Pub Date : 2024-10-24DOI: 10.1371/journal.pbio.3002896
Eduardo Fernandez, Jose Antonio Robles
The past 20 years have witnessed significant advancements in the field of visual prostheses, with developments spanning from early retinal implants to recent cortical approaches. This Perspective looks at some of the remaining challenges to achieve the ambitious clinical goals that these technologies could enable.
{"title":"Advances and challenges in the development of visual prostheses.","authors":"Eduardo Fernandez, Jose Antonio Robles","doi":"10.1371/journal.pbio.3002896","DOIUrl":"https://doi.org/10.1371/journal.pbio.3002896","url":null,"abstract":"<p><p>The past 20 years have witnessed significant advancements in the field of visual prostheses, with developments spanning from early retinal implants to recent cortical approaches. This Perspective looks at some of the remaining challenges to achieve the ambitious clinical goals that these technologies could enable.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 10","pages":"e3002896"},"PeriodicalIF":9.8,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142511123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24eCollection Date: 2024-10-01DOI: 10.1371/journal.pbio.3002850
Sophie L Fayad, Lauren M Reynolds, Nicolas Torquet, Stefania Tolu, Sarah Mondoloni, Claire Nguyen, Amy Siriphanh, Robin Justo, Steve Didienne, Nicolas Debray, Cécile Viollet, Louis Raynaud, Yasmine Layadi, Coralie Fouquet, Bernadette Hannesse, Ana-Marta Capaz, Thomas Topilko, Nicolas Renier, Alexandre Mourot, Fabio Marti, Philippe Faure
Individual animals differ in their traits and preferences, which shape their social interactions, survival, and susceptibility to disease, including addiction. Nicotine use is highly heterogenous and has been linked to the expression of personality traits. Although these relationships are well documented, we have limited understanding of the neurophysiological mechanisms that give rise to distinct behavioral profiles and their connection to nicotine susceptibility. To address this question, we conducted a study using a semi-natural and social environment called "Souris-City" to observe the long-term behavior of individual male mice. Souris-City provided both a communal living area and a separate test area where mice engaged in a reward-seeking task isolated from their peers. Mice developed individualistic reward-seeking strategies when choosing between water and sucrose in the test compartment, which, in turn, predicted how they adapted to the introduction of nicotine as a reinforcer. Moreover, the profiles mice developed while isolated in the test area correlated with their behavior within the social environment, linking decision-making strategies to the expression of behavioral traits. Neurophysiological markers of adaptability within the dopamine system were apparent upon nicotine challenge and were associated with specific profiles. Our findings suggest that environmental adaptations influence behavioral traits and sensitivity to nicotine by acting on dopaminergic reactivity in the face of nicotine exposure, potentially contributing to addiction susceptibility. These results further emphasize the importance of understanding interindividual variability in behavior to gain insight into the mechanisms of decision-making and addiction.
{"title":"Individualistic reward-seeking strategies that predict response to nicotine emerge among isogenic male mice living in a micro-society.","authors":"Sophie L Fayad, Lauren M Reynolds, Nicolas Torquet, Stefania Tolu, Sarah Mondoloni, Claire Nguyen, Amy Siriphanh, Robin Justo, Steve Didienne, Nicolas Debray, Cécile Viollet, Louis Raynaud, Yasmine Layadi, Coralie Fouquet, Bernadette Hannesse, Ana-Marta Capaz, Thomas Topilko, Nicolas Renier, Alexandre Mourot, Fabio Marti, Philippe Faure","doi":"10.1371/journal.pbio.3002850","DOIUrl":"https://doi.org/10.1371/journal.pbio.3002850","url":null,"abstract":"<p><p>Individual animals differ in their traits and preferences, which shape their social interactions, survival, and susceptibility to disease, including addiction. Nicotine use is highly heterogenous and has been linked to the expression of personality traits. Although these relationships are well documented, we have limited understanding of the neurophysiological mechanisms that give rise to distinct behavioral profiles and their connection to nicotine susceptibility. To address this question, we conducted a study using a semi-natural and social environment called \"Souris-City\" to observe the long-term behavior of individual male mice. Souris-City provided both a communal living area and a separate test area where mice engaged in a reward-seeking task isolated from their peers. Mice developed individualistic reward-seeking strategies when choosing between water and sucrose in the test compartment, which, in turn, predicted how they adapted to the introduction of nicotine as a reinforcer. Moreover, the profiles mice developed while isolated in the test area correlated with their behavior within the social environment, linking decision-making strategies to the expression of behavioral traits. Neurophysiological markers of adaptability within the dopamine system were apparent upon nicotine challenge and were associated with specific profiles. Our findings suggest that environmental adaptations influence behavioral traits and sensitivity to nicotine by acting on dopaminergic reactivity in the face of nicotine exposure, potentially contributing to addiction susceptibility. These results further emphasize the importance of understanding interindividual variability in behavior to gain insight into the mechanisms of decision-making and addiction.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 10","pages":"e3002850"},"PeriodicalIF":9.8,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11501037/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142511128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24eCollection Date: 2024-10-01DOI: 10.1371/journal.pbio.3002859
Pablo Capilla-Lasheras, Nina Bircher, Antony M Brown, Xavier Harrison, Thomas Reed, Jennifer E York, Dominic L Cram, Christian Rutz, Lindsay Walker, Marc Naguib, Andrew J Young
Explaining the evolution of sex differences in cooperation remains a major challenge. Comparative studies highlight that offspring of the more philopatric sex tend to be more cooperative within their family groups than those of the more dispersive sex but we do not understand why. The leading "Philopatry hypothesis" proposes that the more philopatric sex cooperates more because their higher likelihood of natal breeding increases the direct fitness benefits of natal cooperation. However, the "Dispersal trade-off hypothesis" proposes that the more dispersive sex cooperates less because preparations for dispersal, such as extra-territorial prospecting, trade-off against natal cooperation. Here, we test both hypotheses in cooperatively breeding white-browed sparrow weavers (Plocepasser mahali), using a novel high-resolution automated radio-tracking method. First, we show that males are the more dispersive sex (a rare reversal of the typical avian sex difference in dispersal) and that, consistent with the predictions of both hypotheses, females contribute substantially more than males to cooperative care while within the natal group. However, the Philopatry hypothesis cannot readily explain this female-biased cooperation, as females are not more likely than males to breed within their natal group. Instead, our radio-tracking findings support the Dispersal trade-off hypothesis: males conduct pre-dispersal extra-territorial prospecting forays at higher rates than females and prospecting appears to trade-off against natal cooperation. Our findings thus highlight that the evolution of sex differences in cooperation could be widely attributable to trade-offs between cooperation and dispersal; a potentially general explanation that does not demand that cooperation yields direct fitness benefits.
{"title":"Evolution of sex differences in cooperation can be explained by trade-offs with dispersal.","authors":"Pablo Capilla-Lasheras, Nina Bircher, Antony M Brown, Xavier Harrison, Thomas Reed, Jennifer E York, Dominic L Cram, Christian Rutz, Lindsay Walker, Marc Naguib, Andrew J Young","doi":"10.1371/journal.pbio.3002859","DOIUrl":"https://doi.org/10.1371/journal.pbio.3002859","url":null,"abstract":"<p><p>Explaining the evolution of sex differences in cooperation remains a major challenge. Comparative studies highlight that offspring of the more philopatric sex tend to be more cooperative within their family groups than those of the more dispersive sex but we do not understand why. The leading \"Philopatry hypothesis\" proposes that the more philopatric sex cooperates more because their higher likelihood of natal breeding increases the direct fitness benefits of natal cooperation. However, the \"Dispersal trade-off hypothesis\" proposes that the more dispersive sex cooperates less because preparations for dispersal, such as extra-territorial prospecting, trade-off against natal cooperation. Here, we test both hypotheses in cooperatively breeding white-browed sparrow weavers (Plocepasser mahali), using a novel high-resolution automated radio-tracking method. First, we show that males are the more dispersive sex (a rare reversal of the typical avian sex difference in dispersal) and that, consistent with the predictions of both hypotheses, females contribute substantially more than males to cooperative care while within the natal group. However, the Philopatry hypothesis cannot readily explain this female-biased cooperation, as females are not more likely than males to breed within their natal group. Instead, our radio-tracking findings support the Dispersal trade-off hypothesis: males conduct pre-dispersal extra-territorial prospecting forays at higher rates than females and prospecting appears to trade-off against natal cooperation. Our findings thus highlight that the evolution of sex differences in cooperation could be widely attributable to trade-offs between cooperation and dispersal; a potentially general explanation that does not demand that cooperation yields direct fitness benefits.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 10","pages":"e3002859"},"PeriodicalIF":9.8,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500963/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142511125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-22eCollection Date: 2024-10-01DOI: 10.1371/journal.pbio.3002865
Jiyeon Hwang, Junichi Okada, Li Liu, Jeffrey E Pessin, Gary J Schwartz, Young-Hwan Jo
Hepatic lipid metabolism is regulated by the autonomic nervous system of the liver, with the sympathetic innervation being extensively studied, while the parasympathetic efferent innervation is less understood despite its potential importance. In this study, we investigate the consequences of disrupted brain-liver communication on hepatic lipid metabolism in mice exposed to obesogenic conditions. We found that a subset of hepatocytes and cholangiocytes are innervated by parasympathetic nerve terminals originating from the dorsal motor nucleus of the vagus. The elimination of the brain-liver axis by deleting parasympathetic cholinergic neurons innervating the liver prevents hepatic steatosis and promotes browning of inguinal white adipose tissue (ingWAT). The loss of liver-innervating cholinergic neurons increases hepatic Cyp7b1 expression and fasting serum bile acid levels. Furthermore, knockdown of the G protein-coupled bile acid receptor 1 gene in ingWAT reverses the beneficial effects of the loss of liver-innervating cholinergic neurons, leading to the reappearance of hepatic steatosis. Deleting liver-innervating cholinergic neurons has a small but significant effect on body weight, which is accompanied by an increase in energy expenditure. Taken together, these data suggest that targeting the parasympathetic cholinergic innervation of the liver is a potential therapeutic approach for enhancing hepatic lipid metabolism in obesity and diabetes.
{"title":"The development of hepatic steatosis depends on the presence of liver-innervating parasympathetic cholinergic neurons in mice fed a high-fat diet.","authors":"Jiyeon Hwang, Junichi Okada, Li Liu, Jeffrey E Pessin, Gary J Schwartz, Young-Hwan Jo","doi":"10.1371/journal.pbio.3002865","DOIUrl":"10.1371/journal.pbio.3002865","url":null,"abstract":"<p><p>Hepatic lipid metabolism is regulated by the autonomic nervous system of the liver, with the sympathetic innervation being extensively studied, while the parasympathetic efferent innervation is less understood despite its potential importance. In this study, we investigate the consequences of disrupted brain-liver communication on hepatic lipid metabolism in mice exposed to obesogenic conditions. We found that a subset of hepatocytes and cholangiocytes are innervated by parasympathetic nerve terminals originating from the dorsal motor nucleus of the vagus. The elimination of the brain-liver axis by deleting parasympathetic cholinergic neurons innervating the liver prevents hepatic steatosis and promotes browning of inguinal white adipose tissue (ingWAT). The loss of liver-innervating cholinergic neurons increases hepatic Cyp7b1 expression and fasting serum bile acid levels. Furthermore, knockdown of the G protein-coupled bile acid receptor 1 gene in ingWAT reverses the beneficial effects of the loss of liver-innervating cholinergic neurons, leading to the reappearance of hepatic steatosis. Deleting liver-innervating cholinergic neurons has a small but significant effect on body weight, which is accompanied by an increase in energy expenditure. Taken together, these data suggest that targeting the parasympathetic cholinergic innervation of the liver is a potential therapeutic approach for enhancing hepatic lipid metabolism in obesity and diabetes.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 10","pages":"e3002865"},"PeriodicalIF":9.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530026/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142511129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-22eCollection Date: 2024-10-01DOI: 10.1371/journal.pbio.3002853
Yasir Malik, Yavuz Kulaberoglu, Shajahan Anver, Sara Javidnia, Gillian Borland, Rene Rivera, Stephen Cranwell, Danel Medelbekova, Tatiana Svermova, Jackie Thomson, Susan Broughton, Tobias von der Haar, Colin Selman, Jennifer M A Tullet, Nazif Alic
tRNAs are evolutionarily ancient molecular decoders essential for protein translation. In eukaryotes, tRNAs and other short, noncoding RNAs are transcribed by RNA polymerase (Pol) III, an enzyme that promotes ageing in yeast, worms, and flies. Here, we show that a partial reduction in Pol III activity specifically disrupts tRNA levels. This effect is conserved across worms, flies, and mice, where computational models indicate that it impacts mRNA decoding. In all 3 species, reduced Pol III activity increases proteostatic resilience. In worms, it activates the unfolded protein response (UPR) and direct disruption of tRNA metabolism is sufficient to recapitulate this. In flies, decreasing Pol III's transcriptional initiation on tRNA genes by a loss-of-function in the TFIIIC transcription factor robustly extends lifespan, improves proteostatic resilience and recapitulates the broad-spectrum benefits to late-life health seen following partial Pol III inhibition. We provide evidence that a partial reduction in Pol III activity impacts translation, quantitatively or qualitatively, in both worms and flies, indicating a potential mode of action. Our work demonstrates a conserved and previously unappreciated role of tRNAs in animal ageing.
tRNA 是蛋白质翻译所必需的古老分子解码器。在真核生物中,tRNA 和其他短的非编码 RNA 由 RNA 聚合酶(Pol)III 转录,这种酶促进了酵母、蠕虫和苍蝇的老化。在这里,我们发现 Pol III 活性的部分降低会特异性地破坏 tRNA 水平。这种效应在蠕虫、苍蝇和小鼠中是一致的,计算模型表明它影响了 mRNA 的解码。在所有 3 个物种中,Pol III 活性的降低都会增加蛋白静态复原力。在蠕虫中,它激活了未折叠蛋白反应(UPR),而直接破坏 tRNA 代谢足以重现这种情况。在苍蝇中,通过 TFIIIC 转录因子的功能缺失来减少 Pol III 对 tRNA 基因的转录启动,可以有力地延长寿命、提高蛋白质恢复能力,并再现了部分抑制 Pol III 后对晚年健康的广泛益处。我们提供的证据表明,部分降低 Pol III 活性会对蠕虫和苍蝇的翻译产生定量或定性影响,这表明了一种潜在的作用模式。我们的工作证明了 tRNA 在动物衰老过程中的作用是一致的,而且是以前未曾认识到的。
{"title":"Disruption of tRNA biogenesis enhances proteostatic resilience, improves later-life health, and promotes longevity.","authors":"Yasir Malik, Yavuz Kulaberoglu, Shajahan Anver, Sara Javidnia, Gillian Borland, Rene Rivera, Stephen Cranwell, Danel Medelbekova, Tatiana Svermova, Jackie Thomson, Susan Broughton, Tobias von der Haar, Colin Selman, Jennifer M A Tullet, Nazif Alic","doi":"10.1371/journal.pbio.3002853","DOIUrl":"https://doi.org/10.1371/journal.pbio.3002853","url":null,"abstract":"<p><p>tRNAs are evolutionarily ancient molecular decoders essential for protein translation. In eukaryotes, tRNAs and other short, noncoding RNAs are transcribed by RNA polymerase (Pol) III, an enzyme that promotes ageing in yeast, worms, and flies. Here, we show that a partial reduction in Pol III activity specifically disrupts tRNA levels. This effect is conserved across worms, flies, and mice, where computational models indicate that it impacts mRNA decoding. In all 3 species, reduced Pol III activity increases proteostatic resilience. In worms, it activates the unfolded protein response (UPR) and direct disruption of tRNA metabolism is sufficient to recapitulate this. In flies, decreasing Pol III's transcriptional initiation on tRNA genes by a loss-of-function in the TFIIIC transcription factor robustly extends lifespan, improves proteostatic resilience and recapitulates the broad-spectrum benefits to late-life health seen following partial Pol III inhibition. We provide evidence that a partial reduction in Pol III activity impacts translation, quantitatively or qualitatively, in both worms and flies, indicating a potential mode of action. Our work demonstrates a conserved and previously unappreciated role of tRNAs in animal ageing.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 10","pages":"e3002853"},"PeriodicalIF":9.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495624/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142511124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-22eCollection Date: 2024-10-01DOI: 10.1371/journal.pbio.3002610
Lin Cai, Takeshi Arimitsu, Naomi Shinohara, Takao Takahashi, Yoko Hakuno, Masahiro Hata, Ei-Ichi Hoshino, Stuart K Watson, Simon W Townsend, Jutta L Mueller, Yasuyo Minagawa
Pre-babbling infants can track nonadjacent dependencies (NADs) in the auditory domain. While this forms a crucial prerequisite for language acquisition, the neurodevelopmental origins of this ability remain unknown. We applied functional near-infrared spectroscopy in neonates and 6- to 7-month-old infants to investigate the neural substrate supporting NAD learning and detection using tone sequences in an artificial grammar learning paradigm. Detection of NADs was indicated by left prefrontal activation in neonates while by left supramarginal gyrus (SMG), superior temporal gyrus (STG), and inferior frontal gyrus activation in 6- to 7-month-olds. Functional connectivity analyses further indicated that the neonate activation pattern during the test phase benefited from a brain network consisting of prefrontal regions, left SMG and STG during the rest and learning phases. These findings suggest a left-hemispheric learning-related functional brain network may emerge at birth and serve as the foundation for the later engagement of these regions for NAD detection, thus, providing a neural basis for language acquisition.
咿呀学语前的婴儿可以在听觉领域追踪非相邻依存关系(NAD)。虽然这构成了语言习得的重要前提,但这种能力的神经发育起源仍然未知。我们在新生儿和 6 到 7 个月大的婴儿身上应用了功能性近红外光谱技术,在人工语法学习范式中使用音调序列来研究支持 NAD 学习和检测的神经基质。新生儿的左前额叶激活显示了对 NAD 的检测,而 6 到 7 个月大的婴儿的左侧边际上回(SMG)、颞上回(STG)和额下回激活显示了对 NAD 的检测。功能连接分析进一步表明,新生儿在测试阶段的激活模式在休息和学习阶段受益于由前额叶区、左侧SMG和STG组成的大脑网络。这些研究结果表明,与学习相关的左半球脑功能网络可能在新生儿出生时就已出现,并为这些区域日后参与NAD检测奠定了基础,从而为语言习得提供了神经基础。
{"title":"Functional reorganization of brain regions supporting artificial grammar learning across the first half year of life.","authors":"Lin Cai, Takeshi Arimitsu, Naomi Shinohara, Takao Takahashi, Yoko Hakuno, Masahiro Hata, Ei-Ichi Hoshino, Stuart K Watson, Simon W Townsend, Jutta L Mueller, Yasuyo Minagawa","doi":"10.1371/journal.pbio.3002610","DOIUrl":"https://doi.org/10.1371/journal.pbio.3002610","url":null,"abstract":"<p><p>Pre-babbling infants can track nonadjacent dependencies (NADs) in the auditory domain. While this forms a crucial prerequisite for language acquisition, the neurodevelopmental origins of this ability remain unknown. We applied functional near-infrared spectroscopy in neonates and 6- to 7-month-old infants to investigate the neural substrate supporting NAD learning and detection using tone sequences in an artificial grammar learning paradigm. Detection of NADs was indicated by left prefrontal activation in neonates while by left supramarginal gyrus (SMG), superior temporal gyrus (STG), and inferior frontal gyrus activation in 6- to 7-month-olds. Functional connectivity analyses further indicated that the neonate activation pattern during the test phase benefited from a brain network consisting of prefrontal regions, left SMG and STG during the rest and learning phases. These findings suggest a left-hemispheric learning-related functional brain network may emerge at birth and serve as the foundation for the later engagement of these regions for NAD detection, thus, providing a neural basis for language acquisition.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 10","pages":"e3002610"},"PeriodicalIF":9.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495551/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142511127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-22eCollection Date: 2024-10-01DOI: 10.1371/journal.pbio.3002841
Meiyu Ruan, Fan Xu, Na Li, Jing Yu, Fukang Teng, Jiawei Tang, Cheng Huang, Huanhu Zhu
Postembryonic development of animals has long been considered an internally predetermined program, while macronutrients were believed to be essential solely for providing biomatters and energy to support this process. However, in this study, by using a nematode Caenorhabditis elegans (abbreviated as C. elegans hereafter) model, we surprisingly discovered that dietary supplementation of palmitic acid alone, rather than other abundant essential nutrients such as glucose or amino acid mixture, was sufficient to initiate early postembryonic development even under complete macronutrient deprivation. Such a development was evidenced by changes in morphology, cellular markers in multiple tissues, behaviors, and the global transcription pattern and it occurred earlier than the well-known early L1 nutrient checkpoint. Mechanistically, palmitic acid did not function as a biomatter/energy provider, but rather as a ligand to activate the nuclear hormone receptor NHR-49/80, leading to the production of an unknown peroxisome-derived secretive hormone in the intestine. This hormonal signal was received by chemosensory neurons in the head, regulating the insulin-like neuropeptide secretion and its downstream nuclear receptor to orchestrate global development. Additionally, the nutrient-sensing hub mTORC1 played a negative role in this process. In conclusion, our data indicate that free fatty acids act as a primary nutrient signal to launch the early development in C. elegans, which suggests that specific nutrients, rather than the internal genetic program, serve as the first impetus for postembryonic development.
{"title":"Free long-chain fatty acids trigger early postembryonic development in starved Caenorhabditis elegans by suppressing mTORC1.","authors":"Meiyu Ruan, Fan Xu, Na Li, Jing Yu, Fukang Teng, Jiawei Tang, Cheng Huang, Huanhu Zhu","doi":"10.1371/journal.pbio.3002841","DOIUrl":"10.1371/journal.pbio.3002841","url":null,"abstract":"<p><p>Postembryonic development of animals has long been considered an internally predetermined program, while macronutrients were believed to be essential solely for providing biomatters and energy to support this process. However, in this study, by using a nematode Caenorhabditis elegans (abbreviated as C. elegans hereafter) model, we surprisingly discovered that dietary supplementation of palmitic acid alone, rather than other abundant essential nutrients such as glucose or amino acid mixture, was sufficient to initiate early postembryonic development even under complete macronutrient deprivation. Such a development was evidenced by changes in morphology, cellular markers in multiple tissues, behaviors, and the global transcription pattern and it occurred earlier than the well-known early L1 nutrient checkpoint. Mechanistically, palmitic acid did not function as a biomatter/energy provider, but rather as a ligand to activate the nuclear hormone receptor NHR-49/80, leading to the production of an unknown peroxisome-derived secretive hormone in the intestine. This hormonal signal was received by chemosensory neurons in the head, regulating the insulin-like neuropeptide secretion and its downstream nuclear receptor to orchestrate global development. Additionally, the nutrient-sensing hub mTORC1 played a negative role in this process. In conclusion, our data indicate that free fatty acids act as a primary nutrient signal to launch the early development in C. elegans, which suggests that specific nutrients, rather than the internal genetic program, serve as the first impetus for postembryonic development.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 10","pages":"e3002841"},"PeriodicalIF":9.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530034/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142511126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21eCollection Date: 2024-10-01DOI: 10.1371/journal.pbio.3002858
David R Quiroga-Martinez, Gemma Fernández Rubio, Leonardo Bonetti, Kriti G Achyutuni, Athina Tzovara, Robert T Knight, Peter Vuust
Vividly imagining a song or a melody is a skill that many people accomplish with relatively little effort. However, we are only beginning to understand how the brain represents, holds, and manipulates these musical "thoughts." Here, we decoded perceived and imagined melodies from magnetoencephalography (MEG) brain data (N = 71) to characterize their neural representation. We found that, during perception, auditory regions represent the sensory properties of individual sounds. In contrast, a widespread network including fronto-parietal cortex, hippocampus, basal nuclei, and sensorimotor regions hold the melody as an abstract unit during both perception and imagination. Furthermore, the mental manipulation of a melody systematically changes its neural representation, reflecting volitional control of auditory images. Our work sheds light on the nature and dynamics of auditory representations, informing future research on neural decoding of auditory imagination.
{"title":"Decoding reveals the neural representation of perceived and imagined musical sounds.","authors":"David R Quiroga-Martinez, Gemma Fernández Rubio, Leonardo Bonetti, Kriti G Achyutuni, Athina Tzovara, Robert T Knight, Peter Vuust","doi":"10.1371/journal.pbio.3002858","DOIUrl":"10.1371/journal.pbio.3002858","url":null,"abstract":"<p><p>Vividly imagining a song or a melody is a skill that many people accomplish with relatively little effort. However, we are only beginning to understand how the brain represents, holds, and manipulates these musical \"thoughts.\" Here, we decoded perceived and imagined melodies from magnetoencephalography (MEG) brain data (N = 71) to characterize their neural representation. We found that, during perception, auditory regions represent the sensory properties of individual sounds. In contrast, a widespread network including fronto-parietal cortex, hippocampus, basal nuclei, and sensorimotor regions hold the melody as an abstract unit during both perception and imagination. Furthermore, the mental manipulation of a melody systematically changes its neural representation, reflecting volitional control of auditory images. Our work sheds light on the nature and dynamics of auditory representations, informing future research on neural decoding of auditory imagination.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 10","pages":"e3002858"},"PeriodicalIF":9.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527242/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142478509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18eCollection Date: 2024-10-01DOI: 10.1371/journal.pbio.3002868
Muniyandi Selvaraj, AmirAli Toghani, Hsuan Pai, Yu Sugihara, Jiorgos Kourelis, Enoch Lok Him Yuen, Tarhan Ibrahim, He Zhao, Rongrong Xie, Abbas Maqbool, Juan Carlos De la Concepcion, Mark J Banfield, Lida Derevnina, Benjamin Petre, David M Lawson, Tolga O Bozkurt, Chih-Hang Wu, Sophien Kamoun, Mauricio P Contreras
Nucleotide-binding domain and leucine-rich repeat (NLR) proteins can engage in complex interactions to detect pathogens and execute a robust immune response via downstream helper NLRs. However, the biochemical mechanisms of helper NLR activation by upstream sensor NLRs remain poorly understood. Here, we show that the coiled-coil helper NLR NRC2 from Nicotiana benthamiana accumulates in vivo as a homodimer that converts into a higher-order oligomer upon activation by its upstream virus disease resistance protein Rx. The cryo-EM structure of NbNRC2 in its resting state revealed intermolecular interactions that mediate homodimer formation and contribute to immune receptor autoinhibition. These dimerization interfaces have diverged between paralogous NRC proteins to insulate critical network nodes and enable redundant immune pathways, possibly to minimise undesired cross-activation and evade pathogen suppression of immunity. Our results expand the molecular mechanisms of NLR activation pointing to transition from homodimers to higher-order oligomeric resistosomes.
{"title":"Activation of plant immunity through conversion of a helper NLR homodimer into a resistosome.","authors":"Muniyandi Selvaraj, AmirAli Toghani, Hsuan Pai, Yu Sugihara, Jiorgos Kourelis, Enoch Lok Him Yuen, Tarhan Ibrahim, He Zhao, Rongrong Xie, Abbas Maqbool, Juan Carlos De la Concepcion, Mark J Banfield, Lida Derevnina, Benjamin Petre, David M Lawson, Tolga O Bozkurt, Chih-Hang Wu, Sophien Kamoun, Mauricio P Contreras","doi":"10.1371/journal.pbio.3002868","DOIUrl":"10.1371/journal.pbio.3002868","url":null,"abstract":"<p><p>Nucleotide-binding domain and leucine-rich repeat (NLR) proteins can engage in complex interactions to detect pathogens and execute a robust immune response via downstream helper NLRs. However, the biochemical mechanisms of helper NLR activation by upstream sensor NLRs remain poorly understood. Here, we show that the coiled-coil helper NLR NRC2 from Nicotiana benthamiana accumulates in vivo as a homodimer that converts into a higher-order oligomer upon activation by its upstream virus disease resistance protein Rx. The cryo-EM structure of NbNRC2 in its resting state revealed intermolecular interactions that mediate homodimer formation and contribute to immune receptor autoinhibition. These dimerization interfaces have diverged between paralogous NRC proteins to insulate critical network nodes and enable redundant immune pathways, possibly to minimise undesired cross-activation and evade pathogen suppression of immunity. Our results expand the molecular mechanisms of NLR activation pointing to transition from homodimers to higher-order oligomeric resistosomes.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 10","pages":"e3002868"},"PeriodicalIF":9.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524475/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142478607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18eCollection Date: 2024-10-01DOI: 10.1371/journal.pbio.3002874
Rakesh Maharjan, Zhemin Zhang, Philip A Klenotic, William D Gregor, Marios L Tringides, Meng Cui, Georgiana E Purdy, Edward W Yu
The Mycobacterium tuberculosis (Mtb) pathogen, the causative agent of the airborne infection tuberculosis (TB), harbors a number of mycobacterial membrane protein large (MmpL) transporters. These membrane proteins can be separated into 2 distinct subclasses, where they perform important functional roles, and thus, are considered potential drug targets to combat TB. Previously, we reported both X-ray and cryo-EM structures of the MmpL3 transporter, providing high-resolution structural information for this subclass of the MmpL proteins. Currently, there is no structural information available for the subclass associated with MmpL4 and MmpL5, transporters that play a critical role in iron homeostasis of the bacterium. Here, we report cryo-EM structures of the M. smegmatis MmpL4 and MmpL5 transporters to resolutions of 2.95 Å and 3.00 Å, respectively. These structures allow us to propose a plausible pathway for siderophore translocation via these 2 transporters, an essential step for iron acquisition that enables the survival and replication of the mycobacterium.
结核分枝杆菌(Mtb)病原体是通过空气传播的结核病(TB)的致病菌,它携带有许多分枝杆菌膜蛋白大(MmpL)转运体。这些膜蛋白可分为两个不同的亚类,它们在其中发挥着重要的功能作用,因此被认为是抗击结核病的潜在药物靶标。此前,我们报道了 MmpL3 转运体的 X 射线和低温电子显微镜结构,为该亚类 MmpL 蛋白提供了高分辨率的结构信息。目前,还没有与 MmpL4 和 MmpL5 相关的亚类的结构信息,这些转运体在细菌的铁平衡中发挥着关键作用。在此,我们报告了 M. smegmatis MmpL4 和 MmpL5 转运体的低温电子显微镜结构,其分辨率分别为 2.95 Å 和 3.00 Å。通过这些结构,我们提出了通过这两个转运体进行苷酸转运的合理途径,而苷酸转运是获得铁的一个重要步骤,可使分枝杆菌得以生存和复制。
{"title":"Structures of the mycobacterial MmpL4 and MmpL5 transporters provide insights into their role in siderophore export and iron acquisition.","authors":"Rakesh Maharjan, Zhemin Zhang, Philip A Klenotic, William D Gregor, Marios L Tringides, Meng Cui, Georgiana E Purdy, Edward W Yu","doi":"10.1371/journal.pbio.3002874","DOIUrl":"10.1371/journal.pbio.3002874","url":null,"abstract":"<p><p>The Mycobacterium tuberculosis (Mtb) pathogen, the causative agent of the airborne infection tuberculosis (TB), harbors a number of mycobacterial membrane protein large (MmpL) transporters. These membrane proteins can be separated into 2 distinct subclasses, where they perform important functional roles, and thus, are considered potential drug targets to combat TB. Previously, we reported both X-ray and cryo-EM structures of the MmpL3 transporter, providing high-resolution structural information for this subclass of the MmpL proteins. Currently, there is no structural information available for the subclass associated with MmpL4 and MmpL5, transporters that play a critical role in iron homeostasis of the bacterium. Here, we report cryo-EM structures of the M. smegmatis MmpL4 and MmpL5 transporters to resolutions of 2.95 Å and 3.00 Å, respectively. These structures allow us to propose a plausible pathway for siderophore translocation via these 2 transporters, an essential step for iron acquisition that enables the survival and replication of the mycobacterium.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 10","pages":"e3002874"},"PeriodicalIF":9.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524445/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142478513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}