Pub Date : 2024-06-26DOI: 10.1109/THMS.2024.3412273
Xi Fang;Hui Yang;Liu Shi;Yilong Wang;Li Li
With the widespread adoption of smartphones and mobile Internet, understanding user behavior and improving user experience are critical. This article introduces semantic-aware (SA)-BERT, a novel model that integrates spatio-temporal and semantic information to represent App usage effectively. Leveraging BERT, SA-BERT captures rich contextual information. By introducing a specific objective function to represent the cooccurrence of App-time-location paths, SA-BERT can effectively model complex App usage structures. Based on this method, we adopt the learned embedding vectors in App usage prediction tasks. We evaluate the performance of SA-BERT using a large-scale real-world dataset. As demonstrated in the numerous experimental results, our model outperformed other strategies evidently. In terms of the prediction accuracy, we achieve a performance gain of 34.9% compared with widely used the SA representation learning via graph convolutional network (SA-GCN), and 134.4% than the context-aware App usage prediction with heterogeneous graph embedding. In addition, we reduced 79.27% training time compared with SA-GCN.
{"title":"BERT-Based Semantic-Aware Heterogeneous Graph Embedding Method for Enhancing App Usage Prediction Accuracy","authors":"Xi Fang;Hui Yang;Liu Shi;Yilong Wang;Li Li","doi":"10.1109/THMS.2024.3412273","DOIUrl":"10.1109/THMS.2024.3412273","url":null,"abstract":"With the widespread adoption of smartphones and mobile Internet, understanding user behavior and improving user experience are critical. This article introduces semantic-aware (SA)-BERT, a novel model that integrates spatio-temporal and semantic information to represent App usage effectively. Leveraging BERT, SA-BERT captures rich contextual information. By introducing a specific objective function to represent the cooccurrence of App-time-location paths, SA-BERT can effectively model complex App usage structures. Based on this method, we adopt the learned embedding vectors in App usage prediction tasks. We evaluate the performance of SA-BERT using a large-scale real-world dataset. As demonstrated in the numerous experimental results, our model outperformed other strategies evidently. In terms of the prediction accuracy, we achieve a performance gain of 34.9% compared with widely used the SA representation learning via graph convolutional network (SA-GCN), and 134.4% than the context-aware App usage prediction with heterogeneous graph embedding. In addition, we reduced 79.27% training time compared with SA-GCN.","PeriodicalId":48916,"journal":{"name":"IEEE Transactions on Human-Machine Systems","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141500638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-26DOI: 10.1109/THMS.2024.3412910
Shaodong Li;Peiyuan Gao;Yongzheng Chen
In robot-assisted live-line maintenance, bilateral teleoperation is still a popular and effective approach in assisting operators to accomplish hazards tasks. Particularly, teleoperation under overhead power lines attach greater expectation on safe operation and telepresence. In this article, we propose a visual-haptic bilateral teleoperation strategy, i.e., EMGP-VH