Pub Date : 2024-10-15DOI: 10.1007/s10237-024-01894-8
Dimitrije Stamenović
We reviewed two microstructural models, cellular solid models and prestressed affine network models, that have been used previously in studies of elastic behavior of soft biological materials. These models provide simple and mathematically transparent equations that can be used to interpret experimental data and to obtain quantitative predictions of the elastic properties of biological structures. In both models, volumetric density and elastic properties of the microstructure are key determinants of the macroscopic elastic properties. In the prestressed network model, geometrical rearrangement of the microstructure (kinematic stiffness) is also important. As examples of application of these models, we considered the shear behavior of the cytoskeleton of adherent cells, of the collagen network of articular cartilage, and of the lung parenchymal network since their ability to resist shear is important for their normal biological and physiological functions. All three networks carry a pre-existing stress (prestress). We predicted their shear moduli using the microstructural models and compared those predictions with existing experimental data. Prestressed network models of the cytoskeleton and of the lung parenchyma provided a better correspondence to experimental data than cellular solid models. Both cellular solid and prestressed network models of the cartilage collagen network provided reasonable agreements with experimental values. These findings suggested that the kinematic stiffness and material stiffness of microstructural elements were both important determinants of the shear modulus of the cytoskeleton and of the lung parenchyma, whereas elasticity of collagen fibrils had a predominant role in the cartilage shear behavior.
{"title":"Cellular solids and prestressed affine networks as models of the elastic behavior of soft biological structures.","authors":"Dimitrije Stamenović","doi":"10.1007/s10237-024-01894-8","DOIUrl":"https://doi.org/10.1007/s10237-024-01894-8","url":null,"abstract":"<p><p>We reviewed two microstructural models, cellular solid models and prestressed affine network models, that have been used previously in studies of elastic behavior of soft biological materials. These models provide simple and mathematically transparent equations that can be used to interpret experimental data and to obtain quantitative predictions of the elastic properties of biological structures. In both models, volumetric density and elastic properties of the microstructure are key determinants of the macroscopic elastic properties. In the prestressed network model, geometrical rearrangement of the microstructure (kinematic stiffness) is also important. As examples of application of these models, we considered the shear behavior of the cytoskeleton of adherent cells, of the collagen network of articular cartilage, and of the lung parenchymal network since their ability to resist shear is important for their normal biological and physiological functions. All three networks carry a pre-existing stress (prestress). We predicted their shear moduli using the microstructural models and compared those predictions with existing experimental data. Prestressed network models of the cytoskeleton and of the lung parenchyma provided a better correspondence to experimental data than cellular solid models. Both cellular solid and prestressed network models of the cartilage collagen network provided reasonable agreements with experimental values. These findings suggested that the kinematic stiffness and material stiffness of microstructural elements were both important determinants of the shear modulus of the cytoskeleton and of the lung parenchyma, whereas elasticity of collagen fibrils had a predominant role in the cartilage shear behavior.</p>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1007/s10237-024-01891-x
Sayyed Mohammad Ali Mortazavi, Bahar Firoozabadi
Studying tumor immune microenvironment (TIME) is pivotal to understand the mechanism and predict the outcome of cancer immunotherapy. Systems biology mathematical models can consider and control various factors of TIME and therefore explore the anti-tumor immune response meticulously. However, the role of tumor vasculature in the recruitment of T cells and the mechanism of T cell migration through TIME have not been studied comprehensively. In this work, we developed a hybrid discrete-continuum multi-scale model to study TIME. The mathematical model includes angiogenesis and T cell recruitment via tumor vasculature. Moreover, solid tumor growth, vascular growth and remodeling, interstitial fluid flow, hemodynamics, and blood rheology are all considered in the model. In addition, different aspects of T cells, including their migration, proliferation, subtype conversion, and interaction with tumor cells are thoroughly included. The model reproduces spatiotemporal distribution of tumor infiltrating T cells that mimics histopathological patterns. Furthermore, TIME model robustly recapitulates different phases of tumor immunoediting. We also examined a number of biomarkers to predict the outcome of immune checkpoint blockade (ICB) treatment. The results demonstrated that although tumor mutational burden (TMB) may predict non-responders to ICB, a combination of different biomarkers is essential to predict the majority of the responders. Based on our results, the ICB response rate varies significantly from 28 to 89% depending on the values of different parameters, even in the cases with high TMB.
研究肿瘤免疫微环境(TIME)对于理解癌症免疫疗法的机制和预测其结果至关重要。系统生物学数学模型可以考虑和控制 TIME 的各种因素,从而细致地探索抗肿瘤免疫反应。然而,肿瘤血管在 T 细胞招募中的作用以及 T 细胞通过 TIME 迁移的机制尚未得到全面研究。在这项工作中,我们建立了一个离散-连续多尺度混合模型来研究 TIME。该数学模型包括血管生成和 T 细胞通过肿瘤血管招募。此外,该模型还考虑了实体瘤生长、血管生长和重塑、间质流体流动、血液动力学和血液流变学。此外,T 细胞的迁移、增殖、亚型转换以及与肿瘤细胞的相互作用等不同方面也被全面纳入模型。该模型再现了肿瘤浸润 T 细胞的时空分布,模拟了组织病理学模式。此外,TIME 模型还稳健地再现了肿瘤免疫编辑的不同阶段。我们还研究了一些生物标志物来预测免疫检查点阻断(ICB)治疗的结果。结果表明,虽然肿瘤突变负荷(TMB)可以预测ICB的非应答者,但不同生物标志物的组合对于预测大多数应答者至关重要。根据我们的研究结果,ICB的应答率根据不同参数值的不同而有很大差异,从28%到89%不等,即使在TMB较高的病例中也是如此。
{"title":"Towards a framework for predicting immunotherapy outcome: a hybrid multiscale mathematical model of immune response to vascular tumor growth","authors":"Sayyed Mohammad Ali Mortazavi, Bahar Firoozabadi","doi":"10.1007/s10237-024-01891-x","DOIUrl":"10.1007/s10237-024-01891-x","url":null,"abstract":"<div><p>Studying tumor immune microenvironment (TIME) is pivotal to understand the mechanism and predict the outcome of cancer immunotherapy. Systems biology mathematical models can consider and control various factors of TIME and therefore explore the anti-tumor immune response meticulously. However, the role of tumor vasculature in the recruitment of T cells and the mechanism of T cell migration through TIME have not been studied comprehensively. In this work, we developed a hybrid discrete-continuum multi-scale model to study TIME. The mathematical model includes angiogenesis and T cell recruitment via tumor vasculature. Moreover, solid tumor growth, vascular growth and remodeling, interstitial fluid flow, hemodynamics, and blood rheology are all considered in the model. In addition, different aspects of T cells, including their migration, proliferation, subtype conversion, and interaction with tumor cells are thoroughly included. The model reproduces spatiotemporal distribution of tumor infiltrating T cells that mimics histopathological patterns. Furthermore, TIME model robustly recapitulates different phases of tumor immunoediting. We also examined a number of biomarkers to predict the outcome of immune checkpoint blockade (ICB) treatment. The results demonstrated that although tumor mutational burden (TMB) may predict non-responders to ICB, a combination of different biomarkers is essential to predict the majority of the responders. Based on our results, the ICB response rate varies significantly from 28 to 89% depending on the values of different parameters, even in the cases with high TMB.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 6","pages":"2243 - 2264"},"PeriodicalIF":3.0,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-06DOI: 10.1007/s10237-024-01896-6
Zubeir Allum Saib, Farid Abed, Mergen H Ghayesh, Marco Amabili
Self-expandable stents manufactured from nitinol alloys are commonly utilized alongside traditional balloon-expandable stents to provide scaffolding to stenosed arteries. However, a significant limitation hampering stent efficacy is restenosis, triggered by neointimal hyperplasia and resulting in the loss of gain in lumen size, post-intervention. In this study, a nonlinear finite element model was developed to simulate stent crimping and expansion and its interaction with the surrounding vessel in the presence of a plaque. The main aim was to determine contact pressures and forces induced at the interface between an artery wall with hypocellular and calcified plaques and an expanded stent. The results demonstrated the drawbacks of plaque calcification, which triggered a sharp contact pressure and radial force surge at the interface as well as a significant rise in von Mises stress within the vessel, potentially leading to rupture and restenosis. A regression line was then established to relate hypocellular and calcified plaques. The adjusted coefficient of determination indicated a good correlation between contact pressures for calcified and hypocellular plaque models. Regarding the directionality of wall properties, contact pressure and force observations were not significantly different between isotropic and anisotropic arteries. Moreover, variations in friction coefficients did not substantially affect the interfacial contact pressures.
{"title":"Interaction of a self-expandable stent with the arterial wall in the presence of hypocellular and calcified plaques.","authors":"Zubeir Allum Saib, Farid Abed, Mergen H Ghayesh, Marco Amabili","doi":"10.1007/s10237-024-01896-6","DOIUrl":"https://doi.org/10.1007/s10237-024-01896-6","url":null,"abstract":"<p><p>Self-expandable stents manufactured from nitinol alloys are commonly utilized alongside traditional balloon-expandable stents to provide scaffolding to stenosed arteries. However, a significant limitation hampering stent efficacy is restenosis, triggered by neointimal hyperplasia and resulting in the loss of gain in lumen size, post-intervention. In this study, a nonlinear finite element model was developed to simulate stent crimping and expansion and its interaction with the surrounding vessel in the presence of a plaque. The main aim was to determine contact pressures and forces induced at the interface between an artery wall with hypocellular and calcified plaques and an expanded stent. The results demonstrated the drawbacks of plaque calcification, which triggered a sharp contact pressure and radial force surge at the interface as well as a significant rise in von Mises stress within the vessel, potentially leading to rupture and restenosis. A regression line was then established to relate hypocellular and calcified plaques. The adjusted coefficient of determination indicated a good correlation between contact pressures for calcified and hypocellular plaque models. Regarding the directionality of wall properties, contact pressure and force observations were not significantly different between isotropic and anisotropic arteries. Moreover, variations in friction coefficients did not substantially affect the interfacial contact pressures.</p>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05DOI: 10.1007/s10237-024-01876-w
Alice Peyraut, Martin Genet
Recent years have seen the development of multiple in silico lung models, notably with the aim of improving patient care for pulmonary diseases. These models vary in complexity and typically only consider the implementation of pleural pressure, a depression that keeps the lungs inflated. Gravity, often considered negligible compared to pleural pressure, has been largely overlooked, also due to the complexity of formulating physiological boundary conditions to counterbalance it. However, gravity is known to affect pulmonary functions, such as ventilation. In this study, we incorporated gravity into a recent lung poromechanical model. To do so, in addition to the gravitational body force, we proposed novel boundary conditions consisting in a heterogeneous pleural pressure field constrained to counterbalance gravity to reach global equilibrium of applied forces. We assessed the impact of gravity on the global and local behavior of the model, including the pressure–volume response and porosity field. Our findings reveal that gravity, despite being small, influences lung response. Specifically, the inclusion of gravity in our model led to the emergence of heterogeneities in deformation and stress distribution, compatible with in vivo imaging data. This could provide valuable insights for predicting the progression of certain pulmonary diseases by correlating areas subjected to higher deformation and stresses with disease evolution patterns.
{"title":"A model of mechanical loading of the lungs including gravity and a balancing heterogeneous pleural pressure","authors":"Alice Peyraut, Martin Genet","doi":"10.1007/s10237-024-01876-w","DOIUrl":"10.1007/s10237-024-01876-w","url":null,"abstract":"<div><p>Recent years have seen the development of multiple <i>in silico</i> lung models, notably with the aim of improving patient care for pulmonary diseases. These models vary in complexity and typically only consider the implementation of pleural pressure, a depression that keeps the lungs inflated. Gravity, often considered negligible compared to pleural pressure, has been largely overlooked, also due to the complexity of formulating physiological boundary conditions to counterbalance it. However, gravity is known to affect pulmonary functions, such as ventilation. In this study, we incorporated gravity into a recent lung poromechanical model. To do so, in addition to the gravitational body force, we proposed novel boundary conditions consisting in a heterogeneous pleural pressure field constrained to counterbalance gravity to reach global equilibrium of applied forces. We assessed the impact of gravity on the global and local behavior of the model, including the pressure–volume response and porosity field. Our findings reveal that gravity, despite being small, influences lung response. Specifically, the inclusion of gravity in our model led to the emergence of heterogeneities in deformation and stress distribution, compatible with <i>in vivo</i> imaging data. This could provide valuable insights for predicting the progression of certain pulmonary diseases by correlating areas subjected to higher deformation and stresses with disease evolution patterns.\u0000</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 6","pages":"1933 - 1962"},"PeriodicalIF":3.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-04DOI: 10.1007/s10237-024-01892-w
Vijay Govindarajan, Charles Wanna, Nils P Johnson, Arun V Kolanjiyil, Hyunggun Kim, Danai Kitkungvan, David M McPherson, Jane Grande-Allen, Krishnan B Chandran, Antony Estrera, Danny Ramzy, Siddharth Prakash
Aortic lesions, exemplified by bicuspid aortic valves (BAVs), can complicate congenital heart defects, particularly in Turner syndrome patients. The combination of BAV, dilated ascending aorta, and an elongated aortic arch presents complex hemodynamics, requiring detailed analysis for tailored treatment strategies. While current clinical decision-making relies on imaging modalities offering limited biomechanical insights, integrating high-performance computing and fluid-structure interaction algorithms with patient data enables comprehensive evaluation of diseased anatomy and planned intervention. In this study, a patient-specific workflow was utilized to biomechanically assess a Turner syndrome patient's BAV, dilated ascending aorta, and elongated arch. Results showed significant improvements in valve function (effective orifice area, EOA increased approximately twofold) and reduction in valve stress (~ 1.8-fold) following virtual commissurotomy, leading to enhanced flow dynamics and decreased viscous dissipation (~ twofold) particularly in the ascending aorta. However, increased viscous dissipation in the distal transverse aortic arch offset its local reduction in the AAo post-intervention, emphasizing the elongated arch's role in aortic hemodynamics. Our findings highlight the importance of comprehensive biomechanical evaluation and integrating patient-specific modeling with conventional imaging techniques for improved disease assessment, risk stratification, and treatment planning, ultimately enhancing patient outcomes.
{"title":"Unraveling aortic hemodynamics using fluid structure interaction: biomechanical insights into bicuspid aortic valve dynamics with multiple aortic lesions.","authors":"Vijay Govindarajan, Charles Wanna, Nils P Johnson, Arun V Kolanjiyil, Hyunggun Kim, Danai Kitkungvan, David M McPherson, Jane Grande-Allen, Krishnan B Chandran, Antony Estrera, Danny Ramzy, Siddharth Prakash","doi":"10.1007/s10237-024-01892-w","DOIUrl":"https://doi.org/10.1007/s10237-024-01892-w","url":null,"abstract":"<p><p>Aortic lesions, exemplified by bicuspid aortic valves (BAVs), can complicate congenital heart defects, particularly in Turner syndrome patients. The combination of BAV, dilated ascending aorta, and an elongated aortic arch presents complex hemodynamics, requiring detailed analysis for tailored treatment strategies. While current clinical decision-making relies on imaging modalities offering limited biomechanical insights, integrating high-performance computing and fluid-structure interaction algorithms with patient data enables comprehensive evaluation of diseased anatomy and planned intervention. In this study, a patient-specific workflow was utilized to biomechanically assess a Turner syndrome patient's BAV, dilated ascending aorta, and elongated arch. Results showed significant improvements in valve function (effective orifice area, EOA increased approximately twofold) and reduction in valve stress (~ 1.8-fold) following virtual commissurotomy, leading to enhanced flow dynamics and decreased viscous dissipation (~ twofold) particularly in the ascending aorta. However, increased viscous dissipation in the distal transverse aortic arch offset its local reduction in the AAo post-intervention, emphasizing the elongated arch's role in aortic hemodynamics. Our findings highlight the importance of comprehensive biomechanical evaluation and integrating patient-specific modeling with conventional imaging techniques for improved disease assessment, risk stratification, and treatment planning, ultimately enhancing patient outcomes.</p>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03DOI: 10.1007/s10237-024-01893-9
Symon Reza, Brandon Kovarovic, Danny Bluestein
Transcatheter aortic valve replacement (TAVR) has rapidly displaced surgical aortic valve replacement (SAVR). However, certain post-TAVR complications persist, with cardiac conduction abnormalities (CCA) being one of the major ones. The elevated pressure exerted by the TAVR stent onto the conduction fibers situated between the aortic annulus and the His bundle, in proximity to the atrioventricular (AV) node, may disrupt the cardiac conduction leading to the emergence of CCA. In this study, an in silico framework was developed to assess the CCA risk, incorporating the effect of a dynamic beating heart and preprocedural parameters such as implantation depth and preexisting cardiac asynchrony in the new onset of post-TAVR CCA. A self-expandable TAVR device deployment was simulated inside an electromechanically coupled beating heart model in five patient scenarios, including three implantation depths and two preexisting cardiac asynchronies: (i) a right bundle branch block (RBBB) and (ii) a left bundle branch block (LBBB). Subsequently, several biomechanical parameters were analyzed to assess the post-TAVR CCA risk. The results manifested a lower cumulative contact pressure on the conduction fibers following TAVR for aortic deployment (0.018 MPa) compared to nominal condition (0.29 MPa) and ventricular deployment (0.52 MPa). Notably, the preexisting RBBB demonstrated a higher cumulative contact pressure (0.34 MPa) compared to the nominal condition and preexisting LBBB (0.25 MPa). Deeper implantation and preexisting RBBB cause higher stresses and contact pressure on the conduction fibers leading to an increased risk of post-TAVR CCA. Conversely, implantation above the MS landmark and preexisting LBBB reduces the risk.
经导管主动脉瓣置换术(TAVR)迅速取代了外科主动脉瓣置换术(SAVR)。然而,经导管主动脉瓣置换术后仍存在一些并发症,其中最主要的是心脏传导异常(CCA)。TAVR 支架对位于主动脉瓣环和 His 束之间、靠近房室结的传导纤维施加的压力升高,可能会破坏心脏传导,导致 CCA 的出现。在这项研究中,我们开发了一个用于评估 CCA 风险的硅学框架,将动态跳动的心脏和术前参数(如植入深度和术前心脏不同步)对 TAVR 术后新发 CCA 的影响纳入其中。在机电耦合搏动心脏模型中模拟了五种患者情况下的自膨式 TAVR 装置部署,包括三种植入深度和两种预先存在的心脏不同步:(i) 右束支传导阻滞 (RBBB) 和 (ii) 左束支传导阻滞 (LBBB)。随后,对几个生物力学参数进行了分析,以评估TAVR术后的CCA风险。结果显示,与标称状态(0.29 兆帕)和心室部署(0.52 兆帕)相比,TAVR 后主动脉部署(0.018 兆帕)对传导纤维的累积接触压力较低。值得注意的是,与名义状态和预先存在的 LBBB(0.25 兆帕)相比,预先存在的 RBBB 显示出更高的累积接触压力(0.34 兆帕)。较深的植入和预先存在的 RBBB 会对传导纤维造成较高的应力和接触压力,导致 TAVR 术后发生 CCA 的风险增加。相反,如果植入位置高于MS地标并预先存在LBBB,则会降低风险。
{"title":"Assessing post-TAVR cardiac conduction abnormalities risk using an electromechanically coupled beating heart.","authors":"Symon Reza, Brandon Kovarovic, Danny Bluestein","doi":"10.1007/s10237-024-01893-9","DOIUrl":"10.1007/s10237-024-01893-9","url":null,"abstract":"<p><p>Transcatheter aortic valve replacement (TAVR) has rapidly displaced surgical aortic valve replacement (SAVR). However, certain post-TAVR complications persist, with cardiac conduction abnormalities (CCA) being one of the major ones. The elevated pressure exerted by the TAVR stent onto the conduction fibers situated between the aortic annulus and the His bundle, in proximity to the atrioventricular (AV) node, may disrupt the cardiac conduction leading to the emergence of CCA. In this study, an in silico framework was developed to assess the CCA risk, incorporating the effect of a dynamic beating heart and preprocedural parameters such as implantation depth and preexisting cardiac asynchrony in the new onset of post-TAVR CCA. A self-expandable TAVR device deployment was simulated inside an electromechanically coupled beating heart model in five patient scenarios, including three implantation depths and two preexisting cardiac asynchronies: (i) a right bundle branch block (RBBB) and (ii) a left bundle branch block (LBBB). Subsequently, several biomechanical parameters were analyzed to assess the post-TAVR CCA risk. The results manifested a lower cumulative contact pressure on the conduction fibers following TAVR for aortic deployment (0.018 MPa) compared to nominal condition (0.29 MPa) and ventricular deployment (0.52 MPa). Notably, the preexisting RBBB demonstrated a higher cumulative contact pressure (0.34 MPa) compared to the nominal condition and preexisting LBBB (0.25 MPa). Deeper implantation and preexisting RBBB cause higher stresses and contact pressure on the conduction fibers leading to an increased risk of post-TAVR CCA. Conversely, implantation above the MS landmark and preexisting LBBB reduces the risk.</p>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-30DOI: 10.1007/s10237-024-01883-x
Felix Klempt, Meisam Soleimani, Peter Wriggers, Philipp Junker
Dense communities of bacteria, also known as biofilms, are ubiquitous in all of our everyday life. They are not only always surrounding us, but are also active inside our bodies, for example in the oral cavity. While some biofilms are beneficial or even necessary for human life, others can be harmful. Therefore, it is highly important to gain an in-depth understanding of biofilms which can be achieved by in vitro or in vivo experiments. Since these experiments are often time-consuming or expensive, in silico models have proven themselves to be a viable tool in assisting the description and analysis of these complicated processes. Current biofilm growth simulations are using mainly two approaches for describing the underlying models. The volumetric approach splits the deformation tensor into a growth and an elastic part. In this approach, the mass never changes, unless some additional constraints are enforced. The density-based approach, on the other hand, uses an evolution equation to update the growing tissue by adding mass. Here, the density stays constant, and no pressure is exerted. The in silico model presented in this work combines the two approaches. Thus, it is possible to capture stresses inside of the biofilm while adding mass. Since this approach is directly derived from Hamilton’s principle, it fulfills the first and second law of thermodynamics automatically, which other models need to be checked for separately. In this work, we show the derivation of the model as well as some selected numerical experiments. The numerical experiments show a good phenomenological agreement with what is to be expected from a growing biofilm. The numerical behavior is stable, and we are thus capable of solving complicated boundary value problems. In addition, the model is very reactive to different input parameters, thereby different behavior of various biofilms can be captured without modifying the model.
{"title":"A Hamilton principle-based model for diffusion-driven biofilm growth","authors":"Felix Klempt, Meisam Soleimani, Peter Wriggers, Philipp Junker","doi":"10.1007/s10237-024-01883-x","DOIUrl":"10.1007/s10237-024-01883-x","url":null,"abstract":"<div><p>Dense communities of bacteria, also known as biofilms, are ubiquitous in all of our everyday life. They are not only always surrounding us, but are also active inside our bodies, for example in the oral cavity. While some biofilms are beneficial or even necessary for human life, others can be harmful. Therefore, it is highly important to gain an in-depth understanding of biofilms which can be achieved by <i>in vitro</i> or <i>in vivo</i> experiments. Since these experiments are often time-consuming or expensive, <i>in silico</i> models have proven themselves to be a viable tool in assisting the description and analysis of these complicated processes. Current biofilm growth simulations are using mainly two approaches for describing the underlying models. The volumetric approach splits the deformation tensor into a growth and an elastic part. In this approach, the mass never changes, unless some additional constraints are enforced. The density-based approach, on the other hand, uses an evolution equation to update the growing tissue by adding mass. Here, the density stays constant, and no pressure is exerted. The <i>in silico</i> model presented in this work combines the two approaches. Thus, it is possible to capture stresses inside of the biofilm while adding mass. Since this approach is directly derived from Hamilton’s principle, it fulfills the first and second law of thermodynamics automatically, which other models need to be checked for separately. In this work, we show the derivation of the model as well as some selected numerical experiments. The numerical experiments show a good phenomenological agreement with what is to be expected from a growing biofilm. The numerical behavior is stable, and we are thus capable of solving complicated boundary value problems. In addition, the model is very reactive to different input parameters, thereby different behavior of various biofilms can be captured without modifying the model.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 6","pages":"2091 - 2113"},"PeriodicalIF":3.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10237-024-01883-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-25DOI: 10.1007/s10237-024-01879-7
Alberto Girelli, Giulia Giantesio, Alessandro Musesti, Raimondo Penta
Lymph Nodes (LNs) are crucial to the immune and lymphatic systems, filtering harmful substances and regulating lymph transport. LNs consist of a lymphoid compartment (LC) that forms a porous bulk region, and a subcapsular sinus (SCS), which is a free-fluid region. Mathematical and mechanical challenges arise in understanding lymph flow dynamics. The highly vascularized lymph node connects the lymphatic and blood systems, emphasizing its essential role in maintaining the fluid balance in the body. In this work, we describe a mathematical model in a steady setting to describe the lymph transport in a lymph node. We couple the fluid flow in the SCS governed by an incompressible Stokes equation with the fluid flow in LC, described by a model obtained by means of asymptotic homogenisation technique, taking into account the multiscale nature of the node and the fluid exchange with the blood vessels inside it. We solve this model using numerical simulations and we analyze the lymph transport inside the node to elucidate its regulatory mechanisms and significance. Our results highlight the crucial role of the microstructure of the lymph node in regularising its fluid balance. These results can pave the way to a better understanding of the mechanisms underlying the lymph node’s multiscale functionalities which can be significantly affected by specific physiological and pathological conditions, such as those characterising malignant tissues.
{"title":"Multiscale computational analysis of the steady fluid flow through a lymph node","authors":"Alberto Girelli, Giulia Giantesio, Alessandro Musesti, Raimondo Penta","doi":"10.1007/s10237-024-01879-7","DOIUrl":"10.1007/s10237-024-01879-7","url":null,"abstract":"<div><p>Lymph Nodes (LNs) are crucial to the immune and lymphatic systems, filtering harmful substances and regulating lymph transport. LNs consist of a lymphoid compartment (LC) that forms a porous bulk region, and a subcapsular sinus (SCS), which is a free-fluid region. Mathematical and mechanical challenges arise in understanding lymph flow dynamics. The highly vascularized lymph node connects the lymphatic and blood systems, emphasizing its essential role in maintaining the fluid balance in the body. In this work, we describe a mathematical model in a steady setting to describe the lymph transport in a lymph node. We couple the fluid flow in the SCS governed by an incompressible Stokes equation with the fluid flow in LC, described by a model obtained by means of asymptotic homogenisation technique, taking into account the multiscale nature of the node and the fluid exchange with the blood vessels inside it. We solve this model using numerical simulations and we analyze the lymph transport inside the node to elucidate its regulatory mechanisms and significance. Our results highlight the crucial role of the microstructure of the lymph node in regularising its fluid balance. These results can pave the way to a better understanding of the mechanisms underlying the lymph node’s multiscale functionalities which can be significantly affected by specific physiological and pathological conditions, such as those characterising malignant tissues.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 6","pages":"2005 - 2023"},"PeriodicalIF":3.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10237-024-01879-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-25DOI: 10.1007/s10237-024-01885-9
Fabian A. Braeu, Stéphane Avril, Michaël J. A. Girard
The purpose of this study was to assess whether growth and remodeling (G&R) theory could explain staphyloma formation from a local scleral weakening—as could occur from age-related elastin degradation, myopia progression, or other factors. A finite element model of a healthy eye was reconstructed, including the lamina cribrosa, the peripapillary sclera, and the peripheral sclera. The homogenized constrained mixture model was employed to simulate the adaptation of the sclera to alterations in its biomechanical environment over a duration of 13.7 years. G&R processes were triggered by reducing the shear stiffness of the ground matrix in the peripapillary sclera and lamina cribrosa by 85%. Three distinct G&R scenarios were investigated: (1) low mass turnover rate in combination with transmural volumetric growth; (2) high mass turnover rate in combination with transmural volumetric growth; and (3) high mass turnover rate in combination with mass density growth. In scenario 1, we observed a significant outpouching of the posterior pole, closely resembling the shape of a Type-III staphyloma. Additionally, we found a notable change in scleral curvature and a thinning of the peripapillary sclera by 84%. In contrast, scenario 2 and 3 exhibited less drastic deformations, with stable posterior staphylomas after approximately 7 years. Our proposed framework suggests that local scleral weakening is sufficient to trigger staphyloma formation under a normal level of intraocular pressure. Our model also reproduced characteristics of Type-III staphylomas. With patient-specific scleral geometries (as could be obtained with wide-field optical coherence tomography), our framework could be clinically translated to help us identify those at risks of developing posterior staphylomas.
{"title":"3D growth and remodeling theory supports the hypothesis of staphyloma formation from local scleral weakening under normal intraocular pressure","authors":"Fabian A. Braeu, Stéphane Avril, Michaël J. A. Girard","doi":"10.1007/s10237-024-01885-9","DOIUrl":"10.1007/s10237-024-01885-9","url":null,"abstract":"<div><p>The purpose of this study was to assess whether growth and remodeling (G&R) theory could explain staphyloma formation from a local scleral weakening—as could occur from age-related elastin degradation, myopia progression, or other factors. A finite element model of a healthy eye was reconstructed, including the lamina cribrosa, the peripapillary sclera, and the peripheral sclera. The homogenized constrained mixture model was employed to simulate the adaptation of the sclera to alterations in its biomechanical environment over a duration of 13.7 years. G&R processes were triggered by reducing the shear stiffness of the ground matrix in the peripapillary sclera and lamina cribrosa by 85%. Three distinct G&R scenarios were investigated: (1) low mass turnover rate in combination with transmural volumetric growth; (2) high mass turnover rate in combination with transmural volumetric growth; and (3) high mass turnover rate in combination with mass density growth. In <b>scenario 1</b>, we observed a significant outpouching of the posterior pole, closely resembling the shape of a Type-III staphyloma. Additionally, we found a notable change in scleral curvature and a thinning of the peripapillary sclera by 84%. In contrast, <b>scenario 2</b> and <b>3</b> exhibited less drastic deformations, with stable posterior staphylomas after approximately 7 years. Our proposed framework suggests that local scleral weakening is sufficient to trigger staphyloma formation under a normal level of intraocular pressure. Our model also reproduced characteristics of Type-III staphylomas. With patient-specific scleral geometries (as could be obtained with wide-field optical coherence tomography), our framework could be clinically translated to help us identify those at risks of developing posterior staphylomas.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 6","pages":"2137 - 2154"},"PeriodicalIF":3.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lung alveoli are modeled as spherical caps, lined internally by a thin surfactant-laden liquid film, and the periodic wall shear stress exerted along the epithelium during small-amplitude radial oscillations of their wall is computed. A novel set of boundary conditions, applied at the rim, reveals the dominant role of Marangoni stresses. These stresses develop along the air/liquid interface due to spatial gradients of interfacial surfactant concentration and are transported to the wall by the action of viscosity. The effect of a variety of geometric and functional characteristics, including rim interstitial thickness, alveolar opening angle and liquid film thickness and viscosity, is interrogated, and the results are discussed in relation to the onset and evolution of acute and chronic lung diseases, such as asthmatic attacks, pulmonary emphysema and pulmonary fibrosis.
{"title":"Prediction of shear stress imposed on alveolar epithelium of healthy and diseased lungs","authors":"Alexandros Livanos, Konstantinos Bouchoris, Kyriaki-Evangelia Aslani, Konstantinos Gourgoulianis, Vasilis Bontozoglou","doi":"10.1007/s10237-024-01889-5","DOIUrl":"10.1007/s10237-024-01889-5","url":null,"abstract":"<div><p>Lung alveoli are modeled as spherical caps, lined internally by a thin surfactant-laden liquid film, and the periodic wall shear stress exerted along the epithelium during small-amplitude radial oscillations of their wall is computed. A novel set of boundary conditions, applied at the rim, reveals the dominant role of Marangoni stresses. These stresses develop along the air/liquid interface due to spatial gradients of interfacial surfactant concentration and are transported to the wall by the action of viscosity. The effect of a variety of geometric and functional characteristics, including rim interstitial thickness, alveolar opening angle and liquid film thickness and viscosity, is interrogated, and the results are discussed in relation to the onset and evolution of acute and chronic lung diseases, such as asthmatic attacks, pulmonary emphysema and pulmonary fibrosis.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 6","pages":"2213 - 2227"},"PeriodicalIF":3.0,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}