Pub Date : 2024-08-06DOI: 10.1016/j.jocs.2024.102405
James R. Maddison
Automated code generation allows for a separation between the development of a model, expressed via a domain specific language, and lower level implementation details. Algorithmic differentiation can be applied symbolically at the level of the domain specific language, and the code generator reused to implement code required for an adjoint calculation. However the adjoint calculations are complicated by the well-known problem of storing or recomputing the forward data required by the adjoint, and different checkpointing strategies have been developed to tackle this problem. This article considers the combination of high-level algorithmic differentiation with step-based checkpointing schedules, with the primary application being for solvers of time-dependent partial differential equations. The focus is on algorithmic differentiation using a dynamically constructed record of forward operations, where the precise structure of the original forward calculation is unknown ahead-of-time. In addition, high-level approaches provide a simplified view of the model itself. This allows data required to restart and advance the forward, and data required to advance the adjoint, to be identified. The difference between the two types of data is here leveraged to implement checkpointing strategies with improved performance.
{"title":"Step-based checkpointing with high-level algorithmic differentiation","authors":"James R. Maddison","doi":"10.1016/j.jocs.2024.102405","DOIUrl":"10.1016/j.jocs.2024.102405","url":null,"abstract":"<div><p>Automated code generation allows for a separation between the development of a model, expressed via a domain specific language, and lower level implementation details. Algorithmic differentiation can be applied symbolically at the level of the domain specific language, and the code generator reused to implement code required for an adjoint calculation. However the adjoint calculations are complicated by the well-known problem of storing or recomputing the forward data required by the adjoint, and different checkpointing strategies have been developed to tackle this problem. This article considers the combination of high-level algorithmic differentiation with step-based checkpointing schedules, with the primary application being for solvers of time-dependent partial differential equations. The focus is on algorithmic differentiation using a dynamically constructed record of forward operations, where the precise structure of the original forward calculation is unknown ahead-of-time. In addition, high-level approaches provide a simplified view of the model itself. This allows data required to restart and advance the forward, and data required to advance the adjoint, to be identified. The difference between the two types of data is here leveraged to implement checkpointing strategies with improved performance.</p></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"82 ","pages":"Article 102405"},"PeriodicalIF":3.1,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1877750324001984/pdfft?md5=6f935bc44600d9170907d962ee7163e7&pid=1-s2.0-S1877750324001984-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141939217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1016/j.jocs.2024.102401
Aayush Pandey , Jeevesh Mahajan , Srinag P. , Aditya Rastogi , Arnab Roy , Partha P. Chakrabarti
In the realm of fluid mechanics, where computationally-intensive simulations demand significant time investments, especially in predicting aerodynamic coefficients, the conventional use of time series forecasting techniques becomes paramount. Existing methods prove effective with periodic time series, yet the challenge escalates when faced with aperiodic or chaotic system responses. To address this challenge, we introduce DARSI (Deep Auto-Regressive Time Series Inference), an advanced architecture and an efficient hybrid of Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) components. Evaluated against established architectures (CNN, DLinear, LSTM, LSTNet, and PatchTST) for forecasting Coefficient of Lift () values corresponding to Angles of Attack (AoAs) across periodic, aperiodic, and chaotic regimes, DARSI demonstrates remarkable performance, showing an average increase of 79.95% in CORR, 76.57% reduction in MAPE, 94.70% reduction in MSE, 76.18% reduction in QL, and 75.21% reduction in RRSE. Particularly adept at predicting chaotic aerodynamic coefficients, DARSI emerges as the best in static scenarios, surpassing DLinear and providing heightened reliability. In dynamic scenarios, DLinear takes the lead, with DARSI securing the second position alongside PatchTST. Furthermore, static AoAs at 24.7 are identified as the most chaotic, surpassing those at 24.9 and the study reveals a potential inflection point at AoA 24.7 in static scenarios for both DLinear and DARSI, warranting further confirmation. This research positions DARSI as an adept alternative to simulations, offering computational efficiency with significant implications for diverse time series forecasting applications across industries, particularly in advancing aerodynamic predictions in chaotic scenarios.
{"title":"DARSI: A deep auto-regressive time series inference architecture for forecasting of aerodynamic parameters","authors":"Aayush Pandey , Jeevesh Mahajan , Srinag P. , Aditya Rastogi , Arnab Roy , Partha P. Chakrabarti","doi":"10.1016/j.jocs.2024.102401","DOIUrl":"10.1016/j.jocs.2024.102401","url":null,"abstract":"<div><p>In the realm of fluid mechanics, where computationally-intensive simulations demand significant time investments, especially in predicting aerodynamic coefficients, the conventional use of time series forecasting techniques becomes paramount. Existing methods prove effective with periodic time series, yet the challenge escalates when faced with aperiodic or chaotic system responses. To address this challenge, we introduce DARSI (Deep Auto-Regressive Time Series Inference), an advanced architecture and an efficient hybrid of Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) components. Evaluated against established architectures (CNN, DLinear, LSTM, LSTNet, and PatchTST) for forecasting Coefficient of Lift (<span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span>) values corresponding to Angles of Attack (AoAs) across periodic, aperiodic, and chaotic regimes, DARSI demonstrates remarkable performance, showing an average increase of 79.95% in CORR, 76.57% reduction in MAPE, 94.70% reduction in MSE, 76.18% reduction in QL, and 75.21% reduction in RRSE. Particularly adept at predicting chaotic aerodynamic coefficients, DARSI emerges as the best in static scenarios, surpassing DLinear and providing heightened reliability. In dynamic scenarios, DLinear takes the lead, with DARSI securing the second position alongside PatchTST. Furthermore, static AoAs at 24.7 are identified as the most chaotic, surpassing those at 24.9 and the study reveals a potential inflection point at AoA 24.7 in static scenarios for both DLinear and DARSI, warranting further confirmation. This research positions DARSI as an adept alternative to simulations, offering computational efficiency with significant implications for diverse time series forecasting applications across industries, particularly in advancing aerodynamic predictions in chaotic scenarios.</p></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"82 ","pages":"Article 102401"},"PeriodicalIF":3.1,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142020720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05DOI: 10.1016/j.jocs.2024.102398
Olcay Eğri̇boyun, Lale Balas
<div><p>The resonance of tsunami waves in semi-enclosed bays is paramount in understanding and mitigating the impact of seismic events on coastal communities. Semi-enclosed bays, characterized by their partial enclosure, can amplify the effects of incoming tsunami waves due to resonance behavior, where the natural frequencies of the bay correspond to those of the incoming waves. This resonance phenomenon can significantly increase wave height and inundation levels, posing an increased risk to nearby settlements and infrastructure. Understanding the resonance patterns in these bays is crucial for accurate hazard assessment, early warning systems, and effective disaster preparedness and response strategies. On October 30, 2020, an earthquake occurred between the Turkish Bay of Seferihisar Bay and the Greek island of Samos in the Aegean Sea. Long waves generated by the normal-faulting earthquake caused notable damage to settlements within Seferihisar Bay and the north coast of Samos Island. According to the measurements of the Syros mareograph stations, the wave heights were between 2 and 20 cm and wave periods between 9 and 20 seconds. Based on on-site survey reports conducted after the earthquake, inundation was reported in six settlements within Seferihisar Bay. However, inundation was notably higher in Sığacık and Akarca, reaching 2–3 times higher than in other locations, and the water level reached 2 m high. Given that the variance in inundation levels is attributed to resonance phenomena in Sığacık and Akarca rather than the propagation of tsunami waves, this study focused on conducting wave resonance modeling in Seferihisar Bay. The resonance modeling was performed using the RIDE wave model. Furthermore, the research has been expanded to assess the resonance patterns that might emerge in the event of an alternative earthquake or underwater landslide along the fault line responsible for the seismic event, encompassing wave periods ranging from T = 1–9 minutes and T = 20–30 minutes. Modeling results revealed that on the day of the earthquake, wave heights in Sığacık Marina and Akarca surged by 8.5 times in comparison to the wave height at the epicenter. This increase is notably higher, ranging from 2 to 2.5 times, compared to calculations made for other locations (Demircili, Altınköy, and Tepecik). Consequently, it was concluded that one of the reasons for the heightened effectiveness of inundation in Sığacık and Akarca was attributable to resonance. Moreover, supplementary investigations have indicated that waves with a period of T<9 minutes will pose higher risks for Demircili, Altınköy, Sığacık Marina, and Tepecik compared to the day of the earthquake. By comprehensively studying wave resonance in semi-enclosed bays, researchers and policymakers can better anticipate the potential impact of tsunami events and take measures to protect coastal communities, ultimately increasing resilience and reducing the loss of life and property in vulner
{"title":"Resonance modeling of the tsunami caused by the Aegean Sea Earthquake (Mw7.0) of October 30, 2020","authors":"Olcay Eğri̇boyun, Lale Balas","doi":"10.1016/j.jocs.2024.102398","DOIUrl":"10.1016/j.jocs.2024.102398","url":null,"abstract":"<div><p>The resonance of tsunami waves in semi-enclosed bays is paramount in understanding and mitigating the impact of seismic events on coastal communities. Semi-enclosed bays, characterized by their partial enclosure, can amplify the effects of incoming tsunami waves due to resonance behavior, where the natural frequencies of the bay correspond to those of the incoming waves. This resonance phenomenon can significantly increase wave height and inundation levels, posing an increased risk to nearby settlements and infrastructure. Understanding the resonance patterns in these bays is crucial for accurate hazard assessment, early warning systems, and effective disaster preparedness and response strategies. On October 30, 2020, an earthquake occurred between the Turkish Bay of Seferihisar Bay and the Greek island of Samos in the Aegean Sea. Long waves generated by the normal-faulting earthquake caused notable damage to settlements within Seferihisar Bay and the north coast of Samos Island. According to the measurements of the Syros mareograph stations, the wave heights were between 2 and 20 cm and wave periods between 9 and 20 seconds. Based on on-site survey reports conducted after the earthquake, inundation was reported in six settlements within Seferihisar Bay. However, inundation was notably higher in Sığacık and Akarca, reaching 2–3 times higher than in other locations, and the water level reached 2 m high. Given that the variance in inundation levels is attributed to resonance phenomena in Sığacık and Akarca rather than the propagation of tsunami waves, this study focused on conducting wave resonance modeling in Seferihisar Bay. The resonance modeling was performed using the RIDE wave model. Furthermore, the research has been expanded to assess the resonance patterns that might emerge in the event of an alternative earthquake or underwater landslide along the fault line responsible for the seismic event, encompassing wave periods ranging from T = 1–9 minutes and T = 20–30 minutes. Modeling results revealed that on the day of the earthquake, wave heights in Sığacık Marina and Akarca surged by 8.5 times in comparison to the wave height at the epicenter. This increase is notably higher, ranging from 2 to 2.5 times, compared to calculations made for other locations (Demircili, Altınköy, and Tepecik). Consequently, it was concluded that one of the reasons for the heightened effectiveness of inundation in Sığacık and Akarca was attributable to resonance. Moreover, supplementary investigations have indicated that waves with a period of T<9 minutes will pose higher risks for Demircili, Altınköy, Sığacık Marina, and Tepecik compared to the day of the earthquake. By comprehensively studying wave resonance in semi-enclosed bays, researchers and policymakers can better anticipate the potential impact of tsunami events and take measures to protect coastal communities, ultimately increasing resilience and reducing the loss of life and property in vulner","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"82 ","pages":"Article 102398"},"PeriodicalIF":3.1,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141939268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-04DOI: 10.1016/j.jocs.2024.102397
Wanjin Dong , Daohua Pan , Soonbae Kim
English language education is undergoing a transformative shift, propelled by advancements in technology. This research explores the integration of the Internet of Things (IoT) and Generative Artificial Intelligence (Generative AI) in the context of English language education, with a focus on developing a personalized oral assessment method. The proposed method leverages real-time data collection from IoT devices and Generative AI's language generation capabilities to create a dynamic and adaptive learning environment. The study addresses historical challenges in traditional teaching methodologies, emphasizing the need for AI approaches. The research objectives encompass a comprehensive exploration of the historical context, challenges, and existing technological interventions in English language education. A novel, technology-driven oral assessment method is designed, implemented, and rigorously evaluated using datasets such as Librispeech and L2Arctic. The ablation study investigates the impact of training dataset proportions and model learning rates on the method's performance. Results from the study highlight the importance of maintaining a balance in dataset proportions, selecting an optimal learning rate, and considering model depth in achieving optimal performance.
{"title":"Exploring the integration of IoT and Generative AI in English language education: Smart tools for personalized learning experiences","authors":"Wanjin Dong , Daohua Pan , Soonbae Kim","doi":"10.1016/j.jocs.2024.102397","DOIUrl":"10.1016/j.jocs.2024.102397","url":null,"abstract":"<div><p>English language education is undergoing a transformative shift, propelled by advancements in technology. This research explores the integration of the Internet of Things (IoT) and Generative Artificial Intelligence (Generative AI) in the context of English language education, with a focus on developing a personalized oral assessment method. The proposed method leverages real-time data collection from IoT devices and Generative AI's language generation capabilities to create a dynamic and adaptive learning environment. The study addresses historical challenges in traditional teaching methodologies, emphasizing the need for AI approaches. The research objectives encompass a comprehensive exploration of the historical context, challenges, and existing technological interventions in English language education. A novel, technology-driven oral assessment method is designed, implemented, and rigorously evaluated using datasets such as Librispeech and L2Arctic. The ablation study investigates the impact of training dataset proportions and model learning rates on the method's performance. Results from the study highlight the importance of maintaining a balance in dataset proportions, selecting an optimal learning rate, and considering model depth in achieving optimal performance.</p></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"82 ","pages":"Article 102397"},"PeriodicalIF":3.1,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141998444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-03DOI: 10.1016/j.jocs.2024.102403
A. Inés, C. Domínguez, J. Heras, G. Mata, J. Rubio
Nowadays, Machine Learning and Deep Learning methods have become the state-of-the-art approach to solve data classification tasks. In order to use those methods, it is necessary to acquire and label a considerable amount of data; however, this is not straightforward in some fields, since data annotation is time consuming and might require expert knowledge. This challenge can be tackled by means of semi-supervised learning methods that take advantage of both labelled and unlabelled data. In this work, we present new semi-supervised learning methods based on techniques from Topological Data Analysis (TDA). In particular, we have created two semi-supervised learning methods following two topological approaches. In the former, we have used a homological approach that consists in studying the persistence diagrams associated with the data using the bottleneck and Wasserstein distances. In the latter, we have considered the connectivity of the data. In addition, we have carried out a thorough analysis of the developed methods using 9 tabular datasets with low and high dimensionality. The results show that the developed semi-supervised methods outperform the results obtained with models trained with only manually labelled data, and are an alternative to other classical semi-supervised learning algorithms.
{"title":"A topological approach for semi-supervised learning","authors":"A. Inés, C. Domínguez, J. Heras, G. Mata, J. Rubio","doi":"10.1016/j.jocs.2024.102403","DOIUrl":"10.1016/j.jocs.2024.102403","url":null,"abstract":"<div><p>Nowadays, Machine Learning and Deep Learning methods have become the state-of-the-art approach to solve data classification tasks. In order to use those methods, it is necessary to acquire and label a considerable amount of data; however, this is not straightforward in some fields, since data annotation is time consuming and might require expert knowledge. This challenge can be tackled by means of semi-supervised learning methods that take advantage of both labelled and unlabelled data. In this work, we present new semi-supervised learning methods based on techniques from Topological Data Analysis (TDA). In particular, we have created two semi-supervised learning methods following two topological approaches. In the former, we have used a homological approach that consists in studying the persistence diagrams associated with the data using the bottleneck and Wasserstein distances. In the latter, we have considered the connectivity of the data. In addition, we have carried out a thorough analysis of the developed methods using 9 tabular datasets with low and high dimensionality. The results show that the developed semi-supervised methods outperform the results obtained with models trained with only manually labelled data, and are an alternative to other classical semi-supervised learning algorithms.</p></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"82 ","pages":"Article 102403"},"PeriodicalIF":3.1,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141984968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1016/j.jocs.2024.102400
Chase Christenson , Chengyue Wu , David A. Hormuth II , Casey E. Stowers , Megan LaMonica , Jingfei Ma , Gaiane M. Rauch , Thomas E. Yankeelov
Constructing digital twins for predictive tumor treatment response models can have a high computational demand that presents a practical barrier for their clinical adoption. In this work, we demonstrate that proper orthogonal decomposition, by which a low-dimensional representation of the full model is constructed, can be used to dramatically reduce the computational time required to calibrate a partial differential equation model to magnetic resonance imaging (MRI) data for rapid predictions of tumor growth and response to chemotherapy. In the proposed formulation, the reduction basis is based on each patient’s own MRI data and controls the overall size of the “reduced order model”. Using the full model as the reference, we validate that the reduced order mathematical model can accurately predict response in 50 triple negative breast cancer patients receiving standard of care neoadjuvant chemotherapy. The concordance correlation coefficient between the full and reduced order models was 0.986 ± 0.012 (mean ± standard deviation) for predicting changes in both tumor volume and cellularity across the entire model family, with a corresponding median local error (inter-quartile range) of 4.36 % (1.22 %, 15.04 %). The total time to estimate parameters and to predict response dramatically improves with the reduced framework. Specifically, the reduced order model accelerates our calibration by a factor of (mean ± standard deviation) 378.4 ± 279.8 when compared to the full order model for a non-mechanically coupled model. This enormous reduction in computational time can directly help realize the practical construction of digital twins when the access to computational resources is limited.
{"title":"Fast model calibration for predicting the response of breast cancer to chemotherapy using proper orthogonal decomposition","authors":"Chase Christenson , Chengyue Wu , David A. Hormuth II , Casey E. Stowers , Megan LaMonica , Jingfei Ma , Gaiane M. Rauch , Thomas E. Yankeelov","doi":"10.1016/j.jocs.2024.102400","DOIUrl":"10.1016/j.jocs.2024.102400","url":null,"abstract":"<div><p>Constructing digital twins for predictive tumor treatment response models can have a high computational demand that presents a practical barrier for their clinical adoption. In this work, we demonstrate that proper orthogonal decomposition, by which a low-dimensional representation of the full model is constructed, can be used to dramatically reduce the computational time required to calibrate a partial differential equation model to magnetic resonance imaging (MRI) data for rapid predictions of tumor growth and response to chemotherapy. In the proposed formulation, the reduction basis is based on each patient’s own MRI data and controls the overall size of the “reduced order model”. Using the full model as the reference, we validate that the reduced order mathematical model can accurately predict response in 50 triple negative breast cancer patients receiving standard of care neoadjuvant chemotherapy. The concordance correlation coefficient between the full and reduced order models was 0.986 ± 0.012 (mean ± standard deviation) for predicting changes in both tumor volume and cellularity across the entire model family, with a corresponding median local error (inter-quartile range) of 4.36 % (1.22 %, 15.04 %). The total time to estimate parameters and to predict response dramatically improves with the reduced framework. Specifically, the reduced order model accelerates our calibration by a factor of (mean ± standard deviation) 378.4 ± 279.8 when compared to the full order model for a non-mechanically coupled model. This enormous reduction in computational time can directly help realize the practical construction of digital twins when the access to computational resources is limited.</p></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"82 ","pages":"Article 102400"},"PeriodicalIF":3.1,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141939218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1016/j.jocs.2024.102404
Xuxiang Sun , Wenbo Cao , Xianglin Shan , Yilang Liu , Weiwei Zhang
The amalgamation of machine learning algorithms (ML) with computational fluid dynamics (CFD) represents a promising frontier for the advancement of fluid dynamics research. However, the practical integration of CFD with ML algorithms frequently faces challenges related to data transfer and computational efficiency. While CFD programs are conventionally scripted in Fortran or C/C++, the prevalence of Python in the machine learning domain complicates their seamless integration. To tackle these obstacles, this paper proposes a comprehensive solution. Our devised framework primarily leverages Python modules CFFI and dynamic linking library technology to seamlessly integrate ML algorithms with CFD programs, facilitating efficient data interchange between them. Distinguished by its simplicity, efficiency, flexibility, and scalability, our framework is adaptable across various CFD programs, scalable to multi-node parallelism, and compatible with heterogeneous computing systems. In this paper, we showcase a spectrum of CFD+ML algorithms based on this framework, including stability analysis of ML Reynolds stress models, bidirectional coupling between ML turbulence models and CFD programs, and online dimension reduction optimization techniques tailored for resolving unstable steady flow solutions. In addition, our framework has been successfully tested on supercomputer clusters, demonstrating its compatibility with distributed computing architectures and its ability to leverage heterogeneous computing resources for efficient computational tasks.
机器学习算法(ML)与计算流体动力学(CFD)的结合代表了流体动力学研究发展的一个前景广阔的前沿领域。然而,CFD 与 ML 算法的实际整合经常面临数据传输和计算效率方面的挑战。CFD 程序通常使用 Fortran 或 C/C++ 编写脚本,而 Python 在机器学习领域的盛行使其无缝集成变得更加复杂。为了解决这些障碍,本文提出了一个全面的解决方案。我们设计的框架主要利用 Python 模块 CFFI 和动态链接库技术,将 ML 算法与 CFD 程序无缝集成,促进它们之间的高效数据交换。我们的框架具有简单、高效、灵活和可扩展性等特点,可适用于各种 CFD 程序,可扩展到多节点并行,并与异构计算系统兼容。在本文中,我们展示了基于该框架的一系列 CFD+ML 算法,包括 ML 雷诺应力模型的稳定性分析、ML 湍流模型与 CFD 程序之间的双向耦合,以及为解决不稳定的稳定流解而量身定制的在线降维优化技术。此外,我们的框架还在超级计算机集群上进行了成功测试,证明了它与分布式计算架构的兼容性以及利用异构计算资源完成高效计算任务的能力。
{"title":"A generalized framework for integrating machine learning into computational fluid dynamics","authors":"Xuxiang Sun , Wenbo Cao , Xianglin Shan , Yilang Liu , Weiwei Zhang","doi":"10.1016/j.jocs.2024.102404","DOIUrl":"10.1016/j.jocs.2024.102404","url":null,"abstract":"<div><p>The amalgamation of machine learning algorithms (ML) with computational fluid dynamics (CFD) represents a promising frontier for the advancement of fluid dynamics research. However, the practical integration of CFD with ML algorithms frequently faces challenges related to data transfer and computational efficiency. While CFD programs are conventionally scripted in Fortran or C/C++, the prevalence of Python in the machine learning domain complicates their seamless integration. To tackle these obstacles, this paper proposes a comprehensive solution. Our devised framework primarily leverages Python modules CFFI and dynamic linking library technology to seamlessly integrate ML algorithms with CFD programs, facilitating efficient data interchange between them. Distinguished by its simplicity, efficiency, flexibility, and scalability, our framework is adaptable across various CFD programs, scalable to multi-node parallelism, and compatible with heterogeneous computing systems. In this paper, we showcase a spectrum of CFD+ML algorithms based on this framework, including stability analysis of ML Reynolds stress models, bidirectional coupling between ML turbulence models and CFD programs, and online dimension reduction optimization techniques tailored for resolving unstable steady flow solutions. In addition, our framework has been successfully tested on supercomputer clusters, demonstrating its compatibility with distributed computing architectures and its ability to leverage heterogeneous computing resources for efficient computational tasks.</p></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"82 ","pages":"Article 102404"},"PeriodicalIF":3.1,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141964514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-31DOI: 10.1016/j.jocs.2024.102396
Dibakar Das, Jyotsna Bapat, Debabrata Das
Multi-layer complex networks (MLCN) appears in various domains, such as, transportation, supply chains, etc. Failures in MLCN can lead to major disruptions in systems. Several research have focussed on different kinds of failures, such as, cascades, their reasons and ways to avoid them. This paper considers failures in a specific type of MLCN where the lower layer provides services to the higher layer without cross layer interaction, typical of a computer network. A three layer MLCN is constructed with the same set of nodes where each layer has different characteristics, the bottom most layer is Erdos–Renyi (ER) random graph with shortest path hop count among the nodes as gaussian, the middle layer is ER graph with higher number of edges from the previous, and the top most layer is preferential attachment graph with even higher number of edges. Both edge and node failures are considered. Failures happen with decreasing order of centralities of edges and nodes in static batch mode and when the centralities change dynamically with progressive failures. Emergent pattern of three key parameters, namely, average shortest path length (ASPL), total shortest path count (TSPC) and total number of edges (TNE) for all the three layers after node or edge failures are studied. Extensive simulations show that all but one parameters show definite degrading patterns. Surprising, ASPL for the middle layer starts showing a chaotic behaviour beyond a certain point for all types of failures.
{"title":"Node and edge centrality based failures in multi-layer complex networks","authors":"Dibakar Das, Jyotsna Bapat, Debabrata Das","doi":"10.1016/j.jocs.2024.102396","DOIUrl":"10.1016/j.jocs.2024.102396","url":null,"abstract":"<div><p>Multi-layer complex networks (MLCN) appears in various domains, such as, transportation, supply chains, etc. Failures in MLCN can lead to major disruptions in systems. Several research have focussed on different kinds of failures, such as, cascades, their reasons and ways to avoid them. This paper considers failures in a specific type of MLCN where the lower layer provides services to the higher layer without cross layer interaction, typical of a computer network. A three layer MLCN is constructed with the same set of nodes where each layer has different characteristics, the bottom most layer is Erdos–Renyi (ER) random graph with shortest path hop count among the nodes as gaussian, the middle layer is ER graph with higher number of edges from the previous, and the top most layer is preferential attachment graph with even higher number of edges. Both edge and node failures are considered. Failures happen with decreasing order of centralities of edges and nodes in static batch mode and when the centralities change dynamically with progressive failures. Emergent pattern of three key parameters, namely, average shortest path length (ASPL), total shortest path count (TSPC) and total number of edges (TNE) for all the three layers after node or edge failures are studied. Extensive simulations show that all but one parameters show definite degrading patterns. Surprising, ASPL for the middle layer starts showing a chaotic behaviour beyond a certain point for all types of failures.</p></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"82 ","pages":"Article 102396"},"PeriodicalIF":3.1,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141939221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1016/j.jocs.2024.102399
Mahsa Alikhani , Vesal Hakami , Marzieh Sheikhi
In network function virtualization (NFV), Service Function Chaining (SFC) provides an ordered sequence of virtual network functions (VNFs) and subsequent steering of traffic flows through them to cater to end-to-end services. This paper addresses the NP-hard problem of minimum cost SFC deployment to support customer services that access the carrier network’s NFV infrastructure (NFVI) through some edge routers. To determine the mappings of VNFs to physical servers, a challenging aspect would be the inter-server latencies that may fluctuate over time because of the sharing nature of cloud data centers. To construct the SFC, we come up with three different formulations, each corresponding to a different informational assumption about the link latencies: First, a centralized integer linear programming (ILP) formulation is given under the assumption of the non-causal availability of exact and instantaneous inter-server latencies. The solution to this ILP can serve as a lower bound to benchmark more scalable and realistic schemes. Next, we give a distributed game-theoretic formulation (with service broker agents as players) which only requires the statistical knowledge of link latency fluctuations. The game provably admits a pure Nash equilibrium (NE) and can be solved iteratively through the well-known best response dynamics (BRD) algorithm. Our main novelty lies in the third formulation in which each service broker has neither instantaneous nor statistical knowledge of the latencies. Instead, it relies on a game-theoretic learning algorithm to compose its VNF chain only based on its own history of adopted decisions and experienced delays on each logical link. We prove that the proposed learning algorithm asymptotically converges to NE and evaluate its performance through simulations in terms of convergence and the impact of network parameters.
{"title":"Distributed service function chaining in NFV-enabled networks: A game-theoretic learning approach","authors":"Mahsa Alikhani , Vesal Hakami , Marzieh Sheikhi","doi":"10.1016/j.jocs.2024.102399","DOIUrl":"10.1016/j.jocs.2024.102399","url":null,"abstract":"<div><p>In network function virtualization (NFV), Service Function Chaining (SFC) provides an ordered sequence of virtual network functions (VNFs) and subsequent steering of traffic flows through them to cater to end-to-end services. This paper addresses the NP-hard problem of minimum cost SFC deployment to support customer services that access the carrier network’s NFV infrastructure (NFVI) through some edge routers. To determine the mappings of VNFs to physical servers, a challenging aspect would be the inter-server latencies that may fluctuate over time because of the sharing nature of cloud data centers. To construct the SFC, we come up with three different formulations, each corresponding to a different informational assumption about the link latencies: First, a centralized integer linear programming (ILP) formulation is given under the assumption of the non-causal availability of exact and instantaneous inter-server latencies. The solution to this ILP can serve as a lower bound to benchmark more scalable and realistic schemes. Next, we give a distributed game-theoretic formulation (with service broker agents as players) which only requires the statistical knowledge of link latency fluctuations. The game provably admits a pure Nash equilibrium (NE) and can be solved iteratively through the well-known best response dynamics (BRD) algorithm. Our main novelty lies in the third formulation in which each service broker has neither instantaneous nor statistical knowledge of the latencies. Instead, it relies on a game-theoretic learning algorithm to compose its VNF chain only based on its own history of adopted decisions and experienced delays on each logical link. We prove that the proposed learning algorithm asymptotically converges to NE and evaluate its performance through simulations in terms of convergence and the impact of network parameters.</p></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"82 ","pages":"Article 102399"},"PeriodicalIF":3.1,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141939219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In healthcare, a remarkable progress in machine learning has given rise to a diverse range of predictive and decision-making medical models, significantly enhancing treatment efficacy and overall quality of care. These models often rely on electronic health records (EHRs) as fundamental data sources. The effectiveness of these models is contingent on the quality of the EHRs, typically presented as unstructured text. Unfortunately, these records frequently contain spelling errors, diminishing the quality of intelligent systems relying on them. In this research, we propose a method and a tool for correcting spelling errors in Russian medical texts. Our approach combines the Symmetrical Deletion algorithm with a finely tuned BERT model to efficiently correct spelling errors, thereby enhancing the quality of the original medical texts at a minimal cost. In addition, we introduce several fine-tuned BERT models for Russian anamneses. Through rigorous evaluation and comparison with existing spelling error correction tools for the Russian language, we demonstrate that our approach and tool surpass existing open-source alternatives by 7% in correcting spelling errors in sample Russian medical texts and significantly superior in automatically correcting real-world anamneses. However, the new approach is far inferior to proprietary services such as Yandex Speller and GPT-4. The proposed tool and its source code are available on GitHub 1 and pip 2 repositories. This paper is an extended version of the work presented at ICCS 2023 (Pogrebnoi et al. 2023)
{"title":"RuMedSpellchecker: A new approach for advanced spelling error correction in Russian electronic health records","authors":"Dmitrii Pogrebnoi, Anastasia Funkner, Sergey Kovalchuk","doi":"10.1016/j.jocs.2024.102393","DOIUrl":"10.1016/j.jocs.2024.102393","url":null,"abstract":"<div><p>In healthcare, a remarkable progress in machine learning has given rise to a diverse range of predictive and decision-making medical models, significantly enhancing treatment efficacy and overall quality of care. These models often rely on electronic health records (EHRs) as fundamental data sources. The effectiveness of these models is contingent on the quality of the EHRs, typically presented as unstructured text. Unfortunately, these records frequently contain spelling errors, diminishing the quality of intelligent systems relying on them. In this research, we propose a method and a tool for correcting spelling errors in Russian medical texts. Our approach combines the Symmetrical Deletion algorithm with a finely tuned BERT model to efficiently correct spelling errors, thereby enhancing the quality of the original medical texts at a minimal cost. In addition, we introduce several fine-tuned BERT models for Russian anamneses. Through rigorous evaluation and comparison with existing spelling error correction tools for the Russian language, we demonstrate that our approach and tool surpass existing open-source alternatives by 7% in correcting spelling errors in sample Russian medical texts and significantly superior in automatically correcting real-world anamneses. However, the new approach is far inferior to proprietary services such as Yandex Speller and GPT-4. The proposed tool and its source code are available on GitHub <span><span><sup>1</sup></span></span> and pip <span><span><sup>2</sup></span></span> repositories. This paper is an extended version of the work presented at ICCS 2023 (Pogrebnoi et al. 2023)</p></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"82 ","pages":"Article 102393"},"PeriodicalIF":3.1,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141939220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}