Pub Date : 2025-01-15eCollection Date: 2025-01-01DOI: 10.1371/journal.pbio.3002991
Jaline Gerardin, Melissa A Penny
When models are used to inform decision-making, both their strengths and limitations must be considered. Using malaria as an example, we explain how and why models are limited and offer guidance for ensuring a model is well-suited for its intended purpose.
{"title":"How can modeling responsibly inform decision-making in malaria?","authors":"Jaline Gerardin, Melissa A Penny","doi":"10.1371/journal.pbio.3002991","DOIUrl":"10.1371/journal.pbio.3002991","url":null,"abstract":"<p><p>When models are used to inform decision-making, both their strengths and limitations must be considered. Using malaria as an example, we explain how and why models are limited and offer guidance for ensuring a model is well-suited for its intended purpose.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 1","pages":"e3002991"},"PeriodicalIF":9.8,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734908/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143014632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-15eCollection Date: 2025-01-01DOI: 10.1371/journal.pbio.3002988
Daniel B Sloan, Mark D Stenglein
"Big data" generated from outsourced or centralized facilities often lacks methodological information. Here, we outline how and why researchers, service providers, and other parties should report on methodology and sample metadata to improve scientific reproducibility.
{"title":"Towards ensuring reproducibility of outsourced data generation.","authors":"Daniel B Sloan, Mark D Stenglein","doi":"10.1371/journal.pbio.3002988","DOIUrl":"10.1371/journal.pbio.3002988","url":null,"abstract":"<p><p>\"Big data\" generated from outsourced or centralized facilities often lacks methodological information. Here, we outline how and why researchers, service providers, and other parties should report on methodology and sample metadata to improve scientific reproducibility.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 1","pages":"e3002988"},"PeriodicalIF":9.8,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734931/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143014644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-15eCollection Date: 2025-01-01DOI: 10.1371/journal.pbio.3002984
Ankita Chavan, Lena Skrutl, Federico Uliana, Melanie Pfister, Franziska Brändle, Laszlo Tirian, Delora Baptista, Dominik Handler, David Burke, Anna Sintsova, Pedro Beltrao, Julius Brennecke, Madhav Jagannathan
Noncoding satellite DNA repeats are abundant at the pericentromeric heterochromatin of eukaryotic chromosomes. During interphase, sequence-specific DNA-binding proteins cluster these repeats from multiple chromosomes into nuclear foci known as chromocenters. Despite the pivotal role of chromocenters in cellular processes like genome encapsulation and gene repression, the associated proteins remain incompletely characterized. Here, we use 2 satellite DNA-binding proteins, D1 and Prod, as baits to characterize the chromocenter-associated proteome in Drosophila embryos, ovaries, and testes through quantitative mass spectrometry. We identify D1- and Prod-associated proteins, including known heterochromatin proteins as well as proteins previously unlinked to satellite DNA or chromocenters, thereby laying the foundation for a comprehensive understanding of cellular functions enabled by satellite DNA repeats and their associated proteins. Interestingly, we find that multiple components of the transposon-silencing piRNA pathway are associated with D1 and Prod in embryos. Using genetics, transcriptomics, and small RNA profiling, we show that flies lacking D1 during embryogenesis exhibit transposon expression and gonadal atrophy as adults. We further demonstrate that this gonadal atrophy can be rescued by mutating the checkpoint kinase, Chk2, which mediates germ cell arrest in response to transposon mobilization. Thus, we reveal that a satellite DNA-binding protein functions during embryogenesis to silence transposons, in a manner that is heritable across later stages of development.
{"title":"Multi-tissue characterization of the constitutive heterochromatin proteome in Drosophila identifies a link between satellite DNA organization and transposon repression.","authors":"Ankita Chavan, Lena Skrutl, Federico Uliana, Melanie Pfister, Franziska Brändle, Laszlo Tirian, Delora Baptista, Dominik Handler, David Burke, Anna Sintsova, Pedro Beltrao, Julius Brennecke, Madhav Jagannathan","doi":"10.1371/journal.pbio.3002984","DOIUrl":"10.1371/journal.pbio.3002984","url":null,"abstract":"<p><p>Noncoding satellite DNA repeats are abundant at the pericentromeric heterochromatin of eukaryotic chromosomes. During interphase, sequence-specific DNA-binding proteins cluster these repeats from multiple chromosomes into nuclear foci known as chromocenters. Despite the pivotal role of chromocenters in cellular processes like genome encapsulation and gene repression, the associated proteins remain incompletely characterized. Here, we use 2 satellite DNA-binding proteins, D1 and Prod, as baits to characterize the chromocenter-associated proteome in Drosophila embryos, ovaries, and testes through quantitative mass spectrometry. We identify D1- and Prod-associated proteins, including known heterochromatin proteins as well as proteins previously unlinked to satellite DNA or chromocenters, thereby laying the foundation for a comprehensive understanding of cellular functions enabled by satellite DNA repeats and their associated proteins. Interestingly, we find that multiple components of the transposon-silencing piRNA pathway are associated with D1 and Prod in embryos. Using genetics, transcriptomics, and small RNA profiling, we show that flies lacking D1 during embryogenesis exhibit transposon expression and gonadal atrophy as adults. We further demonstrate that this gonadal atrophy can be rescued by mutating the checkpoint kinase, Chk2, which mediates germ cell arrest in response to transposon mobilization. Thus, we reveal that a satellite DNA-binding protein functions during embryogenesis to silence transposons, in a manner that is heritable across later stages of development.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 1","pages":"e3002984"},"PeriodicalIF":9.8,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734925/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143014636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-14eCollection Date: 2025-01-01DOI: 10.1371/journal.pbio.3002954
Olivia L Calvin, Matthew T Erickson, Cody J Walters, A David Redish
Worrying about perceived threats is a hallmark of multiple psychological disorders including anxiety. This concern about future events is particularly important when an individual is faced with an approach-avoidance conflict. Potential goals to approach are known to be represented in the dorsal hippocampus during theta cycles. Similarly, important information that is distant from the animal's position is represented during hippocampal high-synchrony events (HSEs), which coincide with sharp-wave ripples (SWRs). It is likely that potential future threats may be similarly represented. We examined how threats and rewards were represented within the hippocampus during approach-avoidance conflicts in rats faced with a predator-like robot guarding a food reward. We found decoding of the pseudo-predator's location during HSEs when hesitating in the nest and during theta prior to retreating as the rats approached the pseudo-predator. After the first attack, we observed new place fields appearing at the location of the robot (not the location the rat was when attacked). The anxiolytic diazepam reduced anxiety-like behavior and altered hippocampal local field potentials (LFPs), including reducing SWRs, suggesting that one potential mechanism of diazepam's actions may be through altered representations of imagined threat. These results suggest that hippocampal representation of potential threats could be an important mechanism that underlies worry and a potential target for anxiolytics.
{"title":"Dorsal hippocampus represents locations to avoid as well as locations to approach during approach-avoidance conflict.","authors":"Olivia L Calvin, Matthew T Erickson, Cody J Walters, A David Redish","doi":"10.1371/journal.pbio.3002954","DOIUrl":"10.1371/journal.pbio.3002954","url":null,"abstract":"<p><p>Worrying about perceived threats is a hallmark of multiple psychological disorders including anxiety. This concern about future events is particularly important when an individual is faced with an approach-avoidance conflict. Potential goals to approach are known to be represented in the dorsal hippocampus during theta cycles. Similarly, important information that is distant from the animal's position is represented during hippocampal high-synchrony events (HSEs), which coincide with sharp-wave ripples (SWRs). It is likely that potential future threats may be similarly represented. We examined how threats and rewards were represented within the hippocampus during approach-avoidance conflicts in rats faced with a predator-like robot guarding a food reward. We found decoding of the pseudo-predator's location during HSEs when hesitating in the nest and during theta prior to retreating as the rats approached the pseudo-predator. After the first attack, we observed new place fields appearing at the location of the robot (not the location the rat was when attacked). The anxiolytic diazepam reduced anxiety-like behavior and altered hippocampal local field potentials (LFPs), including reducing SWRs, suggesting that one potential mechanism of diazepam's actions may be through altered representations of imagined threat. These results suggest that hippocampal representation of potential threats could be an important mechanism that underlies worry and a potential target for anxiolytics.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 1","pages":"e3002954"},"PeriodicalIF":9.8,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731767/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142985140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-14eCollection Date: 2025-01-01DOI: 10.1371/journal.pbio.3002932
Joseph T Ortega, Jacklyn M Gallagher, Andrew G McKee, Yidan Tang, Miguel Carmena-Bargueňo, Maria Azam, Zaiddodine Pashandi, Marcin Golczak, Jens Meiler, Horacio Pérez-Sánchez, Jonathan P Schlebach, Beata Jastrzebska
Pathogenic mutations that cause rhodopsin misfolding lead to a spectrum of currently untreatable blinding diseases collectively termed retinitis pigmentosa. Small molecules to correct rhodopsin misfolding are therefore urgently needed. In this study, we utilized virtual screening to search for drug-like molecules that bind to the orthosteric site of rod opsin and improve its folding and trafficking. We identified and validated the biological effects of 2 non-retinoid compounds with favorable pharmacological properties that cross the blood-retina barrier. These compounds reversibly bind to unliganded rod opsin, each with a Kd comparable to 9-cis-retinal and improve opsin stability. By improving the internal protein structure network (PSN), these rod opsin ligands also enhanced the plasma membrane expression of total 36 of 123 tested clinical RP variants, including the most prevalent P23H variant. Importantly, these compounds protected retinas against light-induced degeneration in mice vulnerable to bright light injury and prolonged survival of photoreceptors in a retinitis pigmentosa mouse model for rod opsin misfolding.
{"title":"Discovery of non-retinoid compounds that suppress the pathogenic effects of misfolded rhodopsin in a mouse model of retinitis pigmentosa.","authors":"Joseph T Ortega, Jacklyn M Gallagher, Andrew G McKee, Yidan Tang, Miguel Carmena-Bargueňo, Maria Azam, Zaiddodine Pashandi, Marcin Golczak, Jens Meiler, Horacio Pérez-Sánchez, Jonathan P Schlebach, Beata Jastrzebska","doi":"10.1371/journal.pbio.3002932","DOIUrl":"10.1371/journal.pbio.3002932","url":null,"abstract":"<p><p>Pathogenic mutations that cause rhodopsin misfolding lead to a spectrum of currently untreatable blinding diseases collectively termed retinitis pigmentosa. Small molecules to correct rhodopsin misfolding are therefore urgently needed. In this study, we utilized virtual screening to search for drug-like molecules that bind to the orthosteric site of rod opsin and improve its folding and trafficking. We identified and validated the biological effects of 2 non-retinoid compounds with favorable pharmacological properties that cross the blood-retina barrier. These compounds reversibly bind to unliganded rod opsin, each with a Kd comparable to 9-cis-retinal and improve opsin stability. By improving the internal protein structure network (PSN), these rod opsin ligands also enhanced the plasma membrane expression of total 36 of 123 tested clinical RP variants, including the most prevalent P23H variant. Importantly, these compounds protected retinas against light-induced degeneration in mice vulnerable to bright light injury and prolonged survival of photoreceptors in a retinitis pigmentosa mouse model for rod opsin misfolding.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 1","pages":"e3002932"},"PeriodicalIF":9.8,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731721/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142985136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-13eCollection Date: 2025-01-01DOI: 10.1371/journal.pbio.3002986
Sarah M Tashjian, Joseph Cussen, Wenning Deng, Bo Zhang, Dean Mobbs
Pivotal to self-preservation is the ability to identify when we are safe and when we are in danger. Previous studies have focused on safety estimations based on the features of external threats and do not consider how the brain integrates other key factors, including estimates about our ability to protect ourselves. Here, we examine the neural systems underlying the online dynamic encoding of safety. The current preregistered study used 2 novel tasks to test 4 facets of safety estimation: Safety Prediction, Meta-representation, Recognition, and Value Updating. We experimentally manipulated safety estimation changing both levels of external threats and self-protection. Data were collected in 2 independent samples (behavioral N = 100; MRI N = 30). We found consistent evidence of subjective changes in the sensitivity to safety conferred through protection. Neural responses in the ventromedial prefrontal cortex (vmPFC) tracked increases in safety during all safety estimation facets, with specific tuning to protection. Further, informational connectivity analyses revealed distinct hubs of safety coding in the posterior and anterior vmPFC for external threats and protection, respectively. These findings reveal a central role of the vmPFC for coding safety.
自我保护的关键是识别我们何时安全,何时处于危险之中的能力。以前的研究主要集中在基于外部威胁特征的安全估计上,而没有考虑大脑如何整合其他关键因素,包括对我们保护自己的能力的估计。在这里,我们研究了安全在线动态编码背后的神经系统。目前的预注册研究使用了2个新任务来测试安全估计的4个方面:安全预测、元表示、识别和价值更新。我们通过实验操纵了安全估计,改变了外部威胁和自我保护的水平。数据收集于2个独立样本(行为N = 100;Mri n = 30)。我们发现了一致的证据,表明保护措施对安全的敏感性发生了主观变化。腹内侧前额叶皮层(vmPFC)的神经反应在所有安全估计方面都跟踪了安全性的增加,并对保护进行了特定的调整。此外,信息连通性分析显示,vmPFC后部和前部的安全编码中枢分别用于外部威胁和保护。这些发现揭示了vmPFC在编码安全方面的核心作用。
{"title":"Subregions in the ventromedial prefrontal cortex integrate threat and protective information to meta-represent safety.","authors":"Sarah M Tashjian, Joseph Cussen, Wenning Deng, Bo Zhang, Dean Mobbs","doi":"10.1371/journal.pbio.3002986","DOIUrl":"10.1371/journal.pbio.3002986","url":null,"abstract":"<p><p>Pivotal to self-preservation is the ability to identify when we are safe and when we are in danger. Previous studies have focused on safety estimations based on the features of external threats and do not consider how the brain integrates other key factors, including estimates about our ability to protect ourselves. Here, we examine the neural systems underlying the online dynamic encoding of safety. The current preregistered study used 2 novel tasks to test 4 facets of safety estimation: Safety Prediction, Meta-representation, Recognition, and Value Updating. We experimentally manipulated safety estimation changing both levels of external threats and self-protection. Data were collected in 2 independent samples (behavioral N = 100; MRI N = 30). We found consistent evidence of subjective changes in the sensitivity to safety conferred through protection. Neural responses in the ventromedial prefrontal cortex (vmPFC) tracked increases in safety during all safety estimation facets, with specific tuning to protection. Further, informational connectivity analyses revealed distinct hubs of safety coding in the posterior and anterior vmPFC for external threats and protection, respectively. These findings reveal a central role of the vmPFC for coding safety.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 1","pages":"e3002986"},"PeriodicalIF":9.8,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730396/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142980354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-10eCollection Date: 2025-01-01DOI: 10.1371/journal.pbio.3002996
Steffen N Lindner, Markus Ralser
The structure of the early metabolic network is unknown. Here, we report that when considered together, pentose utilization pathways form all life-essential precursors. We speculate that the chemistry preserved in pentose metabolism could therefore have been a central structural element in early metabolism.
{"title":"The ability of pentose pathways to form all essential metabolites provides clues to the origins of metabolism.","authors":"Steffen N Lindner, Markus Ralser","doi":"10.1371/journal.pbio.3002996","DOIUrl":"10.1371/journal.pbio.3002996","url":null,"abstract":"<p><p>The structure of the early metabolic network is unknown. Here, we report that when considered together, pentose utilization pathways form all life-essential precursors. We speculate that the chemistry preserved in pentose metabolism could therefore have been a central structural element in early metabolism.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 1","pages":"e3002996"},"PeriodicalIF":9.8,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723543/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142962526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-08eCollection Date: 2025-01-01DOI: 10.1371/journal.pbio.3002977
José María Salazar Campos, Lena F Burbulla, Sarah Jäkel
The major pathological feature of Parkinson 's disease (PD), the second most common neurodegenerative disease and most common movement disorder, is the predominant degeneration of dopaminergic neurons in the substantia nigra, a part of the midbrain. Despite decades of research, the molecular mechanisms of the origin of the disease remain unknown. While the disease was initially viewed as a purely neuronal disorder, results from single-cell transcriptomics have suggested that oligodendrocytes may play an important role in the early stages of Parkinson's. Although these findings are of high relevance, particularly to the search for effective disease-modifying therapies, the actual functional role of oligodendrocytes in Parkinson's disease remains highly speculative and requires a concerted scientific effort to be better understood. This Unsolved Mystery discusses the limited understanding of oligodendrocytes in PD, highlighting unresolved questions regarding functional changes in oligodendroglia, the role of myelin in nigral dopaminergic neurons, the impact of the toxic environment, and the aggregation of alpha-synuclein within oligodendrocytes.
{"title":"Are oligodendrocytes bystanders or drivers of Parkinson's disease pathology?","authors":"José María Salazar Campos, Lena F Burbulla, Sarah Jäkel","doi":"10.1371/journal.pbio.3002977","DOIUrl":"10.1371/journal.pbio.3002977","url":null,"abstract":"<p><p>The major pathological feature of Parkinson 's disease (PD), the second most common neurodegenerative disease and most common movement disorder, is the predominant degeneration of dopaminergic neurons in the substantia nigra, a part of the midbrain. Despite decades of research, the molecular mechanisms of the origin of the disease remain unknown. While the disease was initially viewed as a purely neuronal disorder, results from single-cell transcriptomics have suggested that oligodendrocytes may play an important role in the early stages of Parkinson's. Although these findings are of high relevance, particularly to the search for effective disease-modifying therapies, the actual functional role of oligodendrocytes in Parkinson's disease remains highly speculative and requires a concerted scientific effort to be better understood. This Unsolved Mystery discusses the limited understanding of oligodendrocytes in PD, highlighting unresolved questions regarding functional changes in oligodendroglia, the role of myelin in nigral dopaminergic neurons, the impact of the toxic environment, and the aggregation of alpha-synuclein within oligodendrocytes.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 1","pages":"e3002977"},"PeriodicalIF":9.8,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11709285/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142957292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-08eCollection Date: 2025-01-01DOI: 10.1371/journal.pbio.3002947
Weifeng Dai, Tian Wang, Yang Li, Yi Yang, Yange Zhang, Yujie Wu, Tingting Zhou, Hongbo Yu, Liang Li, Yizheng Wang, Gang Wang, Dajun Xing
Sensitivity to motion direction is a feature of visual neurons that is essential for motion perception. Recent studies have suggested that direction selectivity is re-established at multiple stages throughout the visual hierarchy, which contradicts the traditional assumption that direction selectivity in later stages largely derives from that in earlier stages. By recording laminar responses in areas 17 and 18 of anesthetized cats of both sexes, we aimed to understand how direction selectivity is processed and relayed across 2 successive stages: the input layers and the output layers within the early visual cortices. We found a strong relationship between the strength of direction selectivity in the output layers and the input layers, as well as the preservation of preferred directions across the input and output layers. Moreover, direction selectivity was enhanced in the output layers compared to the input layers, with the response strength maintained in the preferred direction but reduced in other directions and under blank stimuli. We identified a direction-tuned gain mechanism for interlaminar signal transmission, which likely originated from both feedforward connections across the input and output layers and recurrent connections within the output layers. This direction-tuned gain, coupled with nonlinearity, contributed to the enhanced direction selectivity in the output layers. Our findings suggest that direction selectivity in later cortical stages partially inherits characteristics from earlier cortical stages and is further refined by intracortical connections.
{"title":"Cortical direction selectivity increases from the input to the output layers of visual cortex.","authors":"Weifeng Dai, Tian Wang, Yang Li, Yi Yang, Yange Zhang, Yujie Wu, Tingting Zhou, Hongbo Yu, Liang Li, Yizheng Wang, Gang Wang, Dajun Xing","doi":"10.1371/journal.pbio.3002947","DOIUrl":"10.1371/journal.pbio.3002947","url":null,"abstract":"<p><p>Sensitivity to motion direction is a feature of visual neurons that is essential for motion perception. Recent studies have suggested that direction selectivity is re-established at multiple stages throughout the visual hierarchy, which contradicts the traditional assumption that direction selectivity in later stages largely derives from that in earlier stages. By recording laminar responses in areas 17 and 18 of anesthetized cats of both sexes, we aimed to understand how direction selectivity is processed and relayed across 2 successive stages: the input layers and the output layers within the early visual cortices. We found a strong relationship between the strength of direction selectivity in the output layers and the input layers, as well as the preservation of preferred directions across the input and output layers. Moreover, direction selectivity was enhanced in the output layers compared to the input layers, with the response strength maintained in the preferred direction but reduced in other directions and under blank stimuli. We identified a direction-tuned gain mechanism for interlaminar signal transmission, which likely originated from both feedforward connections across the input and output layers and recurrent connections within the output layers. This direction-tuned gain, coupled with nonlinearity, contributed to the enhanced direction selectivity in the output layers. Our findings suggest that direction selectivity in later cortical stages partially inherits characteristics from earlier cortical stages and is further refined by intracortical connections.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 1","pages":"e3002947"},"PeriodicalIF":9.8,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11709279/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142957295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-08eCollection Date: 2025-01-01DOI: 10.1371/journal.pbio.3002970
Jeff Maltas, Anh Huynh, Kevin B Wood
As failure rates for traditional antimicrobial therapies escalate, recent focus has shifted to evolution-based therapies to slow resistance. Collateral sensitivity-the increased susceptibility to one drug associated with evolved resistance to a different drug-offers a potentially exploitable evolutionary constraint, but the manner in which collateral effects emerge over time is not well understood. Here, we use laboratory evolution in the opportunistic pathogen Enterococcus faecalis to phenotypically characterize collateral profiles through evolutionary time. Specifically, we measure collateral profiles for 400 strain-antibiotic combinations over the course of 4 evolutionary time points as strains are selected in increasing concentrations of antibiotic. We find that at a global level-when results from all drugs are combined-collateral resistance dominates during early phases of adaptation, when resistance to the selecting drug is lower, while collateral sensitivity becomes increasingly likely with further selection. At the level of individual populations; however, the trends are idiosyncratic; for example, the frequency of collateral sensitivity to ceftriaxone increases over time in isolates selected by linezolid but decreases in isolates selected by ciprofloxacin. We then show experimentally how dynamic collateral sensitivity relationships can lead to time-dependent dosing windows that depend on finely timed switching between drugs. Finally, we develop a stochastic mathematical model based on a Markov decision process consistent with observed dynamic collateral profiles to show measurements across time are required to optimally constrain antibiotic resistance.
{"title":"Dynamic collateral sensitivity profiles highlight opportunities and challenges for optimizing antibiotic treatments.","authors":"Jeff Maltas, Anh Huynh, Kevin B Wood","doi":"10.1371/journal.pbio.3002970","DOIUrl":"10.1371/journal.pbio.3002970","url":null,"abstract":"<p><p>As failure rates for traditional antimicrobial therapies escalate, recent focus has shifted to evolution-based therapies to slow resistance. Collateral sensitivity-the increased susceptibility to one drug associated with evolved resistance to a different drug-offers a potentially exploitable evolutionary constraint, but the manner in which collateral effects emerge over time is not well understood. Here, we use laboratory evolution in the opportunistic pathogen Enterococcus faecalis to phenotypically characterize collateral profiles through evolutionary time. Specifically, we measure collateral profiles for 400 strain-antibiotic combinations over the course of 4 evolutionary time points as strains are selected in increasing concentrations of antibiotic. We find that at a global level-when results from all drugs are combined-collateral resistance dominates during early phases of adaptation, when resistance to the selecting drug is lower, while collateral sensitivity becomes increasingly likely with further selection. At the level of individual populations; however, the trends are idiosyncratic; for example, the frequency of collateral sensitivity to ceftriaxone increases over time in isolates selected by linezolid but decreases in isolates selected by ciprofloxacin. We then show experimentally how dynamic collateral sensitivity relationships can lead to time-dependent dosing windows that depend on finely timed switching between drugs. Finally, we develop a stochastic mathematical model based on a Markov decision process consistent with observed dynamic collateral profiles to show measurements across time are required to optimally constrain antibiotic resistance.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 1","pages":"e3002970"},"PeriodicalIF":9.8,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11709278/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142957297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}