Gene expression is stochastic and displays variation ("noise") both within and between cells. Intracellular (intrinsic) variance can be distinguished from extracellular (extrinsic) variance by applying the law of total variance to data from two-reporter assays that probe expression of identically regulated gene pairs in single cells. We examine established formulas [Elowitz, M. B., A. J. Levine, E. D. Siggia and P. S. Swain (2002): "Stochastic gene expression in a single cell," Science, 297, 1183-1186.] for the estimation of intrinsic and extrinsic noise and provide interpretations of them in terms of a hierarchical model. This allows us to derive alternative estimators that minimize bias or mean squared error. We provide a geometric interpretation of these results that clarifies the interpretation in [Elowitz, M. B., A. J. Levine, E. D. Siggia and P. S. Swain (2002): "Stochastic gene expression in a single cell," Science, 297, 1183-1186.]. We also demonstrate through simulation and re-analysis of published data that the distribution assumptions underlying the hierarchical model have to be satisfied for the estimators to produce sensible results, which highlights the importance of normalization.
基因表达是随机的,在细胞内和细胞间都表现出变异(“噪音”)。细胞内(内在)变异可以与细胞外(外在)变异区分开来,方法是将总变异定律应用于双报告基因试验的数据,该试验探测单细胞中相同调控基因对的表达。我们检验已建立的公式[Elowitz, M. B., a . J. Levine, E. D. Siggia和P. S. Swain(2002):“单个细胞中的随机基因表达”,《科学》,297,1183-1186。]用于估计内在和外在噪声,并根据层次模型提供对它们的解释。这使我们能够推导出最小化偏差或均方误差的替代估计器。我们提供了这些结果的几何解释,澄清了[Elowitz, M. B., a . J. Levine, E. D. Siggia和P. S. Swain(2002):“单个细胞中的随机基因表达”,《科学》,297,1183-1186.]中的解释。我们还通过模拟和对已发表数据的重新分析证明,为了产生合理的结果,估计器必须满足层次模型背后的分布假设,这突出了归一化的重要性。
{"title":"Estimating intrinsic and extrinsic noise from single-cell gene expression measurements.","authors":"Audrey Qiuyan Fu, Lior Pachter","doi":"10.1515/sagmb-2016-0002","DOIUrl":"https://doi.org/10.1515/sagmb-2016-0002","url":null,"abstract":"<p><p>Gene expression is stochastic and displays variation (\"noise\") both within and between cells. Intracellular (intrinsic) variance can be distinguished from extracellular (extrinsic) variance by applying the law of total variance to data from two-reporter assays that probe expression of identically regulated gene pairs in single cells. We examine established formulas [Elowitz, M. B., A. J. Levine, E. D. Siggia and P. S. Swain (2002): \"Stochastic gene expression in a single cell,\" Science, 297, 1183-1186.] for the estimation of intrinsic and extrinsic noise and provide interpretations of them in terms of a hierarchical model. This allows us to derive alternative estimators that minimize bias or mean squared error. We provide a geometric interpretation of these results that clarifies the interpretation in [Elowitz, M. B., A. J. Levine, E. D. Siggia and P. S. Swain (2002): \"Stochastic gene expression in a single cell,\" Science, 297, 1183-1186.]. We also demonstrate through simulation and re-analysis of published data that the distribution assumptions underlying the hierarchical model have to be satisfied for the estimators to produce sensible results, which highlights the importance of normalization.</p>","PeriodicalId":48980,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"15 6","pages":"447-471"},"PeriodicalIF":0.9,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2016-0002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39981816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Valentina Pugacheva, Alexander Korotkov, Eugene Korotkov
The aim of this study was to show that amino acid sequences have a latent periodicity with insertions and deletions of amino acids in unknown positions of the analyzed sequence. Genetic algorithm, dynamic programming and random weight matrices were used to develop a new mathematical algorithm for latent periodicity search. A multiple alignment of periods was calculated with help of the direct optimization of the position-weight matrix without using pairwise alignments. The developed algorithm was applied to analyze amino acid sequences of a small number of proteins. This study showed the presence of latent periodicity with insertions and deletions in the amino acid sequences of such proteins, for which the presence of latent periodicity was not previously known. The origin of latent periodicity with insertions and deletions is discussed.
{"title":"Search of latent periodicity in amino acid sequences by means of genetic algorithm and dynamic programming.","authors":"Valentina Pugacheva, Alexander Korotkov, Eugene Korotkov","doi":"10.1515/sagmb-2015-0079","DOIUrl":"https://doi.org/10.1515/sagmb-2015-0079","url":null,"abstract":"<p><p>The aim of this study was to show that amino acid sequences have a latent periodicity with insertions and deletions of amino acids in unknown positions of the analyzed sequence. Genetic algorithm, dynamic programming and random weight matrices were used to develop a new mathematical algorithm for latent periodicity search. A multiple alignment of periods was calculated with help of the direct optimization of the position-weight matrix without using pairwise alignments. The developed algorithm was applied to analyze amino acid sequences of a small number of proteins. This study showed the presence of latent periodicity with insertions and deletions in the amino acid sequences of such proteins, for which the presence of latent periodicity was not previously known. The origin of latent periodicity with insertions and deletions is discussed.</p>","PeriodicalId":48980,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"15 5","pages":"381-400"},"PeriodicalIF":0.9,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2015-0079","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34670029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christopher D Steele, Matthew Greenhalgh, David J Balding
In recent years statistical models for the analysis of complex (low-template and/or mixed) DNA profiles have moved from using only presence/absence information about allelic peaks in an electropherogram, to quantitative use of peak heights. This is challenging because peak heights are very variable and affected by a number of factors. We present a new peak-height model with important novel features, including over- and double-stutter, and a new approach to dropin. Our model is incorporated in open-source R code likeLTD. We apply it to 108 laboratory-generated crime-scene profiles and demonstrate techniques of model validation that are novel in the field. We use the results to explore the benefits of modeling peak heights, finding that it is not always advantageous, and to assess the merits of pre-extraction replication. We also introduce an approximation that can reduce computational complexity when there are multiple low-level contributors who are not of interest to the investigation, and we present a simple approximate adjustment for linkage between loci, making it possible to accommodate linkage when evaluating complex DNA profiles.
{"title":"Evaluation of low-template DNA profiles using peak heights.","authors":"Christopher D Steele, Matthew Greenhalgh, David J Balding","doi":"10.1515/sagmb-2016-0038","DOIUrl":"https://doi.org/10.1515/sagmb-2016-0038","url":null,"abstract":"<p><p>In recent years statistical models for the analysis of complex (low-template and/or mixed) DNA profiles have moved from using only presence/absence information about allelic peaks in an electropherogram, to quantitative use of peak heights. This is challenging because peak heights are very variable and affected by a number of factors. We present a new peak-height model with important novel features, including over- and double-stutter, and a new approach to dropin. Our model is incorporated in open-source R code likeLTD. We apply it to 108 laboratory-generated crime-scene profiles and demonstrate techniques of model validation that are novel in the field. We use the results to explore the benefits of modeling peak heights, finding that it is not always advantageous, and to assess the merits of pre-extraction replication. We also introduce an approximation that can reduce computational complexity when there are multiple low-level contributors who are not of interest to the investigation, and we present a simple approximate adjustment for linkage between loci, making it possible to accommodate linkage when evaluating complex DNA profiles.</p>","PeriodicalId":48980,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"15 5","pages":"431-445"},"PeriodicalIF":0.9,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2016-0038","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34733269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Lasso is a shrinkage regression method that is widely used for variable selection in statistical genetics. Commonly, K-fold cross-validation is used to fit a Lasso model. This is sometimes followed by using bootstrap confidence intervals to improve precision in the resulting variable selections. Nesting cross-validation within bootstrapping could provide further improvements in precision, but this has not been investigated systematically. We performed simulation studies of Lasso variable selection precision (VSP) with and without nesting cross-validation within bootstrapping. Data were simulated to represent genomic data under a polygenic model as well as under a model with effect sizes representative of typical GWAS results. We compared these approaches to each other as well as to software defaults for the Lasso. Nested cross-validation had the most precise variable selection at small effect sizes. At larger effect sizes, there was no advantage to nesting. We illustrated the nested approach with empirical data comprising SNPs and SNP-SNP interactions from the most significant SNPs in a GWAS of borderline personality symptoms. In the empirical example, we found that the default Lasso selected low-reliability SNPs and interactions which were excluded by bootstrapping.
{"title":"The use of vector bootstrapping to improve variable selection precision in Lasso models.","authors":"Charles Laurin, Dorret Boomsma, Gitta Lubke","doi":"10.1515/sagmb-2015-0043","DOIUrl":"10.1515/sagmb-2015-0043","url":null,"abstract":"<p><p>The Lasso is a shrinkage regression method that is widely used for variable selection in statistical genetics. Commonly, K-fold cross-validation is used to fit a Lasso model. This is sometimes followed by using bootstrap confidence intervals to improve precision in the resulting variable selections. Nesting cross-validation within bootstrapping could provide further improvements in precision, but this has not been investigated systematically. We performed simulation studies of Lasso variable selection precision (VSP) with and without nesting cross-validation within bootstrapping. Data were simulated to represent genomic data under a polygenic model as well as under a model with effect sizes representative of typical GWAS results. We compared these approaches to each other as well as to software defaults for the Lasso. Nested cross-validation had the most precise variable selection at small effect sizes. At larger effect sizes, there was no advantage to nesting. We illustrated the nested approach with empirical data comprising SNPs and SNP-SNP interactions from the most significant SNPs in a GWAS of borderline personality symptoms. In the empirical example, we found that the default Lasso selected low-reliability SNPs and interactions which were excluded by bootstrapping.</p>","PeriodicalId":48980,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"15 4","pages":"305-20"},"PeriodicalIF":0.9,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2015-0043","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34536049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.
{"title":"Bayesian state space models for dynamic genetic network construction across multiple tissues.","authors":"Yulan Liang, Arpad Kelemen","doi":"10.1515/sagmb-2014-0055","DOIUrl":"https://doi.org/10.1515/sagmb-2014-0055","url":null,"abstract":"<p><p>Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.</p>","PeriodicalId":48980,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"15 4","pages":"273-90"},"PeriodicalIF":0.9,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2014-0055","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34609077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carsten Wiuf, Jonatan Schaumburg-Müller Pallesen, Leslie Foldager, Jakob Grove
In many areas of science it is custom to perform many, potentially millions, of tests simultaneously. To gain statistical power it is common to group tests based on a priori criteria such as predefined regions or by sliding windows. However, it is not straightforward to choose grouping criteria and the results might depend on the chosen criteria. Methods that summarize, or aggregate, test statistics or p-values, without relying on a priori criteria, are therefore desirable. We present a simple method to aggregate a sequence of stochastic variables, such as test statistics or p-values, into fewer variables without assuming a priori defined groups. We provide different ways to evaluate the significance of the aggregated variables based on theoretical considerations and resampling techniques, and show that under certain assumptions the FWER is controlled in the strong sense. Validity of the method was demonstrated using simulations and real data analyses. Our method may be a useful supplement to standard procedures relying on evaluation of test statistics individually. Moreover, by being agnostic and not relying on predefined selected regions, it might be a practical alternative to conventionally used methods of aggregation of p-values over regions. The method is implemented in Python and freely available online (through GitHub, see the Supplementary information).
{"title":"LandScape: a simple method to aggregate p-values and other stochastic variables without a priori grouping.","authors":"Carsten Wiuf, Jonatan Schaumburg-Müller Pallesen, Leslie Foldager, Jakob Grove","doi":"10.1515/sagmb-2015-0085","DOIUrl":"https://doi.org/10.1515/sagmb-2015-0085","url":null,"abstract":"<p><p>In many areas of science it is custom to perform many, potentially millions, of tests simultaneously. To gain statistical power it is common to group tests based on a priori criteria such as predefined regions or by sliding windows. However, it is not straightforward to choose grouping criteria and the results might depend on the chosen criteria. Methods that summarize, or aggregate, test statistics or p-values, without relying on a priori criteria, are therefore desirable. We present a simple method to aggregate a sequence of stochastic variables, such as test statistics or p-values, into fewer variables without assuming a priori defined groups. We provide different ways to evaluate the significance of the aggregated variables based on theoretical considerations and resampling techniques, and show that under certain assumptions the FWER is controlled in the strong sense. Validity of the method was demonstrated using simulations and real data analyses. Our method may be a useful supplement to standard procedures relying on evaluation of test statistics individually. Moreover, by being agnostic and not relying on predefined selected regions, it might be a practical alternative to conventionally used methods of aggregation of p-values over regions. The method is implemented in Python and freely available online (through GitHub, see the Supplementary information).</p>","PeriodicalId":48980,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"15 4","pages":"349-61"},"PeriodicalIF":0.9,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2015-0085","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34554070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nolen Perualila-Tan, Adetayo Kasim, Willem Talloen, Bie Verbist, Hinrich W H Göhlmann, Ziv Shkedy
The modern drug discovery process involves multiple sources of high-dimensional data. This imposes the challenge of data integration. A typical example is the integration of chemical structure (fingerprint features), phenotypic bioactivity (bioassay read-outs) data for targets of interest, and transcriptomic (gene expression) data in early drug discovery to better understand the chemical and biological mechanisms of candidate drugs, and to facilitate early detection of safety issues prior to later and expensive phases of drug development cycles. In this paper, we discuss a joint model for the transcriptomic and the phenotypic variables conditioned on the chemical structure. This modeling approach can be used to uncover, for a given set of compounds, the association between gene expression and biological activity taking into account the influence of the chemical structure of the compound on both variables. The model allows to detect genes that are associated with the bioactivity data facilitating the identification of potential genomic biomarkers for compounds efficacy. In addition, the effect of every structural feature on both genes and pIC50 and their associations can be simultaneously investigated. Two oncology projects are used to illustrate the applicability and usefulness of the joint model to integrate multi-source high-dimensional information to aid drug discovery.
{"title":"A joint modeling approach for uncovering associations between gene expression, bioactivity and chemical structure in early drug discovery to guide lead selection and genomic biomarker development.","authors":"Nolen Perualila-Tan, Adetayo Kasim, Willem Talloen, Bie Verbist, Hinrich W H Göhlmann, Ziv Shkedy","doi":"10.1515/sagmb-2014-0086","DOIUrl":"https://doi.org/10.1515/sagmb-2014-0086","url":null,"abstract":"<p><p>The modern drug discovery process involves multiple sources of high-dimensional data. This imposes the challenge of data integration. A typical example is the integration of chemical structure (fingerprint features), phenotypic bioactivity (bioassay read-outs) data for targets of interest, and transcriptomic (gene expression) data in early drug discovery to better understand the chemical and biological mechanisms of candidate drugs, and to facilitate early detection of safety issues prior to later and expensive phases of drug development cycles. In this paper, we discuss a joint model for the transcriptomic and the phenotypic variables conditioned on the chemical structure. This modeling approach can be used to uncover, for a given set of compounds, the association between gene expression and biological activity taking into account the influence of the chemical structure of the compound on both variables. The model allows to detect genes that are associated with the bioactivity data facilitating the identification of potential genomic biomarkers for compounds efficacy. In addition, the effect of every structural feature on both genes and pIC50 and their associations can be simultaneously investigated. Two oncology projects are used to illustrate the applicability and usefulness of the joint model to integrate multi-source high-dimensional information to aid drug discovery.</p>","PeriodicalId":48980,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"15 4","pages":"291-304"},"PeriodicalIF":0.9,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2014-0086","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34616483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Modern biological experiments often involve high-dimensional data with thousands or more variables. A challenging problem is to identify the key variables that are related to a specific disease. Confounding this task is the vast number of statistical methods available for variable selection. For this reason, we set out to develop a framework to investigate the variable selection capability of statistical methods that are commonly applied to analyze high-dimensional biological datasets. Specifically, we designed six simulated cancers (based on benchmark colon and prostate cancer data) where we know precisely which genes cause a dataset to be classified as cancerous or normal - we call these causative genes. We found that not one statistical method tested could identify all the causative genes for all of the simulated cancers, even though increasing the sample size does improve the variable selection capabilities in most cases. Furthermore, certain statistical tools can classify our simulated data with a low error rate, yet the variables being used for classification are not necessarily the causative genes.
{"title":"Finding causative genes from high-dimensional data: an appraisal of statistical and machine learning approaches.","authors":"Chamont Wang, Jana L Gevertz","doi":"10.1515/sagmb-2015-0072","DOIUrl":"https://doi.org/10.1515/sagmb-2015-0072","url":null,"abstract":"<p><p>Modern biological experiments often involve high-dimensional data with thousands or more variables. A challenging problem is to identify the key variables that are related to a specific disease. Confounding this task is the vast number of statistical methods available for variable selection. For this reason, we set out to develop a framework to investigate the variable selection capability of statistical methods that are commonly applied to analyze high-dimensional biological datasets. Specifically, we designed six simulated cancers (based on benchmark colon and prostate cancer data) where we know precisely which genes cause a dataset to be classified as cancerous or normal - we call these causative genes. We found that not one statistical method tested could identify all the causative genes for all of the simulated cancers, even though increasing the sample size does improve the variable selection capabilities in most cases. Furthermore, certain statistical tools can classify our simulated data with a low error rate, yet the variables being used for classification are not necessarily the causative genes.</p>","PeriodicalId":48980,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"15 4","pages":"321-47"},"PeriodicalIF":0.9,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2015-0072","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34519893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Inference on gene regulatory networks from high-throughput expression data turns out to be one of the main current challenges in systems biology. Such networks can be very insightful for the deep understanding of interactions between genes. Because genes-gene interactions is often viewed as joint contributions to known biological mechanisms, inference on the dependence among gene expressions is expected to be consistent to some extent with the functional characterization of genes which can be derived from ontologies (GO, KEGG, …). The present paper introduces a sparse factor model as a general framework either to account for a prior knowledge on joint contributions of modules of genes to latent biological processes or to infer on the corresponding co-expression network. We propose an ℓ1 – regularized EM algorithm to fit a sparse factor model for correlation. We demonstrate how it helps extracting modules of genes and more generally improves the gene clustering performance. The method is compared to alternative estimation procedures for sparse factor models of relevance networks in a simulation study. The integration of a biological knowledge based on the gene ontology (GO) is also illustrated on a liver expression data generated to understand adiposity variability in chicken.
{"title":"Sparse factor model for co-expression networks with an application using prior biological knowledge.","authors":"Yuna Blum, Magalie Houée-Bigot, David Causeur","doi":"10.1515/sagmb-2015-0002","DOIUrl":"https://doi.org/10.1515/sagmb-2015-0002","url":null,"abstract":"Abstract Inference on gene regulatory networks from high-throughput expression data turns out to be one of the main current challenges in systems biology. Such networks can be very insightful for the deep understanding of interactions between genes. Because genes-gene interactions is often viewed as joint contributions to known biological mechanisms, inference on the dependence among gene expressions is expected to be consistent to some extent with the functional characterization of genes which can be derived from ontologies (GO, KEGG, …). The present paper introduces a sparse factor model as a general framework either to account for a prior knowledge on joint contributions of modules of genes to latent biological processes or to infer on the corresponding co-expression network. We propose an ℓ1 – regularized EM algorithm to fit a sparse factor model for correlation. We demonstrate how it helps extracting modules of genes and more generally improves the gene clustering performance. The method is compared to alternative estimation procedures for sparse factor models of relevance networks in a simulation study. The integration of a biological knowledge based on the gene ontology (GO) is also illustrated on a liver expression data generated to understand adiposity variability in chicken.","PeriodicalId":48980,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"15 3","pages":"253-72"},"PeriodicalIF":0.9,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2015-0002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34377789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The binding behavior of molecules in nuclei of living cells can be studied through the analysis of images from fluorescence recovery after photobleaching experiments. However, there is still a lack of methodology for the statistical evaluation of FRAP data, especially for the joint analysis of multiple dynamic images. We propose a hierarchical Bayesian nonlinear model with mixed-effect priors based on local compartment models in order to obtain joint parameter estimates for all nuclei as well as to account for the heterogeneity of the nuclei population. We apply our method to a series of FRAP experiments of DNA methyltransferase 1 tagged to green fluorescent protein expressed in a somatic mouse cell line and compare the results to the application of three different fixed-effects models to the same series of FRAP experiments. With the proposed model, we get estimates of the off-rates of the interactions of the molecules under study together with credible intervals, and additionally gain information about the variability between nuclei. The proposed model is superior to and more robust than the tested fixed-effects models. Therefore, it can be used for the joint analysis of data from FRAP experiments on various similar nuclei.
{"title":"Bayesian mixed-effects model for the analysis of a series of FRAP images.","authors":"Martina Feilke, Katrin Schneider, Volker J Schmid","doi":"10.1515/sagmb-2014-0013","DOIUrl":"https://doi.org/10.1515/sagmb-2014-0013","url":null,"abstract":"<p><p>The binding behavior of molecules in nuclei of living cells can be studied through the analysis of images from fluorescence recovery after photobleaching experiments. However, there is still a lack of methodology for the statistical evaluation of FRAP data, especially for the joint analysis of multiple dynamic images. We propose a hierarchical Bayesian nonlinear model with mixed-effect priors based on local compartment models in order to obtain joint parameter estimates for all nuclei as well as to account for the heterogeneity of the nuclei population. We apply our method to a series of FRAP experiments of DNA methyltransferase 1 tagged to green fluorescent protein expressed in a somatic mouse cell line and compare the results to the application of three different fixed-effects models to the same series of FRAP experiments. With the proposed model, we get estimates of the off-rates of the interactions of the molecules under study together with credible intervals, and additionally gain information about the variability between nuclei. The proposed model is superior to and more robust than the tested fixed-effects models. Therefore, it can be used for the joint analysis of data from FRAP experiments on various similar nuclei.</p>","PeriodicalId":48980,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"14 1","pages":"35-51"},"PeriodicalIF":0.9,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2014-0013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32905409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}