J. Byrne, P. Lund, M. Asghar, Damian Flynn, L. Greco, Reinhard Haas, M. Röder, B. M. Romera, Bo Shen, G. Berndes, H. Bindslev, T. Johansson, Vikram Kumar, H. Kuwano, P. Morthorst, Lars J. Nilsson, David Serrano, I. Vasalos, Young-Doo Wang, Alexander Wokaun, Jae Ho Yun
{"title":"Issue Information","authors":"J. Byrne, P. Lund, M. Asghar, Damian Flynn, L. Greco, Reinhard Haas, M. Röder, B. M. Romera, Bo Shen, G. Berndes, H. Bindslev, T. Johansson, Vikram Kumar, H. Kuwano, P. Morthorst, Lars J. Nilsson, David Serrano, I. Vasalos, Young-Doo Wang, Alexander Wokaun, Jae Ho Yun","doi":"10.1002/wene.441","DOIUrl":"https://doi.org/10.1002/wene.441","url":null,"abstract":"","PeriodicalId":48766,"journal":{"name":"Wiley Interdisciplinary Reviews-Energy and Environment","volume":"12 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41461842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phase change materials (PCMs) are an efficient alternative to store and release heat at a specific range of temperature. Here PCMs and heat enhancement methodologies for PCM storage are reviewed. A short overview of PCMs and their applications is presented in addition to the progress during the last 10 years. Heat enhancement techniques, that is, extended surfaces, multiple and composite PCMs, and encapsulation techniques, are presented along with a statistical overview of studies during 2016–2021. The importance of various fin and storage tank geometries (extended surfaces) is discussed in detail. Advancement in the latest heat enhancement techniques such as use of nano‐enhanced PCMs is presented. Recommendations for future research are provided.
{"title":"A review of phase change materials and heat enhancement methodologies","authors":"Muhammad Saqib, R. Andrzejczyk","doi":"10.1002/wene.467","DOIUrl":"https://doi.org/10.1002/wene.467","url":null,"abstract":"Phase change materials (PCMs) are an efficient alternative to store and release heat at a specific range of temperature. Here PCMs and heat enhancement methodologies for PCM storage are reviewed. A short overview of PCMs and their applications is presented in addition to the progress during the last 10 years. Heat enhancement techniques, that is, extended surfaces, multiple and composite PCMs, and encapsulation techniques, are presented along with a statistical overview of studies during 2016–2021. The importance of various fin and storage tank geometries (extended surfaces) is discussed in detail. Advancement in the latest heat enhancement techniques such as use of nano‐enhanced PCMs is presented. Recommendations for future research are provided.","PeriodicalId":48766,"journal":{"name":"Wiley Interdisciplinary Reviews-Energy and Environment","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45064702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Electrochemical energy storage and conversion devices are very unique and important for providing solutions to clean, smart, and green energy sectors particularly for stationary and automobile applications. They are broadly classified and overviewed with a special emphasis on rechargeable batteries (Li‐ion, Li‐oxygen, Li‐sulfur, Na‐ion, and redox flow batteries), electrocatalysts, and membrane electrolytes for fuel cells. The critical challenges for the development of sustainable energy storage systems are the intrinsically limited energy density, poor rate capability, cost, safety, and durability. Albeit huge advancements have been made to address these challenges, it is still long way to reach the energy demand, especially in the large‐scale storage and e‐mobility. A landscape of battery materials developments including the next generation battery technology is meticulously arrived, which enables to explore the alternate energy storage technology. Next generation energy storage systems such as Li‐oxygen, Li‐sulfur, and Na‐ion chemistries can be the potential option for outperforming the state‐of‐art Li‐ion batteries. Also, redox flow batteries, which are generally recognized as a possible alternative for large‐scale storage electricity, have the unique virtue of decoupling power and energy. In this overview, a systematic survey on the materials challenges and a comprehensive understanding of the structure–property–performance relationship of the storage and conversion devices is covered. Further, in‐depth detailing of various catalysts and membrane electrolytes that can be explored as a viable alternative for polymer electrolyte fuel cells as well as direction toward futuristic research areas is highlighted.
{"title":"Electrochemical energy storage and conversion: An overview","authors":"P. Ragupathy, S. Bhat, N. Kalaiselvi","doi":"10.1002/wene.464","DOIUrl":"https://doi.org/10.1002/wene.464","url":null,"abstract":"Electrochemical energy storage and conversion devices are very unique and important for providing solutions to clean, smart, and green energy sectors particularly for stationary and automobile applications. They are broadly classified and overviewed with a special emphasis on rechargeable batteries (Li‐ion, Li‐oxygen, Li‐sulfur, Na‐ion, and redox flow batteries), electrocatalysts, and membrane electrolytes for fuel cells. The critical challenges for the development of sustainable energy storage systems are the intrinsically limited energy density, poor rate capability, cost, safety, and durability. Albeit huge advancements have been made to address these challenges, it is still long way to reach the energy demand, especially in the large‐scale storage and e‐mobility. A landscape of battery materials developments including the next generation battery technology is meticulously arrived, which enables to explore the alternate energy storage technology. Next generation energy storage systems such as Li‐oxygen, Li‐sulfur, and Na‐ion chemistries can be the potential option for outperforming the state‐of‐art Li‐ion batteries. Also, redox flow batteries, which are generally recognized as a possible alternative for large‐scale storage electricity, have the unique virtue of decoupling power and energy. In this overview, a systematic survey on the materials challenges and a comprehensive understanding of the structure–property–performance relationship of the storage and conversion devices is covered. Further, in‐depth detailing of various catalysts and membrane electrolytes that can be explored as a viable alternative for polymer electrolyte fuel cells as well as direction toward futuristic research areas is highlighted.","PeriodicalId":48766,"journal":{"name":"Wiley Interdisciplinary Reviews-Energy and Environment","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45672613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anion exchange membrane (AEM)‐based fuel cells as an alternative to proton exchange membrane fuel cells (PEMFCs) are attracting a lot of attention due to lower cost perceived due to use of non‐platinum group metals as the catalysts. This review has focused on the advancements in the materials that have led to achievements in performances similar to that of PEMFC and the challenges that need to be overcome to bring the technology to commercialization. The improvements in the properties of the AEM, the advancements in the AEM, binders and understandings of the cationic species adsorption on the catalysts have led to improved performances >3 W cm−2. The review also highlights the importance of the stability issues of the membranes that has to be overcome for >5000 h of continuous operation for commercialization of the alkaline AEM fuel cell technology. The advancements in other operational parameters like water management, carbonation are also highlighted.
基于阴离子交换膜(AEM)的燃料电池作为质子交换膜燃料电池(PEMFC)的替代品,由于使用非铂族金属作为催化剂而降低了成本,因此备受关注。这篇综述的重点是材料的进步,这些进步导致了与PEMFC类似的性能成就,以及将该技术商业化所需克服的挑战。AEM性能的改进、AEM、粘合剂的进步以及对阳离子物质在催化剂上吸附的理解导致性能的提高>3 W cm−2。该综述还强调了膜稳定性问题的重要性,对于>5000 h用于碱性AEM燃料电池技术商业化的连续操作。还强调了水管理、碳酸化等其他操作参数的进步。
{"title":"Anion exchange membrane fuel cell: New insights and advancements","authors":"R. Vedarajan, R. Balaji, K. Ramya","doi":"10.1002/wene.466","DOIUrl":"https://doi.org/10.1002/wene.466","url":null,"abstract":"Anion exchange membrane (AEM)‐based fuel cells as an alternative to proton exchange membrane fuel cells (PEMFCs) are attracting a lot of attention due to lower cost perceived due to use of non‐platinum group metals as the catalysts. This review has focused on the advancements in the materials that have led to achievements in performances similar to that of PEMFC and the challenges that need to be overcome to bring the technology to commercialization. The improvements in the properties of the AEM, the advancements in the AEM, binders and understandings of the cationic species adsorption on the catalysts have led to improved performances >3 W cm−2. The review also highlights the importance of the stability issues of the membranes that has to be overcome for >5000 h of continuous operation for commercialization of the alkaline AEM fuel cell technology. The advancements in other operational parameters like water management, carbonation are also highlighted.","PeriodicalId":48766,"journal":{"name":"Wiley Interdisciplinary Reviews-Energy and Environment","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2022-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48419128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The ongoing energy issues worldwide have led to the continuous growth of the electrochemical energy storage system in recent years, and the battery is a vital part of it. The battery market, mainly rechargeable batteries, is expanding rapidly to cater to the demands of the changing society, along with the utilization of batteries in electric vehicles, the renewable energy sector, and the industrial sector. From the matured technology like the lead–acid battery to the most advanced Li‐ion (Li‐ion) battery, rechargeable battery technology has developed significantly. In comparison to the conventional lead–acid battery, other rechargeable battery technologies such as Li‐ion, nickel–metal hydride (NiMH), and nickel–cadmium (Ni–Cd) batteries are considered as more promising electrochemical energy storage systems. The Li‐ion battery, which has been on the market since 1991, is the most popular rechargeable battery due to its high energy density and good durability. With the growing market demand of battery with superior electrochemical performance in terms of specific energy, cyclability, stability, and better safety, next generation Li‐ion batteries are being widely explored in the recent time. This review discusses various rechargeable batteries which are in trend and the issues and challenges associated with it. The advancements that have taken place primarily in the electrode (both cathode and anode) materials, along with electrolytes, for improving the battery performance from the year 2000 onwards are discussed. Moreover, discussion on next‐generation batteries is also covered in this review.
{"title":"Recent advancement in rechargeable battery technologies","authors":"Saswati Sarmah, Lakhanlal, B. Kakati, D. Deka","doi":"10.1002/wene.461","DOIUrl":"https://doi.org/10.1002/wene.461","url":null,"abstract":"The ongoing energy issues worldwide have led to the continuous growth of the electrochemical energy storage system in recent years, and the battery is a vital part of it. The battery market, mainly rechargeable batteries, is expanding rapidly to cater to the demands of the changing society, along with the utilization of batteries in electric vehicles, the renewable energy sector, and the industrial sector. From the matured technology like the lead–acid battery to the most advanced Li‐ion (Li‐ion) battery, rechargeable battery technology has developed significantly. In comparison to the conventional lead–acid battery, other rechargeable battery technologies such as Li‐ion, nickel–metal hydride (NiMH), and nickel–cadmium (Ni–Cd) batteries are considered as more promising electrochemical energy storage systems. The Li‐ion battery, which has been on the market since 1991, is the most popular rechargeable battery due to its high energy density and good durability. With the growing market demand of battery with superior electrochemical performance in terms of specific energy, cyclability, stability, and better safety, next generation Li‐ion batteries are being widely explored in the recent time. This review discusses various rechargeable batteries which are in trend and the issues and challenges associated with it. The advancements that have taken place primarily in the electrode (both cathode and anode) materials, along with electrolytes, for improving the battery performance from the year 2000 onwards are discussed. Moreover, discussion on next‐generation batteries is also covered in this review.","PeriodicalId":48766,"journal":{"name":"Wiley Interdisciplinary Reviews-Energy and Environment","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43728906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. L. Sørensen, P. Nystrup, M. B. Bjerregård, J. Møller, P. Bacher, H. Madsen
The intermittency of renewable energy sources, such as wind and solar, means that they require reliable and accurate forecasts to integrate properly into energy systems. This review introduces and examines a selection of state‐of‐the‐art methods that are applied for multivariate forecasting of wind and solar power production. Methods such as conditional parametric and combined forecasting already see wide use in practice, both commercially and scientifically. In the context of multivariate forecasting, it is vital to model the dependence between forecasts correctly. In recent years, reconciliation of forecasts to ensure coherency across spatial and temporal aggregation levels has shown great promise in increasing the accuracy of renewable energy forecasts. We introduce the methodology used for forecast reconciliation and review some recent applications for wind and solar power forecasting. Many forecasters are beginning to see the benefit of the greater information provided by probabilistic forecasts. We highlight stochastic differential equations as a method for probabilistic forecasting, which can also model the dependence structure. Lastly, we discuss forecast evaluation and how choosing a proper approach to evaluation is vital to avoid misrepresenting forecasts.
{"title":"Recent developments in multivariate wind and solar power forecasting","authors":"M. L. Sørensen, P. Nystrup, M. B. Bjerregård, J. Møller, P. Bacher, H. Madsen","doi":"10.1002/wene.465","DOIUrl":"https://doi.org/10.1002/wene.465","url":null,"abstract":"The intermittency of renewable energy sources, such as wind and solar, means that they require reliable and accurate forecasts to integrate properly into energy systems. This review introduces and examines a selection of state‐of‐the‐art methods that are applied for multivariate forecasting of wind and solar power production. Methods such as conditional parametric and combined forecasting already see wide use in practice, both commercially and scientifically. In the context of multivariate forecasting, it is vital to model the dependence between forecasts correctly. In recent years, reconciliation of forecasts to ensure coherency across spatial and temporal aggregation levels has shown great promise in increasing the accuracy of renewable energy forecasts. We introduce the methodology used for forecast reconciliation and review some recent applications for wind and solar power forecasting. Many forecasters are beginning to see the benefit of the greater information provided by probabilistic forecasts. We highlight stochastic differential equations as a method for probabilistic forecasting, which can also model the dependence structure. Lastly, we discuss forecast evaluation and how choosing a proper approach to evaluation is vital to avoid misrepresenting forecasts.","PeriodicalId":48766,"journal":{"name":"Wiley Interdisciplinary Reviews-Energy and Environment","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47698758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Srabanti Ghosh, S. Bera, Soumita Samajdar, Sourabh Pal
Phosphorene, also referred to as phosphorus‐based elemental material (black and red), display unusual electronic‐structure characteristics, which can significantly enrich the fields of energy application and possesses huge potential in photocatalysis owing to its bandgap tunability, high optical absorption, large surface area, high charge carrier mobilities, and efficient solar to chemical energy conversion. However, due to chemical instability and the poor visible‐light utilization efficiency, individual phosphorus materials cannot promote charge transfer and separation. For designing active photocatalysts, phosphorus‐based hybrid materials with effective charge carriers separation at the heterojunction interface has played significant role. In this respect, considerable attempts have been made to fabricate black–red phosphorus heterostructure for photocatalytic applications and solar fuel generation, such as photocatalytic and electrocatalysis water splitting, CO2 reduction, carbohydrates synthesis, etc. This review article highlights the strategies for the synthesis of black–red phosphorus heterostructure materials for catalysis with a special focus on their potential for solar fuel generation applications. Recently developed black–red phosphorus heterostructure will be discussed, which can improve the most challenging drawback of phosphorus materials. Finally, the major challenges along with future trends of black–red phosphorus heterostructure in catalytic applications are outlined.
{"title":"Phosphorus based hybrid materials for green fuel generation","authors":"Srabanti Ghosh, S. Bera, Soumita Samajdar, Sourabh Pal","doi":"10.1002/wene.458","DOIUrl":"https://doi.org/10.1002/wene.458","url":null,"abstract":"Phosphorene, also referred to as phosphorus‐based elemental material (black and red), display unusual electronic‐structure characteristics, which can significantly enrich the fields of energy application and possesses huge potential in photocatalysis owing to its bandgap tunability, high optical absorption, large surface area, high charge carrier mobilities, and efficient solar to chemical energy conversion. However, due to chemical instability and the poor visible‐light utilization efficiency, individual phosphorus materials cannot promote charge transfer and separation. For designing active photocatalysts, phosphorus‐based hybrid materials with effective charge carriers separation at the heterojunction interface has played significant role. In this respect, considerable attempts have been made to fabricate black–red phosphorus heterostructure for photocatalytic applications and solar fuel generation, such as photocatalytic and electrocatalysis water splitting, CO2 reduction, carbohydrates synthesis, etc. This review article highlights the strategies for the synthesis of black–red phosphorus heterostructure materials for catalysis with a special focus on their potential for solar fuel generation applications. Recently developed black–red phosphorus heterostructure will be discussed, which can improve the most challenging drawback of phosphorus materials. Finally, the major challenges along with future trends of black–red phosphorus heterostructure in catalytic applications are outlined.","PeriodicalId":48766,"journal":{"name":"Wiley Interdisciplinary Reviews-Energy and Environment","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46828348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Offshore renewable energies have been identified as important clean sources of energy in line with sustainable development goals. However, their use can generate conflicts with other maritime activities, as well as the protection of biodiversity and the marine environment. This article analyses the influence of regulatory frameworks and ocean governance in the implementation of such devices, from a legal–political point of view. In this sense, it studies how the law of the sea addresses potential international conflicts between ocean energy installations and other activities (e.g., navigation) developed by other states. It also studies the importance of preventive legal tools—marine spatial planning, strategic environmental assessment, and environmental impact assessment—to anticipate and reduce clashes with other sea users as well as environmental damages that may be caused by these structures. Likewise, this research analyses different national consent procedures and legal–economic supporting schemes, to identify those that boost the implementation of such projects more quickly. Finally, the relevance of enhancing the involvement of affected coastal communities and local stakeholders in the decision‐making processes, as well as in the socio‐economic benefits of offshore renewable energy projects to increase their social acceptance, is also emphasized.
{"title":"Socio‐economic, legal, and political context of offshore renewable energies","authors":"Santiago Salvador, M. C. Ribeiro","doi":"10.1002/wene.462","DOIUrl":"https://doi.org/10.1002/wene.462","url":null,"abstract":"Offshore renewable energies have been identified as important clean sources of energy in line with sustainable development goals. However, their use can generate conflicts with other maritime activities, as well as the protection of biodiversity and the marine environment. This article analyses the influence of regulatory frameworks and ocean governance in the implementation of such devices, from a legal–political point of view. In this sense, it studies how the law of the sea addresses potential international conflicts between ocean energy installations and other activities (e.g., navigation) developed by other states. It also studies the importance of preventive legal tools—marine spatial planning, strategic environmental assessment, and environmental impact assessment—to anticipate and reduce clashes with other sea users as well as environmental damages that may be caused by these structures. Likewise, this research analyses different national consent procedures and legal–economic supporting schemes, to identify those that boost the implementation of such projects more quickly. Finally, the relevance of enhancing the involvement of affected coastal communities and local stakeholders in the decision‐making processes, as well as in the socio‐economic benefits of offshore renewable energy projects to increase their social acceptance, is also emphasized.","PeriodicalId":48766,"journal":{"name":"Wiley Interdisciplinary Reviews-Energy and Environment","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41510311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The concept of technological learning is a method to anticipate the future development of the costs of technologies. It has been discussed since the 1930s as a tool for determining manufacturing cost reductions, starting in an airplane manufacturing plant, by means of learning curves and has been widely used since the 2000s in energy models to endogenize technological change. In this paper, the theoretical concept of technological learning based on energy technologies is analyzed based on examples from the literature. The main low‐carbon power generation technologies, photovoltaics, concentrated solar power, wind and nuclear energy were analyzed, showing different cost trends. Additionally, the impact of policy support on technological learning was discussed in concrete examples of bioethanol and heat pumps. We find that the homogeneity and the modularity of a technology are essential for high learning rates. A good proof is the manufacturing cost development of photovoltaics in recent decades, where a rather stable learning rate of 20% has been identified. On the contrary, nuclear power did not evolve into a homogeneous technology due to required environmental adaptations caused by accidents and the lack of standardization and application of new engineering approaches. In that case, the overall price further increased. Finally, another important condition is stable legal and regulatory conditions regarding the implementation.
{"title":"Technological learning: Lessons learned on energy technologies","authors":"Reinhard Haas, M. Sayer, A. Ajanovic, H. Auer","doi":"10.1002/wene.463","DOIUrl":"https://doi.org/10.1002/wene.463","url":null,"abstract":"The concept of technological learning is a method to anticipate the future development of the costs of technologies. It has been discussed since the 1930s as a tool for determining manufacturing cost reductions, starting in an airplane manufacturing plant, by means of learning curves and has been widely used since the 2000s in energy models to endogenize technological change. In this paper, the theoretical concept of technological learning based on energy technologies is analyzed based on examples from the literature. The main low‐carbon power generation technologies, photovoltaics, concentrated solar power, wind and nuclear energy were analyzed, showing different cost trends. Additionally, the impact of policy support on technological learning was discussed in concrete examples of bioethanol and heat pumps. We find that the homogeneity and the modularity of a technology are essential for high learning rates. A good proof is the manufacturing cost development of photovoltaics in recent decades, where a rather stable learning rate of 20% has been identified. On the contrary, nuclear power did not evolve into a homogeneous technology due to required environmental adaptations caused by accidents and the lack of standardization and application of new engineering approaches. In that case, the overall price further increased. Finally, another important condition is stable legal and regulatory conditions regarding the implementation.","PeriodicalId":48766,"journal":{"name":"Wiley Interdisciplinary Reviews-Energy and Environment","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42517299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}