Pub Date : 2019-01-01DOI: 10.1177/1756829319890609
D. Kurtulus
The present paper aims to investigate numerically small amplitude oscillation of NACA 0012 airfoil at Re = 1000. The airfoil is sinusoidally pitching around the quarter chord point with 1° pitch amplitude about a mean angle of attack. The computations are performed for mean angles of attack ranging from 0° to 60° and for pitching frequencies of 1 Hz and 4 Hz. The effect of the mean angle of attack and pitching frequency on the instantaneous forces as well as the vortex structure is investigated in comparison with the non-oscillatory conditions. It was shown that airfoil oscillations at the investigated conditions change the amplitude of oscillation of the aerodynamic loads. The instantaneous drag coefficient is always positive for pitching airfoil at 1 Hz. In the meantime, there are time intervals where instantaneous drag coefficient becomes negative for pitching motion at 4 Hz for mean angles of attack from 3° to 36°.
{"title":"Unsteady aerodynamics of a pitching NACA 0012 airfoil at low Reynolds number","authors":"D. Kurtulus","doi":"10.1177/1756829319890609","DOIUrl":"https://doi.org/10.1177/1756829319890609","url":null,"abstract":"The present paper aims to investigate numerically small amplitude oscillation of NACA 0012 airfoil at Re = 1000. The airfoil is sinusoidally pitching around the quarter chord point with 1° pitch amplitude about a mean angle of attack. The computations are performed for mean angles of attack ranging from 0° to 60° and for pitching frequencies of 1 Hz and 4 Hz. The effect of the mean angle of attack and pitching frequency on the instantaneous forces as well as the vortex structure is investigated in comparison with the non-oscillatory conditions. It was shown that airfoil oscillations at the investigated conditions change the amplitude of oscillation of the aerodynamic loads. The instantaneous drag coefficient is always positive for pitching airfoil at 1 Hz. In the meantime, there are time intervals where instantaneous drag coefficient becomes negative for pitching motion at 4 Hz for mean angles of attack from 3° to 36°.","PeriodicalId":49053,"journal":{"name":"International Journal of Micro Air Vehicles","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756829319890609","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45025845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.1177/1756829319870050
{"title":"Editorial: MAV Special Collection","authors":"","doi":"10.1177/1756829319870050","DOIUrl":"https://doi.org/10.1177/1756829319870050","url":null,"abstract":"","PeriodicalId":49053,"journal":{"name":"International Journal of Micro Air Vehicles","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756829319870050","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47524979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.1177/1756829319841817
H. Altartouri, A. Roshanbin, G. Andreolli, L. Fazzi, M. Karásek, M. Lalami, A. Preumont
Hovering flapping wing flight is intrinsically unstable in most cases and requires active flight stabilization mechanisms. This paper explores the passive stability enhancement with the addition of top and bottom sails, and the capability to predict the stability from a very simple model decoupling the roll and pitch axes. The various parameters involved in the dynamical model are evaluated from experiments. One of the findings is that the damping coefficient of a bottom sail (located in the flow induced by the flapping wings) is significantly larger than that of a top sail. Flight experiments have been conducted on a flapping wing robot of the size of a hummingbird with sails of various sizes and the observations regarding the flight stability correlate quite well with the predictions of the dynamical model. Twelve out of 13 flight experiments are in agreement with stability predictions.
{"title":"Passive stability enhancement with sails of a hovering flapping twin-wing robot","authors":"H. Altartouri, A. Roshanbin, G. Andreolli, L. Fazzi, M. Karásek, M. Lalami, A. Preumont","doi":"10.1177/1756829319841817","DOIUrl":"https://doi.org/10.1177/1756829319841817","url":null,"abstract":"Hovering flapping wing flight is intrinsically unstable in most cases and requires active flight stabilization mechanisms. This paper explores the passive stability enhancement with the addition of top and bottom sails, and the capability to predict the stability from a very simple model decoupling the roll and pitch axes. The various parameters involved in the dynamical model are evaluated from experiments. One of the findings is that the damping coefficient of a bottom sail (located in the flow induced by the flapping wings) is significantly larger than that of a top sail. Flight experiments have been conducted on a flapping wing robot of the size of a hummingbird with sails of various sizes and the observations regarding the flight stability correlate quite well with the predictions of the dynamical model. Twelve out of 13 flight experiments are in agreement with stability predictions.","PeriodicalId":49053,"journal":{"name":"International Journal of Micro Air Vehicles","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756829319841817","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45827689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.1177/1756829319844275
T. Bensebaa, T. Jardin, S. Prothin, N. Doué
This short paper introduces a new concept of rotor where the blades undergo a periodic surging motion in the rotor disk plane. It is shown that the unsteady actuation induces aerodynamic phenomenon that can enhance both rotor thrust and efficiency, depending on the amplitude and frequency of actuation. In particular, the increase in aerodynamic performance is found to correlate with the development of a large scale leading edge vortex. Accordingly, the optimal frequency is found to correlate with the formation time of this vortex.
{"title":"Rotor performance enhancement through blade surging","authors":"T. Bensebaa, T. Jardin, S. Prothin, N. Doué","doi":"10.1177/1756829319844275","DOIUrl":"https://doi.org/10.1177/1756829319844275","url":null,"abstract":"This short paper introduces a new concept of rotor where the blades undergo a periodic surging motion in the rotor disk plane. It is shown that the unsteady actuation induces aerodynamic phenomenon that can enhance both rotor thrust and efficiency, depending on the amplitude and frequency of actuation. In particular, the increase in aerodynamic performance is found to correlate with the development of a large scale leading edge vortex. Accordingly, the optimal frequency is found to correlate with the formation time of this vortex.","PeriodicalId":49053,"journal":{"name":"International Journal of Micro Air Vehicles","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756829319844275","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43087965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.1177/1756829319833677
C. M. Reed, David A. Coleman, Moble Benedict
This paper provides a fundamental understanding of the unsteady fluid-dynamic phenomena on a cycloidal rotor blade operating at ultra-low Reynolds numbers (Re ∼ 18,000) by utilizing a combination of instantaneous blade force and flowfield measurements. The dynamic blade force coefficients were almost double the static ones, indicating the role of dynamic stall. For the dynamic case, the blade lift monotonically increased up to ±45° pitch amplitude; however, for the static case, the flow separated from the leading edge after around 15° with a large laminar separation bubble. There was significant asymmetry in the lift and drag coefficients between the upper and lower halves of the trajectory due to the flow curvature effects (virtual camber). The particle image velocimetry measured flowfield showed the dynamic stall process during the upper half to be significantly different from the lower half because of the reversal of dynamic virtual camber. Even at such low Reynolds numbers, the pressure forces, as opposed to viscous forces, were found to be dominant on the cyclorotor blade. The power required for rotation (rather than pitching power) dominated the total blade power.
{"title":"Force and flowfield measurements to understand unsteady aerodynamics of cycloidal rotors in hover at ultra-low Reynolds numbers","authors":"C. M. Reed, David A. Coleman, Moble Benedict","doi":"10.1177/1756829319833677","DOIUrl":"https://doi.org/10.1177/1756829319833677","url":null,"abstract":"This paper provides a fundamental understanding of the unsteady fluid-dynamic phenomena on a cycloidal rotor blade operating at ultra-low Reynolds numbers (Re ∼ 18,000) by utilizing a combination of instantaneous blade force and flowfield measurements. The dynamic blade force coefficients were almost double the static ones, indicating the role of dynamic stall. For the dynamic case, the blade lift monotonically increased up to ±45° pitch amplitude; however, for the static case, the flow separated from the leading edge after around 15° with a large laminar separation bubble. There was significant asymmetry in the lift and drag coefficients between the upper and lower halves of the trajectory due to the flow curvature effects (virtual camber). The particle image velocimetry measured flowfield showed the dynamic stall process during the upper half to be significantly different from the lower half because of the reversal of dynamic virtual camber. Even at such low Reynolds numbers, the pressure forces, as opposed to viscous forces, were found to be dominant on the cyclorotor blade. The power required for rotation (rather than pitching power) dominated the total blade power.","PeriodicalId":49053,"journal":{"name":"International Journal of Micro Air Vehicles","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756829319833677","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49246104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.1177/1756829319866024
Dong-Keun Yang, Zhen Liu, Chen Bu, Shanyong Zhao
The interference effect between the nano rotor and aerodynamic rudder was studied experimentally and computationally. Propulsive performance of nano rotor and aerodynamic performance of aerodynamic rudder were achieved experimentally. The disturbed flow field of nano rotor was also analyzed computationally to disclose the flow mechanics of the interaction. Results showed that the nano rotor has a great effect on the aerodynamic performance of aerodynamic rudder. The moment of aerodynamic rudder fluctuated with the rotor-to-rudder spacing and achieved the smallest value at the spacing of 0.5R. And the moment of aerodynamic rudder varied with deflection angle linearly. Aerodynamic rudder influenced the propulsion performance of the nano rotor slightly. The thrust coefficient and torque coefficient increased a little with spacing but changed slightly with the deflection angle. Numerical simulation showed that aerodynamic rudder blocked the flow field of the nano rotor and the counterclockwise rotation of the rotor drives the flow in the downstream rotating in a counterclockwise direction resulting in the different angle of attack between left and right rudder surface.
{"title":"Experimental and computational investigation on interaction between nano rotor and aerodynamic rudder","authors":"Dong-Keun Yang, Zhen Liu, Chen Bu, Shanyong Zhao","doi":"10.1177/1756829319866024","DOIUrl":"https://doi.org/10.1177/1756829319866024","url":null,"abstract":"The interference effect between the nano rotor and aerodynamic rudder was studied experimentally and computationally. Propulsive performance of nano rotor and aerodynamic performance of aerodynamic rudder were achieved experimentally. The disturbed flow field of nano rotor was also analyzed computationally to disclose the flow mechanics of the interaction. Results showed that the nano rotor has a great effect on the aerodynamic performance of aerodynamic rudder. The moment of aerodynamic rudder fluctuated with the rotor-to-rudder spacing and achieved the smallest value at the spacing of 0.5R. And the moment of aerodynamic rudder varied with deflection angle linearly. Aerodynamic rudder influenced the propulsion performance of the nano rotor slightly. The thrust coefficient and torque coefficient increased a little with spacing but changed slightly with the deflection angle. Numerical simulation showed that aerodynamic rudder blocked the flow field of the nano rotor and the counterclockwise rotation of the rotor drives the flow in the downstream rotating in a counterclockwise direction resulting in the different angle of attack between left and right rudder surface.","PeriodicalId":49053,"journal":{"name":"International Journal of Micro Air Vehicles","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756829319866024","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43129487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.1177/1756829319833687
Yasir A. Elawad, E. Eljack
High-fidelity large eddy simulation is carried out for the flow field around a NACA-0012 aerofoil at Reynolds number of 9 × 10 4 , Mach number of 0.4, and various angles of attack around the onset of stall. The laminar separation bubble is formed on the suction surface of the aerofoil and is constituted by the reattached shear layer. At these conditions, the laminar separation bubble is unstable and switches between a short bubble and an open bubble. The instability of the laminar separation bubble triggers a low-frequency flow oscillation. The aerodynamic coefficients oscillate accordingly at a low frequency. The lift and the drag coefficients compare very well to recent high-accuracy experimental data, and the lift leads the drag by a phase shift of π / 2 . The mean lift coefficient peaks at the angle of attack of 10.25 ° , in total agreement with the experimental data. The spectra of the lift coefficient does not show a significant low-frequency peak at angles of attack lower than or equal the stall angle of attack ( 10.25 ° ). At higher angles of attack, the spectra show two low-frequency peaks and the low-frequency flow oscillation is fully developed at the angle of attack of 11.0 ° . The behaviour of the flow-field and changes in the turbulent kinetic energy over one low-frequency flow oscillation cycle are described qualitatively.
{"title":"Numerical investigation of the low-frequency flow oscillation over a NACA-0012 aerofoil at the inception of stall","authors":"Yasir A. Elawad, E. Eljack","doi":"10.1177/1756829319833687","DOIUrl":"https://doi.org/10.1177/1756829319833687","url":null,"abstract":"High-fidelity large eddy simulation is carried out for the flow field around a NACA-0012 aerofoil at Reynolds number of 9 × 10 4 , Mach number of 0.4, and various angles of attack around the onset of stall. The laminar separation bubble is formed on the suction surface of the aerofoil and is constituted by the reattached shear layer. At these conditions, the laminar separation bubble is unstable and switches between a short bubble and an open bubble. The instability of the laminar separation bubble triggers a low-frequency flow oscillation. The aerodynamic coefficients oscillate accordingly at a low frequency. The lift and the drag coefficients compare very well to recent high-accuracy experimental data, and the lift leads the drag by a phase shift of π / 2 . The mean lift coefficient peaks at the angle of attack of 10.25 ° , in total agreement with the experimental data. The spectra of the lift coefficient does not show a significant low-frequency peak at angles of attack lower than or equal the stall angle of attack ( 10.25 ° ). At higher angles of attack, the spectra show two low-frequency peaks and the low-frequency flow oscillation is fully developed at the angle of attack of 11.0 ° . The behaviour of the flow-field and changes in the turbulent kinetic energy over one low-frequency flow oscillation cycle are described qualitatively.","PeriodicalId":49053,"journal":{"name":"International Journal of Micro Air Vehicles","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756829319833687","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46410776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.1177/1756829319861370
F. Binz, T. Islam, D. Moormann
In this paper, we present a novel concept for robustly controlling the attitude of tiltwing aircraft. Our main contribution is the introduction of a wing-fixed coordinate system for angular acceleration control, which forms the basis of a simple and robust attitude controller. Using the wing-fixed coordinate system allows us to describe the actuator effectivity using simple approximations based on the current operating conditions of the aircraft. Coupled with a robust angular rate control concept, which does not rely on an accurate aerodynamic model, we present a controller stabilizing the entire flight envelope of a tiltwing aircraft. The underlying angular acceleration controller uses the concept of Incremental Nonlinear Dynamic Inversion (INDI) to achieve robustness against aerodynamic uncertainties. The resulting controller is evaluated in both simulation studies and flight tests.
{"title":"Attitude control of tiltwing aircraft using a wing-fixed coordinate system and incremental nonlinear dynamic inversion","authors":"F. Binz, T. Islam, D. Moormann","doi":"10.1177/1756829319861370","DOIUrl":"https://doi.org/10.1177/1756829319861370","url":null,"abstract":"In this paper, we present a novel concept for robustly controlling the attitude of tiltwing aircraft. Our main contribution is the introduction of a wing-fixed coordinate system for angular acceleration control, which forms the basis of a simple and robust attitude controller. Using the wing-fixed coordinate system allows us to describe the actuator effectivity using simple approximations based on the current operating conditions of the aircraft. Coupled with a robust angular rate control concept, which does not rely on an accurate aerodynamic model, we present a controller stabilizing the entire flight envelope of a tiltwing aircraft. The underlying angular acceleration controller uses the concept of Incremental Nonlinear Dynamic Inversion (INDI) to achieve robustness against aerodynamic uncertainties. The resulting controller is evaluated in both simulation studies and flight tests.","PeriodicalId":49053,"journal":{"name":"International Journal of Micro Air Vehicles","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756829319861370","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48079122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.1177/1756829319861596
S. Prothin, C. Fernandez Escudero, N. Doué, T. Jardin
The work presented in this paper is part of a project called ARChEaN (Aerodynamic of Rotors in Confined ENvironment) whose objective is to study the interactions of a micro drone rotor with its surroundings in the case of flight in enclosed environments such as those encountered, for example, in archeological exploration of caves. To do so the influence of the environment (walls, ground, ceiling, etc) on the rotor’s aerodynamic performance as well as on the flow field between the rotor and the surroundings is studied. This paper focuses on two different configurations, flight near the ground and flight near a corner (wall and ground), and the results are analyzed and compared to a general free flight case (i.e. far away from any obstacle). In order to carry out this analysis both numerical and experimental approaches are conducted. The objective is to validate the numerical model with the results obtained experimentally and to benefit from the advantages of both approaches in terms of flow analysis. This research work will provide knowledge on how to operate these systems as to minimize the possible negative environment disturbances, reduce power consumption and predict the micro drone’s behaviour during enclosed flights.
{"title":"Aerodynamics of MAV rotors in ground and corner effect","authors":"S. Prothin, C. Fernandez Escudero, N. Doué, T. Jardin","doi":"10.1177/1756829319861596","DOIUrl":"https://doi.org/10.1177/1756829319861596","url":null,"abstract":"The work presented in this paper is part of a project called ARChEaN (Aerodynamic of Rotors in Confined ENvironment) whose objective is to study the interactions of a micro drone rotor with its surroundings in the case of flight in enclosed environments such as those encountered, for example, in archeological exploration of caves. To do so the influence of the environment (walls, ground, ceiling, etc) on the rotor’s aerodynamic performance as well as on the flow field between the rotor and the surroundings is studied. This paper focuses on two different configurations, flight near the ground and flight near a corner (wall and ground), and the results are analyzed and compared to a general free flight case (i.e. far away from any obstacle). In order to carry out this analysis both numerical and experimental approaches are conducted. The objective is to validate the numerical model with the results obtained experimentally and to benefit from the advantages of both approaches in terms of flow analysis. This research work will provide knowledge on how to operate these systems as to minimize the possible negative environment disturbances, reduce power consumption and predict the micro drone’s behaviour during enclosed flights.","PeriodicalId":49053,"journal":{"name":"International Journal of Micro Air Vehicles","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756829319861596","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47662693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.1177/1756829319833686
C. Huo, P. Lv, A. Sun
This paper aims to investigate the aerodynamics including the global performance and flow characteristics of a long-shrouded contra-rotating rotor by developing a full 3D RANS computation. Through validations by current experiments on the same shrouded contra-rotating rotor, the computation using sliding mesh method and the computational zone with an extended nozzle downstream flow field effectively works; the time-averaged solution of the unsteady computation reveals that more uniform flow presents after the downstream rotor, which implies that the rear rotor rotating at opposite direction greatly compensates and reduces the wake; the unsteady computations further explore the flow field throughout the whole system, along the span and around blade tips. Complex flow patterns including the vortices and their interactions are indicated around the blade roots and tips. For further identifying rotor configurations, the rotor–rotor distance and switching two rotor speeds were studied. The computation reveals that setting the second rotor backwards decreases the wake scale but increases its intensity in the downstream nozzle zone. However, for the effect of switching speeds, computations cannot precisely solve the flow when the rear rotor under the windmill because of the upstream rotor rotating much faster than the other one. All the phenomena from computations well implement the experimental observations.
{"title":"Computational study on the aerodynamics of a long-shrouded contra-rotating rotor in hover","authors":"C. Huo, P. Lv, A. Sun","doi":"10.1177/1756829319833686","DOIUrl":"https://doi.org/10.1177/1756829319833686","url":null,"abstract":"This paper aims to investigate the aerodynamics including the global performance and flow characteristics of a long-shrouded contra-rotating rotor by developing a full 3D RANS computation. Through validations by current experiments on the same shrouded contra-rotating rotor, the computation using sliding mesh method and the computational zone with an extended nozzle downstream flow field effectively works; the time-averaged solution of the unsteady computation reveals that more uniform flow presents after the downstream rotor, which implies that the rear rotor rotating at opposite direction greatly compensates and reduces the wake; the unsteady computations further explore the flow field throughout the whole system, along the span and around blade tips. Complex flow patterns including the vortices and their interactions are indicated around the blade roots and tips. For further identifying rotor configurations, the rotor–rotor distance and switching two rotor speeds were studied. The computation reveals that setting the second rotor backwards decreases the wake scale but increases its intensity in the downstream nozzle zone. However, for the effect of switching speeds, computations cannot precisely solve the flow when the rear rotor under the windmill because of the upstream rotor rotating much faster than the other one. All the phenomena from computations well implement the experimental observations.","PeriodicalId":49053,"journal":{"name":"International Journal of Micro Air Vehicles","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756829319833686","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46290395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}