Pub Date : 2024-08-29eCollection Date: 2024-08-01DOI: 10.1371/journal.pbio.3002793
Reut Vardi, Andrea Soriano-Redondo, Jorge S Gutiérrez, Łukasz Dylewski, Zuzanna Jagiello, Peter Mikula, Oded Berger-Tal, Daniel T Blumstein, Ivan Jarić, Valerio Sbragaglia
The widespread sharing of information on the Internet has given rise to ecological studies that use data from digital sources including digitized museum records and social media posts. Most of these studies have focused on understanding species occurrences and distributions. In this essay, we argue that data from digital sources also offer many opportunities to study animal behavior including long-term and large-scale comparisons within and between species. Following Nikko Tinbergen's classical roadmap for behavioral investigation, we show how using videos, photos, text, and audio posted on social media and other digital platforms can shed new light on known behaviors, particularly in a changing world, and lead to the discovery of new ones.
{"title":"Leveraging social media and other online data to study animal behavior.","authors":"Reut Vardi, Andrea Soriano-Redondo, Jorge S Gutiérrez, Łukasz Dylewski, Zuzanna Jagiello, Peter Mikula, Oded Berger-Tal, Daniel T Blumstein, Ivan Jarić, Valerio Sbragaglia","doi":"10.1371/journal.pbio.3002793","DOIUrl":"10.1371/journal.pbio.3002793","url":null,"abstract":"<p><p>The widespread sharing of information on the Internet has given rise to ecological studies that use data from digital sources including digitized museum records and social media posts. Most of these studies have focused on understanding species occurrences and distributions. In this essay, we argue that data from digital sources also offer many opportunities to study animal behavior including long-term and large-scale comparisons within and between species. Following Nikko Tinbergen's classical roadmap for behavioral investigation, we show how using videos, photos, text, and audio posted on social media and other digital platforms can shed new light on known behaviors, particularly in a changing world, and lead to the discovery of new ones.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11389916/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142113850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-29eCollection Date: 2024-08-01DOI: 10.1371/journal.pbio.3002773
Nicolas Loiseau, David Mouillot, Laure Velez, Raphaël Seguin, Nicolas Casajus, Camille Coux, Camille Albouy, Thomas Claverie, Agnès Duhamet, Valentine Fleure, Juliette Langlois, Sébastien Villéger, Nicolas Mouquet
While extinction risk categorization is fundamental for building robust conservation planning for marine fishes, empirical data on occurrence and vulnerability to disturbances are still lacking for most marine teleost fish species, preventing the assessment of their International Union for the Conservation of Nature (IUCN) status. In this article, we predicted the IUCN status of marine fishes based on two machine learning algorithms, trained with available species occurrences, biological traits, taxonomy, and human uses. We found that extinction risk for marine fish species is higher than initially estimated by the IUCN, increasing from 2.5% to 12.7%. Species predicted as Threatened were mainly characterized by a small geographic range, a relatively large body size, and a low growth rate. Hotspots of predicted Threatened species peaked mainly in the South China Sea, the Philippine Sea, the Celebes Sea, the west coast Australia and North America. We also explored the consequences of including these predicted species' IUCN status in the prioritization of marine protected areas through conservation planning. We found a marked increase in prioritization ranks for subpolar and polar regions despite their low species richness. We suggest to integrate multifactorial ensemble learning to assess species extinction risk and offer a more complete view of endangered taxonomic groups to ultimately reach global conservation targets like the extending coverage of protected areas where species are the most vulnerable.
{"title":"Inferring the extinction risk of marine fish to inform global conservation priorities.","authors":"Nicolas Loiseau, David Mouillot, Laure Velez, Raphaël Seguin, Nicolas Casajus, Camille Coux, Camille Albouy, Thomas Claverie, Agnès Duhamet, Valentine Fleure, Juliette Langlois, Sébastien Villéger, Nicolas Mouquet","doi":"10.1371/journal.pbio.3002773","DOIUrl":"https://doi.org/10.1371/journal.pbio.3002773","url":null,"abstract":"<p><p>While extinction risk categorization is fundamental for building robust conservation planning for marine fishes, empirical data on occurrence and vulnerability to disturbances are still lacking for most marine teleost fish species, preventing the assessment of their International Union for the Conservation of Nature (IUCN) status. In this article, we predicted the IUCN status of marine fishes based on two machine learning algorithms, trained with available species occurrences, biological traits, taxonomy, and human uses. We found that extinction risk for marine fish species is higher than initially estimated by the IUCN, increasing from 2.5% to 12.7%. Species predicted as Threatened were mainly characterized by a small geographic range, a relatively large body size, and a low growth rate. Hotspots of predicted Threatened species peaked mainly in the South China Sea, the Philippine Sea, the Celebes Sea, the west coast Australia and North America. We also explored the consequences of including these predicted species' IUCN status in the prioritization of marine protected areas through conservation planning. We found a marked increase in prioritization ranks for subpolar and polar regions despite their low species richness. We suggest to integrate multifactorial ensemble learning to assess species extinction risk and offer a more complete view of endangered taxonomic groups to ultimately reach global conservation targets like the extending coverage of protected areas where species are the most vulnerable.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361419/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142113849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27eCollection Date: 2024-08-01DOI: 10.1371/journal.pbio.3002743
Aurélie Chazot, Claire Zimberger, Mikael Feracci, Adel Moussa, Steven Good, Jean-Pierre Sommadossi, Karine Alvarez, François Ferron, Bruno Canard
Bemnifosbuvir (AT-527) and AT-752 are guanosine analogues currently in clinical trials against several RNA viruses. Here, we show that these drugs require a minimal set of 5 cellular enzymes for activation to their common 5'-triphosphate AT-9010, with an obligate order of reactions. AT-9010 selectively inhibits essential viral enzymes, accounting for antiviral potency. Functional and structural data at atomic resolution decipher N6-purine deamination compatible with its metabolic activation. Crystal structures of human histidine triad nucleotide binding protein 1, adenosine deaminase-like protein 1, guanylate kinase 1, and nucleoside diphosphate kinase at 2.09, 2.44, 1.76, and 1.9 Å resolution, respectively, with cognate precursors of AT-9010 illuminate the activation pathway from the orally available bemnifosbuvir to AT-9010, pointing to key drug-protein contacts along the activation pathway. Our work provides a framework to integrate the design of antiviral nucleotide analogues, confronting requirements and constraints associated with activation enzymes along the 5'-triphosphate assembly line.
{"title":"The activation cascade of the broad-spectrum antiviral bemnifosbuvir characterized at atomic resolution.","authors":"Aurélie Chazot, Claire Zimberger, Mikael Feracci, Adel Moussa, Steven Good, Jean-Pierre Sommadossi, Karine Alvarez, François Ferron, Bruno Canard","doi":"10.1371/journal.pbio.3002743","DOIUrl":"10.1371/journal.pbio.3002743","url":null,"abstract":"<p><p>Bemnifosbuvir (AT-527) and AT-752 are guanosine analogues currently in clinical trials against several RNA viruses. Here, we show that these drugs require a minimal set of 5 cellular enzymes for activation to their common 5'-triphosphate AT-9010, with an obligate order of reactions. AT-9010 selectively inhibits essential viral enzymes, accounting for antiviral potency. Functional and structural data at atomic resolution decipher N6-purine deamination compatible with its metabolic activation. Crystal structures of human histidine triad nucleotide binding protein 1, adenosine deaminase-like protein 1, guanylate kinase 1, and nucleoside diphosphate kinase at 2.09, 2.44, 1.76, and 1.9 Å resolution, respectively, with cognate precursors of AT-9010 illuminate the activation pathway from the orally available bemnifosbuvir to AT-9010, pointing to key drug-protein contacts along the activation pathway. Our work provides a framework to integrate the design of antiviral nucleotide analogues, confronting requirements and constraints associated with activation enzymes along the 5'-triphosphate assembly line.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349198/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-26eCollection Date: 2024-08-01DOI: 10.1371/journal.pbio.3002803
Stathis Megas, Nadav Yayon, Kerstin B Meyer, Sarah A Teichmann
Here we propose "molecular connectomics" to link molecular and morphological cell features in three dimensions across scales, using machine learning and artificial intelligence to reveal emergent properties of complex biological systems.
{"title":"Molecular connectomics: Placing cells into morphological tissue context.","authors":"Stathis Megas, Nadav Yayon, Kerstin B Meyer, Sarah A Teichmann","doi":"10.1371/journal.pbio.3002803","DOIUrl":"10.1371/journal.pbio.3002803","url":null,"abstract":"<p><p>Here we propose \"molecular connectomics\" to link molecular and morphological cell features in three dimensions across scales, using machine learning and artificial intelligence to reveal emergent properties of complex biological systems.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364415/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142074328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-26eCollection Date: 2024-08-01DOI: 10.1371/journal.pbio.3002660
Shawn D Burton, Christina M Malyshko, Nathaniel N Urban
Inhibitory circuits in the mammalian olfactory bulb (OB) dynamically reformat olfactory information as it propagates from peripheral receptors to downstream cortex. To gain mechanistic insight into how specific OB interneuron types support this sensory processing, we examine unitary synaptic interactions between excitatory mitral and tufted cells (MTCs), the OB projection neurons, and a conserved population of anaxonic external plexiform layer interneurons (EPL-INs) using pair and quartet whole-cell recordings in acute mouse brain slices. Physiological, morphological, neurochemical, and synaptic analyses divide EPL-INs into distinct subtypes and reveal that parvalbumin-expressing fast-spiking EPL-INs (FSIs) perisomatically innervate MTCs with release-competent dendrites and synaptically detonate to mediate fast, short-latency recurrent and lateral inhibition. Sparse MTC synchronization supralinearly increases this high-fidelity inhibition, while sensory afferent activation combined with single-cell silencing reveals that individual FSIs account for a substantial fraction of total network-driven MTC lateral inhibition. OB output is thus powerfully shaped by detonation-driven high-fidelity perisomatic inhibition.
{"title":"Fast-spiking interneuron detonation drives high-fidelity inhibition in the olfactory bulb.","authors":"Shawn D Burton, Christina M Malyshko, Nathaniel N Urban","doi":"10.1371/journal.pbio.3002660","DOIUrl":"10.1371/journal.pbio.3002660","url":null,"abstract":"<p><p>Inhibitory circuits in the mammalian olfactory bulb (OB) dynamically reformat olfactory information as it propagates from peripheral receptors to downstream cortex. To gain mechanistic insight into how specific OB interneuron types support this sensory processing, we examine unitary synaptic interactions between excitatory mitral and tufted cells (MTCs), the OB projection neurons, and a conserved population of anaxonic external plexiform layer interneurons (EPL-INs) using pair and quartet whole-cell recordings in acute mouse brain slices. Physiological, morphological, neurochemical, and synaptic analyses divide EPL-INs into distinct subtypes and reveal that parvalbumin-expressing fast-spiking EPL-INs (FSIs) perisomatically innervate MTCs with release-competent dendrites and synaptically detonate to mediate fast, short-latency recurrent and lateral inhibition. Sparse MTC synchronization supralinearly increases this high-fidelity inhibition, while sensory afferent activation combined with single-cell silencing reveals that individual FSIs account for a substantial fraction of total network-driven MTC lateral inhibition. OB output is thus powerfully shaped by detonation-driven high-fidelity perisomatic inhibition.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379389/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142074326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-26eCollection Date: 2024-08-01DOI: 10.1371/journal.pbio.3002742
Quinn K Langdon, Jeffrey S Groh, Stepfanie M Aguillon, Daniel L Powell, Theresa Gunn, Cheyenne Payne, John J Baczenas, Alex Donny, Tristram O Dodge, Kang Du, Manfred Schartl, Oscar Ríos-Cárdenas, Carla Gutiérrez-Rodríguez, Molly Morris, Molly Schumer
Over the past 2 decades, biologists have come to appreciate that hybridization, or genetic exchange between distinct lineages, is remarkably common-not just in particular lineages but in taxonomic groups across the tree of life. As a result, the genomes of many modern species harbor regions inherited from related species. This observation has raised fundamental questions about the degree to which the genomic outcomes of hybridization are repeatable and the degree to which natural selection drives such repeatability. However, a lack of appropriate systems to answer these questions has limited empirical progress in this area. Here, we leverage independently formed hybrid populations between the swordtail fish Xiphophorus birchmanni and X. cortezi to address this fundamental question. We find that local ancestry in one hybrid population is remarkably predictive of local ancestry in another, demographically independent hybrid population. Applying newly developed methods, we can attribute much of this repeatability to strong selection in the earliest generations after initial hybridization. We complement these analyses with time-series data that demonstrates that ancestry at regions under selection has remained stable over the past approximately 40 generations of evolution. Finally, we compare our results to the well-studied X. birchmanni × X. malinche hybrid populations and conclude that deeper evolutionary divergence has resulted in stronger selection and higher repeatability in patterns of local ancestry in hybrids between X. birchmanni and X. cortezi.
{"title":"Swordtail fish hybrids reveal that genome evolution is surprisingly predictable after initial hybridization.","authors":"Quinn K Langdon, Jeffrey S Groh, Stepfanie M Aguillon, Daniel L Powell, Theresa Gunn, Cheyenne Payne, John J Baczenas, Alex Donny, Tristram O Dodge, Kang Du, Manfred Schartl, Oscar Ríos-Cárdenas, Carla Gutiérrez-Rodríguez, Molly Morris, Molly Schumer","doi":"10.1371/journal.pbio.3002742","DOIUrl":"10.1371/journal.pbio.3002742","url":null,"abstract":"<p><p>Over the past 2 decades, biologists have come to appreciate that hybridization, or genetic exchange between distinct lineages, is remarkably common-not just in particular lineages but in taxonomic groups across the tree of life. As a result, the genomes of many modern species harbor regions inherited from related species. This observation has raised fundamental questions about the degree to which the genomic outcomes of hybridization are repeatable and the degree to which natural selection drives such repeatability. However, a lack of appropriate systems to answer these questions has limited empirical progress in this area. Here, we leverage independently formed hybrid populations between the swordtail fish Xiphophorus birchmanni and X. cortezi to address this fundamental question. We find that local ancestry in one hybrid population is remarkably predictive of local ancestry in another, demographically independent hybrid population. Applying newly developed methods, we can attribute much of this repeatability to strong selection in the earliest generations after initial hybridization. We complement these analyses with time-series data that demonstrates that ancestry at regions under selection has remained stable over the past approximately 40 generations of evolution. Finally, we compare our results to the well-studied X. birchmanni × X. malinche hybrid populations and conclude that deeper evolutionary divergence has resulted in stronger selection and higher repeatability in patterns of local ancestry in hybrids between X. birchmanni and X. cortezi.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379403/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142074330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-26eCollection Date: 2024-08-01DOI: 10.1371/journal.pbio.3002804
James Canham, Joe Win, Sophien Kamoun
Although genomics has become integral to life science research, inequitable access to genomics technology remains prevalent. GetGenome, a non-profit organization, aims to overcome this by providing equitable access to genomics technology and training.
{"title":"GetGenome: Overcoming inequalities in access to genomics technology.","authors":"James Canham, Joe Win, Sophien Kamoun","doi":"10.1371/journal.pbio.3002804","DOIUrl":"10.1371/journal.pbio.3002804","url":null,"abstract":"<p><p>Although genomics has become integral to life science research, inequitable access to genomics technology remains prevalent. GetGenome, a non-profit organization, aims to overcome this by providing equitable access to genomics technology and training.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357086/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142074327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-26eCollection Date: 2024-08-01DOI: 10.1371/journal.pbio.3002780
Jingjing Li, Laia Jordana, Haytham Mehsen, Xinyue Wang, Vincent Archambault
In animals, mitosis involves the breakdown of the nuclear envelope and the sorting of individualized, condensed chromosomes. During mitotic exit, emerging nuclei reassemble a nuclear envelope around a single mass of interconnecting chromosomes. The molecular mechanisms of nuclear reassembly are incompletely understood. Moreover, the cellular and physiological consequences of defects in this process are largely unexplored. Here, we have characterized a mechanism essential for nuclear reassembly in Drosophila. We show that Ankle2 promotes the PP2A-dependent recruitment of BAF and Lamin at reassembling nuclei, and that failures in this mechanism result in severe nuclear defects after mitosis. We then took advantage of perturbations in this mechanism to investigate the physiological responses to nuclear reassembly defects during tissue development in vivo. Partial depletion of Ankle2, BAF, or Lamin in imaginal wing discs results in wing development defects accompanied by apoptosis. We found that blocking apoptosis strongly enhances developmental defects. Blocking p53 does not prevent apoptosis but enhances defects due to the loss of a cell cycle checkpoint. Our results suggest that apoptotic and p53-dependent responses play a crucial role in safeguarding tissue development in response to sporadic nuclear reassembly defects.
{"title":"Nuclear reassembly defects after mitosis trigger apoptotic and p53-dependent safeguard mechanisms in Drosophila.","authors":"Jingjing Li, Laia Jordana, Haytham Mehsen, Xinyue Wang, Vincent Archambault","doi":"10.1371/journal.pbio.3002780","DOIUrl":"10.1371/journal.pbio.3002780","url":null,"abstract":"<p><p>In animals, mitosis involves the breakdown of the nuclear envelope and the sorting of individualized, condensed chromosomes. During mitotic exit, emerging nuclei reassemble a nuclear envelope around a single mass of interconnecting chromosomes. The molecular mechanisms of nuclear reassembly are incompletely understood. Moreover, the cellular and physiological consequences of defects in this process are largely unexplored. Here, we have characterized a mechanism essential for nuclear reassembly in Drosophila. We show that Ankle2 promotes the PP2A-dependent recruitment of BAF and Lamin at reassembling nuclei, and that failures in this mechanism result in severe nuclear defects after mitosis. We then took advantage of perturbations in this mechanism to investigate the physiological responses to nuclear reassembly defects during tissue development in vivo. Partial depletion of Ankle2, BAF, or Lamin in imaginal wing discs results in wing development defects accompanied by apoptosis. We found that blocking apoptosis strongly enhances developmental defects. Blocking p53 does not prevent apoptosis but enhances defects due to the loss of a cell cycle checkpoint. Our results suggest that apoptotic and p53-dependent responses play a crucial role in safeguarding tissue development in response to sporadic nuclear reassembly defects.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379398/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142074329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23eCollection Date: 2024-08-01DOI: 10.1371/journal.pbio.3002778
Juan Du, Weiqiang Liu, Meng Li, Zihao Li, Xuanjing Li, Yichen Dai, Gaoming Liu, Xiao Wang, Pingfen Zhu, Vadim N Gladyshev, Xuming Zhou
The naked mole rat (NMR), Heterocephalus glaber, is known as the longest-lived rodent and is extraordinarily resistant to hypoxia and cancer. Here, both NMR embryonic fibroblasts (NEFs) and their mouse counterparts (MEFs) were subjected to anoxic conditions (0% O2, 5% CO2). A combination of comparative transcriptomics and proteomics was then employed to identify differentially expressed genes (DEGs). Notably, we observed distinct levels of histone H1.2 (encoded by HIST1H1C) accumulation between NEFs and MEFs. Subsequent mechanistic analyses showed that higher H1.2 expression in NEFs was associated with the lower expression of its inhibitor, PARP1. Additionally, we discovered that H1.2 can directly interact with HIF-1α PAS domains, thereby promoting the expression of HIF-1α through facilitating the dimerization with HIF-1β. The overexpression of H1.2 was also found to trigger autophagy and to suppress the migration of cancer cells, as well as the formation of xenograft tumors, via the NRF2/P62 signaling pathway. Moreover, an engineered H1.2 knock-in mouse model exhibited significantly extended survival in hypoxic conditions (4% O2) and showed a reduced rate of tumor formation. Collectively, our results indicate a potential mechanistic link between H1.2 and the dual phenomena of anoxic adaptation and cancer resistance.
{"title":"Comparative time-series multi-omics analyses suggest H1.2 involvement in anoxic adaptation and cancer resistance.","authors":"Juan Du, Weiqiang Liu, Meng Li, Zihao Li, Xuanjing Li, Yichen Dai, Gaoming Liu, Xiao Wang, Pingfen Zhu, Vadim N Gladyshev, Xuming Zhou","doi":"10.1371/journal.pbio.3002778","DOIUrl":"10.1371/journal.pbio.3002778","url":null,"abstract":"<p><p>The naked mole rat (NMR), Heterocephalus glaber, is known as the longest-lived rodent and is extraordinarily resistant to hypoxia and cancer. Here, both NMR embryonic fibroblasts (NEFs) and their mouse counterparts (MEFs) were subjected to anoxic conditions (0% O2, 5% CO2). A combination of comparative transcriptomics and proteomics was then employed to identify differentially expressed genes (DEGs). Notably, we observed distinct levels of histone H1.2 (encoded by HIST1H1C) accumulation between NEFs and MEFs. Subsequent mechanistic analyses showed that higher H1.2 expression in NEFs was associated with the lower expression of its inhibitor, PARP1. Additionally, we discovered that H1.2 can directly interact with HIF-1α PAS domains, thereby promoting the expression of HIF-1α through facilitating the dimerization with HIF-1β. The overexpression of H1.2 was also found to trigger autophagy and to suppress the migration of cancer cells, as well as the formation of xenograft tumors, via the NRF2/P62 signaling pathway. Moreover, an engineered H1.2 knock-in mouse model exhibited significantly extended survival in hypoxic conditions (4% O2) and showed a reduced rate of tumor formation. Collectively, our results indicate a potential mechanistic link between H1.2 and the dual phenomena of anoxic adaptation and cancer resistance.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376556/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142044244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23eCollection Date: 2024-08-01DOI: 10.1371/journal.pbio.3002775
Tea Kohlbrenner, Simon Berger, Ana Cristina Laranjeira, Tinri Aegerter-Wilmsen, Laura Filomena Comi, Andrew deMello, Alex Hajnal
Germ cell apoptosis in Caenorhabditis elegans hermaphrodites is a physiological process eliminating around 60% of all cells in meiotic prophase to maintain tissue homeostasis. In contrast to programmed cell death in the C. elegans soma, the selection of germ cells undergoing apoptosis is stochastic. By live-tracking individual germ cells at the pachytene stage, we found that germ cells smaller than their neighbors are selectively eliminated through apoptosis before differentiating into oocytes. Thus, cell size is a strong predictor of physiological germ cell death. The RAS/MAPK and ECT/RHO/ROCK pathways together regulate germ cell size by controlling actomyosin constriction at the apical rachis bridges, which are cellular openings connecting the syncytial germ cells to a shared cytoplasmic core. Enhancing apical constriction reduces germ cell size and increases the rate of cell death while inhibiting the actomyosin network in the germ cells prevents their death. We propose that actomyosin contractility at the rachis bridges of the syncytial germ cells amplifies intrinsic disparities in cell size. Through this mechanism, the animals can adjust the balance between physiological germ cell death and oocyte differentiation.
{"title":"Actomyosin-mediated apical constriction promotes physiological germ cell death in C. elegans.","authors":"Tea Kohlbrenner, Simon Berger, Ana Cristina Laranjeira, Tinri Aegerter-Wilmsen, Laura Filomena Comi, Andrew deMello, Alex Hajnal","doi":"10.1371/journal.pbio.3002775","DOIUrl":"10.1371/journal.pbio.3002775","url":null,"abstract":"<p><p>Germ cell apoptosis in Caenorhabditis elegans hermaphrodites is a physiological process eliminating around 60% of all cells in meiotic prophase to maintain tissue homeostasis. In contrast to programmed cell death in the C. elegans soma, the selection of germ cells undergoing apoptosis is stochastic. By live-tracking individual germ cells at the pachytene stage, we found that germ cells smaller than their neighbors are selectively eliminated through apoptosis before differentiating into oocytes. Thus, cell size is a strong predictor of physiological germ cell death. The RAS/MAPK and ECT/RHO/ROCK pathways together regulate germ cell size by controlling actomyosin constriction at the apical rachis bridges, which are cellular openings connecting the syncytial germ cells to a shared cytoplasmic core. Enhancing apical constriction reduces germ cell size and increases the rate of cell death while inhibiting the actomyosin network in the germ cells prevents their death. We propose that actomyosin contractility at the rachis bridges of the syncytial germ cells amplifies intrinsic disparities in cell size. Through this mechanism, the animals can adjust the balance between physiological germ cell death and oocyte differentiation.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376560/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142044243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}