative-Strand RNA Virus Polymerases.","authors":"Mohamed Ouizougun-Oubari,&nbsp;Rachel Fearns","doi":"10.1146/annurev-virology-111821-102603","DOIUrl":"10.1146/annurev-virology-111821-102603","url":null,"abstract":"<p><p>The nonsegmented, negative-strand RNA viruses (nsNSVs), also known as the order <i>Mononegavirales</i>, have a genome consisting of a single strand of negative-sense RNA. Integral to the nsNSV replication cycle is the viral polymerase, which is responsible for transcribing the viral genome, to produce an array of capped and polyadenylated messenger RNAs, and replicating it to produce new genomes. To perform the different steps that are necessary for these processes, the nsNSV polymerases undergo a series of coordinated conformational transitions. While much is still to be learned regarding the intersection of nsNSV polymerase dynamics, structure, and function, recently published polymerase structures, combined with a history of biochemical and molecular biology studies, have provided new insights into how nsNSV polymerases function as dynamic machines. In this review, we consider each of the steps involved in nsNSV transcription and replication and suggest how these relate to solved polymerase structures.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":" ","pages":"199-215"},"PeriodicalIF":11.3,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9404562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Structure and Role of O-Linked Glycans in Viral Envelope Proteins. O-连接的甘氨酸在病毒包膜蛋白中的结构和作用。
IF 11.3 1区 医学 Q1 VIROLOGY Pub Date : 2023-09-29 Epub Date: 2023-07-06 DOI: 10.1146/annurev-virology-111821-121007
Sigvard Olofsson, Marta Bally, Edward Trybala, Tomas Bergström

N- and O-glycans are both important constituents of viral envelope glycoproteins. O-linked glycosylation can be initiated by any of 20 different human polypeptide O-acetylgalactosaminyl transferases, resulting in an important functional O-glycan heterogeneity. O-glycans are organized as solitary glycans or in clusters of multiple glycans forming mucin-like domains. They are functional both in the viral life cycle and in viral colonization of their host. Negatively charged O-glycans are crucial for the interactions between glycosaminoglycan-binding viruses and their host. A novel mechanism, based on controlled electrostatic repulsion, explains how such viruses solve the conflict between optimized viral attachment to target cells and efficient egress of progeny virus. Conserved solitary O-glycans appear important for viral uptake in target cells by contributing to viral envelope fusion. Dual roles of viral O-glycans in the host B cell immune response, either epitope blocking or epitope promoting, may be exploitable for vaccine development. Finally, specific virus-induced O-glycans may be involved in viremic spread.

N-和O-聚糖都是病毒包膜糖蛋白的重要组成部分。O-连接的糖基化可以由20种不同的人类多肽O-乙酰氨基半乳糖转移酶中的任何一种启动,导致重要的功能O-聚糖异质性。O-聚糖被组织为单独的聚糖或形成粘蛋白样结构域的多个聚糖的簇。它们在病毒生命周期和宿主的病毒定殖中都具有功能。带负电荷的O-聚糖对糖胺聚糖结合病毒与其宿主之间的相互作用至关重要。一种基于可控静电排斥的新机制解释了这种病毒如何解决病毒与靶细胞的最佳附着和子代病毒的有效排出之间的冲突。保存的孤立O-聚糖通过促进病毒包膜融合,对靶细胞中的病毒摄取似乎很重要。病毒O-聚糖在宿主B细胞免疫反应中的双重作用,即表位阻断或表位促进,可能可用于疫苗开发。最后,特定病毒诱导的O-聚糖可能参与病毒血症的传播。
{"title":"Structure and Role of O-Linked Glycans in Viral Envelope Proteins.","authors":"Sigvard Olofsson,&nbsp;Marta Bally,&nbsp;Edward Trybala,&nbsp;Tomas Bergström","doi":"10.1146/annurev-virology-111821-121007","DOIUrl":"10.1146/annurev-virology-111821-121007","url":null,"abstract":"<p><p>N- and O-glycans are both important constituents of viral envelope glycoproteins. O-linked glycosylation can be initiated by any of 20 different human polypeptide O-acetylgalactosaminyl transferases, resulting in an important functional O-glycan heterogeneity. O-glycans are organized as solitary glycans or in clusters of multiple glycans forming mucin-like domains. They are functional both in the viral life cycle and in viral colonization of their host. Negatively charged O-glycans are crucial for the interactions between glycosaminoglycan-binding viruses and their host. A novel mechanism, based on controlled electrostatic repulsion, explains how such viruses solve the conflict between optimized viral attachment to target cells and efficient egress of progeny virus. Conserved solitary O-glycans appear important for viral uptake in target cells by contributing to viral envelope fusion. Dual roles of viral O-glycans in the host B cell immune response, either epitope blocking or epitope promoting, may be exploitable for vaccine development. Finally, specific virus-induced O-glycans may be involved in viremic spread.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":" ","pages":"283-304"},"PeriodicalIF":11.3,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9595776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
CBASS to cGAS-STING: The Origins and Mechanisms of Nucleotide Second Messenger Immune Signaling. CBASS至cGAS STING:核苷酸第二信使免疫信号的起源和机制。
IF 8.3 1区 医学 Q1 VIROLOGY Pub Date : 2023-09-29 Epub Date: 2023-06-28 DOI: 10.1146/annurev-virology-111821-115636
Kailey M Slavik, Philip J Kranzusch

Host defense against viral pathogens is an essential function for all living organisms. In cell-intrinsic innate immunity, dedicated sensor proteins recognize molecular signatures of infection and communicate to downstream adaptor or effector proteins to activate immune defense. Remarkably, recent evidence demonstrates that much of the core machinery of innate immunity is shared across eukaryotic and prokaryotic domains of life. Here, we review a pioneering example of evolutionary conservation in innate immunity: the animal cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) signaling pathway and its ancestor in bacteria, CBASS (cyclic nucleotide-based antiphage signaling system) antiphage defense. We discuss the unique mechanism by which animal cGLRs (cGAS-like receptors) and bacterial CD-NTases (cGAS/dinucleotide-cyclase in Vibrio (DncV)-like nucleotidyltransferases) in these pathways link pathogen detection with immune activation using nucleotide second messenger signals. Comparing the biochemical, structural, and mechanistic details of cGAS-STING, cGLR signaling, and CBASS, we highlight emerging questions in the field and examine evolutionary pressures that may have shaped the origins of nucleotide second messenger signaling in antiviral defense.

宿主防御病毒病原体是所有生物体的基本功能。在细胞固有先天免疫中,专用传感器蛋白识别感染的分子特征,并与下游衔接蛋白或效应蛋白通信,以激活免疫防御。值得注意的是,最近的证据表明,先天免疫的大部分核心机制在真核生物和原核生物的生命领域中是共享的。在这里,我们回顾了先天免疫进化保护的一个开创性例子:动物cGAS-STING(干扰素基因的环状GMP-AMP合酶刺激因子)信号通路及其在细菌中的祖先,CBASS(基于环核苷酸的抗噬菌体信号系统)抗噬菌体防御。我们讨论了动物cGLRs(cGAS样受体)和细菌CD NTase(Vibrio(DncV)样核苷酸转移酶中的cGAS/二核苷酸环化酶)在这些途径中使用核苷酸第二信使信号将病原体检测与免疫激活联系起来的独特机制。比较cGAS STING、cGLR信号传导和CBASS的生化、结构和机制细节,我们强调了该领域新出现的问题,并研究了可能影响抗病毒防御中核苷酸第二信使信号传导起源的进化压力。
{"title":"CBASS to cGAS-STING: The Origins and Mechanisms of Nucleotide Second Messenger Immune Signaling.","authors":"Kailey M Slavik, Philip J Kranzusch","doi":"10.1146/annurev-virology-111821-115636","DOIUrl":"10.1146/annurev-virology-111821-115636","url":null,"abstract":"<p><p>Host defense against viral pathogens is an essential function for all living organisms. In cell-intrinsic innate immunity, dedicated sensor proteins recognize molecular signatures of infection and communicate to downstream adaptor or effector proteins to activate immune defense. Remarkably, recent evidence demonstrates that much of the core machinery of innate immunity is shared across eukaryotic and prokaryotic domains of life. Here, we review a pioneering example of evolutionary conservation in innate immunity: the animal cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) signaling pathway and its ancestor in bacteria, CBASS (cyclic nucleotide-based antiphage signaling system) antiphage defense. We discuss the unique mechanism by which animal cGLRs (cGAS-like receptors) and bacterial CD-NTases (cGAS/dinucleotide-cyclase in <i>Vibrio</i> (DncV)-like nucleotidyltransferases) in these pathways link pathogen detection with immune activation using nucleotide second messenger signals. Comparing the biochemical, structural, and mechanistic details of cGAS-STING, cGLR signaling, and CBASS, we highlight emerging questions in the field and examine evolutionary pressures that may have shaped the origins of nucleotide second messenger signaling in antiviral defense.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":" ","pages":"423-453"},"PeriodicalIF":8.3,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12337107/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9695475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
What Have We Learned by Resurrecting the 1918 Influenza Virus? 我们从1918年流感病毒的复活中学到了什么?
IF 11.3 1区 医学 Q1 VIROLOGY Pub Date : 2023-09-29 DOI: 10.1146/annurev-virology-111821-104408
Brad Gilbertson, Kanta Subbarao

The 1918 Spanish influenza pandemic was one of the deadliest infectious disease events in recorded history, resulting in approximately 50-100 million deaths worldwide. The origins of the 1918 virus and the molecular basis for its exceptional virulence remained a mystery for much of the 20th century because the pandemic predated virologic techniques to isolate, passage, and store influenza viruses. In the late 1990s, overlapping fragments of influenza viral RNA preserved in the tissues of several 1918 victims were amplified and sequenced. The use of influenza reverse genetics then permitted scientists to reconstruct the 1918 virus entirely from cloned complementary DNA, leading to new insights into the origin of the virus and its pathogenicity. Here, we discuss some of the advances made by resurrection of the 1918 virus, including the rise of innovative molecular research, which is a topic in the dual use debate.

1918年西班牙流感大流行是有记录以来最致命的传染病事件之一,导致全球约5000万至1亿人死亡。1918年病毒的起源及其异常毒力的分子基础在20世纪的大部分时间里仍然是个谜,因为这场大流行早于分离、传播和储存流感病毒的病毒学技术。20世纪90年代末,保存在1918名受害者组织中的流感病毒RNA的重叠片段被扩增并测序。流感反向遗传学的使用使科学家能够完全从克隆的互补DNA中重建1918年的病毒,从而对病毒的起源及其致病性有了新的见解。在这里,我们讨论1918年病毒复活所取得的一些进展,包括创新分子研究的兴起,这是两用辩论中的一个话题。
{"title":"What Have We Learned by Resurrecting the 1918 Influenza Virus?","authors":"Brad Gilbertson,&nbsp;Kanta Subbarao","doi":"10.1146/annurev-virology-111821-104408","DOIUrl":"https://doi.org/10.1146/annurev-virology-111821-104408","url":null,"abstract":"<p><p>The 1918 Spanish influenza pandemic was one of the deadliest infectious disease events in recorded history, resulting in approximately 50-100 million deaths worldwide. The origins of the 1918 virus and the molecular basis for its exceptional virulence remained a mystery for much of the 20th century because the pandemic predated virologic techniques to isolate, passage, and store influenza viruses. In the late 1990s, overlapping fragments of influenza viral RNA preserved in the tissues of several 1918 victims were amplified and sequenced. The use of influenza reverse genetics then permitted scientists to reconstruct the 1918 virus entirely from cloned complementary DNA, leading to new insights into the origin of the virus and its pathogenicity. Here, we discuss some of the advances made by resurrection of the 1918 virus, including the rise of innovative molecular research, which is a topic in the dual use debate.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":"10 1","pages":"25-47"},"PeriodicalIF":11.3,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41121716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunomodulation by Enteric Viruses. 肠道病毒的免疫调节。
IF 11.3 1区 医学 Q1 VIROLOGY Pub Date : 2023-09-29 Epub Date: 2023-06-28 DOI: 10.1146/annurev-virology-111821-112317
Lucie Bernard-Raichon, Ken Cadwell

Enteric viruses display intricate adaptations to the host mucosal immune system to successfully reproduce in the gastrointestinal tract and cause maladies ranging from gastroenteritis to life-threatening disease upon extraintestinal dissemination. However, many viral infections are asymptomatic, and their presence in the gut is associated with an altered immune landscape that can be beneficial or adverse in certain contexts. Genetic variation in the host and environmental factors including the bacterial microbiota influence how the immune system responds to infections in a remarkably viral strain-specific manner. This immune response, in turn, determines whether a given virus establishes acute versus chronic infection, which may have long-lasting consequences such as susceptibility to inflammatory disease. In this review, we summarize our current understanding of the mechanisms involved in the interaction between enteric viruses and the immune system that underlie the impact of these ubiquitous infectious agents on our health.

肠道病毒对宿主粘膜免疫系统表现出复杂的适应能力,从而在胃肠道中成功繁殖,并在肠道外传播时引发从肠胃炎到危及生命的疾病等疾病。然而,许多病毒感染是无症状的,它们在肠道中的存在与免疫环境的改变有关,在某些情况下可能是有益的,也可能是不利的。宿主的遗传变异和包括细菌微生物群在内的环境因素影响免疫系统如何以显著的病毒株特异性方式对感染做出反应。这种免疫反应反过来决定了特定病毒是建立急性感染还是慢性感染,这可能会产生长期的后果,如对炎症疾病的易感性。在这篇综述中,我们总结了我们目前对肠道病毒和免疫系统之间相互作用机制的理解,这些机制是这些无处不在的传染源对我们健康影响的基础。
{"title":"Immunomodulation by Enteric Viruses.","authors":"Lucie Bernard-Raichon,&nbsp;Ken Cadwell","doi":"10.1146/annurev-virology-111821-112317","DOIUrl":"10.1146/annurev-virology-111821-112317","url":null,"abstract":"<p><p>Enteric viruses display intricate adaptations to the host mucosal immune system to successfully reproduce in the gastrointestinal tract and cause maladies ranging from gastroenteritis to life-threatening disease upon extraintestinal dissemination. However, many viral infections are asymptomatic, and their presence in the gut is associated with an altered immune landscape that can be beneficial or adverse in certain contexts. Genetic variation in the host and environmental factors including the bacterial microbiota influence how the immune system responds to infections in a remarkably viral strain-specific manner. This immune response, in turn, determines whether a given virus establishes acute versus chronic infection, which may have long-lasting consequences such as susceptibility to inflammatory disease. In this review, we summarize our current understanding of the mechanisms involved in the interaction between enteric viruses and the immune system that underlie the impact of these ubiquitous infectious agents on our health.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":" ","pages":"477-502"},"PeriodicalIF":11.3,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9695474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
For Better or Worse: Modulation of the Host DNA Damage Response by Human Papillomavirus. 好与坏:人类乳头瘤病毒对宿主DNA损伤反应的调节。
IF 11.3 1区 医学 Q1 VIROLOGY Pub Date : 2023-09-29 Epub Date: 2023-04-11 DOI: 10.1146/annurev-virology-111821-103452
Caleb J Studstill, Cary A Moody

High-risk human papillomaviruses (HPVs) are associated with several human cancers. HPVs are small, DNA viruses that rely on host cell machinery for viral replication. The HPV life cycle takes place in the stratified epithelium, which is composed of different cell states, including terminally differentiating cells that are no longer active in the cell cycle. HPVs have evolved mechanisms to persist and replicate in the stratified epithelium by hijacking and modulating cellular pathways, including the DNA damage response (DDR). HPVs activate and exploit DDR pathways to promote viral replication, which in turn increases the susceptibility of the host cell to genomic instability and carcinogenesis. Here, we review recent advances in our understanding of the regulation of the host cell DDR by high-risk HPVs during the viral life cycle and discuss the potential cellular consequences of modulating DDR pathways.

高危型人乳头瘤病毒(HPV)与几种人类癌症有关。HPV是一种小型DNA病毒,依靠宿主细胞机制进行病毒复制。HPV的生命周期发生在复层上皮中,复层上皮由不同的细胞状态组成,包括在细胞周期中不再活跃的终末分化细胞。HPV已经进化出通过劫持和调节细胞途径(包括DNA损伤反应(DDR))在复层上皮中持续和复制的机制。HPV激活并利用DDR途径促进病毒复制,从而增加宿主细胞对基因组不稳定和致癌的易感性。在这里,我们回顾了我们对高风险HPV在病毒生命周期中调节宿主细胞DDR的理解的最新进展,并讨论了调节DDR途径的潜在细胞后果。
{"title":"For Better or Worse: Modulation of the Host DNA Damage Response by Human Papillomavirus.","authors":"Caleb J Studstill, Cary A Moody","doi":"10.1146/annurev-virology-111821-103452","DOIUrl":"10.1146/annurev-virology-111821-103452","url":null,"abstract":"<p><p>High-risk human papillomaviruses (HPVs) are associated with several human cancers. HPVs are small, DNA viruses that rely on host cell machinery for viral replication. The HPV life cycle takes place in the stratified epithelium, which is composed of different cell states, including terminally differentiating cells that are no longer active in the cell cycle. HPVs have evolved mechanisms to persist and replicate in the stratified epithelium by hijacking and modulating cellular pathways, including the DNA damage response (DDR). HPVs activate and exploit DDR pathways to promote viral replication, which in turn increases the susceptibility of the host cell to genomic instability and carcinogenesis. Here, we review recent advances in our understanding of the regulation of the host cell DDR by high-risk HPVs during the viral life cycle and discuss the potential cellular consequences of modulating DDR pathways.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":" ","pages":"325-345"},"PeriodicalIF":11.3,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10956471/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9283339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seeing Biomolecular Condensates Through the Lens of Viruses. 从病毒的视角看生物分子凝聚态。
IF 11.3 1区 医学 Q1 VIROLOGY Pub Date : 2023-09-29 Epub Date: 2023-04-11 DOI: 10.1146/annurev-virology-111821-103226
Alexander Borodavka, Julia Acker

Phase separation of viral biopolymers is a key factor in the formation of cytoplasmic viral inclusions, known as sites of virus replication and assembly. This review describes the mechanisms and factors that affect phase separation in viral replication and identifies potential areas for future research. Drawing inspiration from studies on cellular RNA-rich condensates, we compare the hierarchical coassembly of ribosomal RNAs and proteins in the nucleolus to the coordinated coassembly of viral RNAs and proteins taking place within viral factories in viruses containing segmented RNA genomes. We highlight the common characteristics of biomolecular condensates in viral replication and how this new understanding is reshaping our views of virus assembly mechanisms. Such studies have the potential to uncover unexplored antiviral strategies targeting these phase-separated states.

病毒生物聚合物的相分离是细胞质病毒内含物形成的关键因素,细胞质病毒内含体被称为病毒复制和组装位点。这篇综述描述了影响病毒复制中相分离的机制和因素,并确定了未来研究的潜在领域。从对富含RNA的细胞缩合物的研究中获得灵感,我们将核糖体RNA和蛋白质在细胞核中的分级共组装与病毒RNA和蛋白质的协同共组装进行了比较,这些协同组装发生在含有分段RNA基因组的病毒的病毒工厂中。我们强调了病毒复制中生物分子缩合物的共同特征,以及这种新的理解如何重塑我们对病毒组装机制的看法。这些研究有可能揭示针对这些相分离状态的未探索的抗病毒策略。
{"title":"Seeing Biomolecular Condensates Through the Lens of Viruses.","authors":"Alexander Borodavka,&nbsp;Julia Acker","doi":"10.1146/annurev-virology-111821-103226","DOIUrl":"10.1146/annurev-virology-111821-103226","url":null,"abstract":"<p><p>Phase separation of viral biopolymers is a key factor in the formation of cytoplasmic viral inclusions, known as sites of virus replication and assembly. This review describes the mechanisms and factors that affect phase separation in viral replication and identifies potential areas for future research. Drawing inspiration from studies on cellular RNA-rich condensates, we compare the hierarchical coassembly of ribosomal RNAs and proteins in the nucleolus to the coordinated coassembly of viral RNAs and proteins taking place within viral factories in viruses containing segmented RNA genomes. We highlight the common characteristics of biomolecular condensates in viral replication and how this new understanding is reshaping our views of virus assembly mechanisms. Such studies have the potential to uncover unexplored antiviral strategies targeting these phase-separated states.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":" ","pages":"163-182"},"PeriodicalIF":11.3,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9283340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The Times They Are a-Changing. 时代在改变。
IF 11.3 1区 医学 Q1 VIROLOGY Pub Date : 2023-09-29 DOI: 10.1146/annurev-vi-10-102822-100111
Lynn W Enquist
{"title":"The Times They Are a-Changing.","authors":"Lynn W Enquist","doi":"10.1146/annurev-vi-10-102822-100111","DOIUrl":"10.1146/annurev-vi-10-102822-100111","url":null,"abstract":"","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":" ","pages":"ii-iii"},"PeriodicalIF":11.3,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40487522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Glimpse into the Past: What Ancient Viral Genomes Reveal About Human History. 回顾过去:古代病毒基因组揭示了人类历史。
IF 11.3 1区 医学 Q1 VIROLOGY Pub Date : 2023-09-29 Epub Date: 2023-06-02 DOI: 10.1146/annurev-virology-111821-123859
Axel A Guzmán-Solís, Miguel Alejandro Navarro, María C Ávila-Arcos, Daniel Blanco-Melo
Humans have battled viruses for millennia. However, directly linking the symptomatology of disease outbreaks to specific viral pathogens was not possible until the twentieth century. With the advent of the genomic era and the development of advanced protocols for isolation, sequencing, and analysis of ancient nucleic acids from diverse human remains, the identification and characterization of ancient viruses became feasible. Recent studies have provided invaluable information about past epidemics and made it possible to examine assumptions and inferences on the origin and evolution of certain viral families. In parallel, the study of ancient viruses also uncovered their importance in the evolution of the human lineage and their key roles in shaping major events in human history. In this review, we describe the strategies used for the study of ancient viruses, along with their limitations, and provide a detailed account of what past viral infections have revealed about human history. Expected final online publication date for the Annual Review of Virology, Volume 10 is September 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
几千年来,人类一直在与病毒作斗争。然而,直到二十世纪才可能将疾病爆发的症状学与特定的病毒病原体直接联系起来。随着基因组时代的到来,以及从不同人类遗骸中分离、测序和分析古代核酸的先进方案的发展,鉴定和表征古代病毒变得可行。最近的研究提供了关于过去流行病的宝贵信息,并使人们有可能检验关于某些病毒家族起源和进化的假设和推断。与此同时,对古代病毒的研究也揭示了它们在人类谱系进化中的重要性,以及它们在塑造人类历史重大事件中的关键作用。在这篇综述中,我们描述了用于研究古代病毒的策略及其局限性,并详细介绍了过去的病毒感染揭示了人类历史。
{"title":"A Glimpse into the Past: What Ancient Viral Genomes Reveal About Human History.","authors":"Axel A Guzmán-Solís,&nbsp;Miguel Alejandro Navarro,&nbsp;María C Ávila-Arcos,&nbsp;Daniel Blanco-Melo","doi":"10.1146/annurev-virology-111821-123859","DOIUrl":"10.1146/annurev-virology-111821-123859","url":null,"abstract":"Humans have battled viruses for millennia. However, directly linking the symptomatology of disease outbreaks to specific viral pathogens was not possible until the twentieth century. With the advent of the genomic era and the development of advanced protocols for isolation, sequencing, and analysis of ancient nucleic acids from diverse human remains, the identification and characterization of ancient viruses became feasible. Recent studies have provided invaluable information about past epidemics and made it possible to examine assumptions and inferences on the origin and evolution of certain viral families. In parallel, the study of ancient viruses also uncovered their importance in the evolution of the human lineage and their key roles in shaping major events in human history. In this review, we describe the strategies used for the study of ancient viruses, along with their limitations, and provide a detailed account of what past viral infections have revealed about human history. Expected final online publication date for the Annual Review of Virology, Volume 10 is September 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":" ","pages":"49-75"},"PeriodicalIF":11.3,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9937232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Annual Review of Virology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1