Pub Date : 2020-02-17eCollection Date: 2020-01-01DOI: 10.1186/s13227-020-00149-8
Pablo Peréz-Mesa, Clara Inés Ortíz-Ramírez, Favio González, Cristina Ferrándiz, Natalia Pabón-Mora
Background: In Aristolochia (Aristolochiaceae) flowers, the congenital fusion of the anthers and the commissural, stigmatic lobes forms a gynostemium. Although the molecular bases associated to the apical-basal gynoecium patterning have been described in eudicots, comparative expression studies of the style and stigma regulatory genes have never been performed in early divergent angiosperms possessing a gynostemium.
Results: In this study, we assess the expression of five genes typically involved in gynoecium development in Aristolochia fimbriata. We found that all five genes (AfimCRC, AfimSPT, AfimNGA, AfimHEC1 and AfimHEC3) are expressed in the ovary, the placenta, the ovules and the transmitting tract. In addition, only AfimHEC3, AfimNGA and AfimSPT are temporarily expressed during the initiation of the stigma, while none of the genes studied is maintained during the elaboration of the stigmatic surfaces in the gynostemium.
Conclusions: Expression patterns suggest that CRC, HEC, NGA and SPT homologs establish ovary and style identity in Aristolochia fimbriata. Only NGA,HEC3 and SPT genes may play a role in the early differentiation of the stigmatic lobes, but none of the genes studied seems to control late stigma differentiation in the gynostemium. The data gathered so far raises the possibility that such transient expression early on provides sufficient signal for late stigma differentiation or that unidentified late identity genes are controlling stigma development in the gynostemium. Our data does not rule out the possibility that stigmas could correspond to staminal filaments with convergent pollen-receptive surfaces.
{"title":"Expression of gynoecium patterning transcription factors in <i>Aristolochia fimbriata</i> (Aristolochiaceae) and their contribution to gynostemium development.","authors":"Pablo Peréz-Mesa, Clara Inés Ortíz-Ramírez, Favio González, Cristina Ferrándiz, Natalia Pabón-Mora","doi":"10.1186/s13227-020-00149-8","DOIUrl":"https://doi.org/10.1186/s13227-020-00149-8","url":null,"abstract":"<p><strong>Background: </strong>In <i>Aristolochia</i> (Aristolochiaceae) flowers, the congenital fusion of the anthers and the commissural, stigmatic lobes forms a gynostemium. Although the molecular bases associated to the apical-basal gynoecium patterning have been described in eudicots, comparative expression studies of the style and stigma regulatory genes have never been performed in early divergent angiosperms possessing a gynostemium.</p><p><strong>Results: </strong>In this study, we assess the expression of five genes typically involved in gynoecium development in <i>Aristolochia fimbriata</i>. We found that all five genes (<i>AfimCRC</i>, <i>AfimSPT</i>, <i>AfimNGA</i>, <i>AfimHEC1</i> and <i>AfimHEC3</i>) are expressed in the ovary, the placenta, the ovules and the transmitting tract. In addition, only <i>AfimHEC3</i>, <i>AfimNGA</i> and <i>AfimSPT</i> are temporarily expressed during the initiation of the stigma, while none of the genes studied is maintained during the elaboration of the stigmatic surfaces in the gynostemium.</p><p><strong>Conclusions: </strong>Expression patterns suggest that <i>CRC</i>, <i>HEC</i>, <i>NGA</i> and <i>SPT</i> homologs establish ovary and style identity in <i>Aristolochia fimbriata.</i> Only <i>NGA</i>,<i>HEC3</i> and <i>SPT</i> genes may play a role in the early differentiation of the stigmatic lobes, but none of the genes studied seems to control late stigma differentiation in the gynostemium. The data gathered so far raises the possibility that such transient expression early on provides sufficient signal for late stigma differentiation or that unidentified late identity genes are controlling stigma development in the gynostemium. Our data does not rule out the possibility that stigmas could correspond to staminal filaments with convergent pollen-receptive surfaces.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":" ","pages":"4"},"PeriodicalIF":4.1,"publicationDate":"2020-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13227-020-00149-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37674376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-02-10eCollection Date: 2020-01-01DOI: 10.1186/s13227-020-0148-z
Ludwik Gąsiorowski, Andreas Hejnol
Background: Phoronida is a small group of marine worm-like suspension feeders, which together with brachiopods and bryozoans form the clade Lophophorata. Although their development is well studied on the morphological level, data regarding gene expression during this process are scarce and restricted to the analysis of relatively few transcription factors. Here, we present a description of the expression patterns of Hox genes during the embryonic and larval development of the phoronid Phoronopsis harmeri.
Results: We identified sequences of eight Hox genes in the transcriptome of Ph. harmeri and determined their expression pattern during embryonic and larval development using whole mount in situ hybridization. We found that none of the Hox genes is expressed during embryonic development. Instead their expression is initiated in the later developmental stages, when the larval body is already formed. In the investigated initial larval stages the Hox genes are expressed in the non-collinear manner in the posterior body of the larvae: in the telotroch and the structures that represent rudiments of the adult worm. Additionally, we found that certain head-specific transcription factors are expressed in the oral hood, apical organ, preoral coelom, digestive system and developing larval tentacles, anterior to the Hox-expressing territories.
Conclusions: The lack of Hox gene expression during early development of Ph. harmeri indicates that the larval body develops without positional information from the Hox patterning system. Such phenomenon might be a consequence of the evolutionary intercalation of the larval form into an ancestral life cycle of phoronids. The observed Hox gene expression can also be a consequence of the actinotrocha representing a "head larva", which is composed of the most anterior body region that is devoid of Hox gene expression. Such interpretation is further supported by the expression of head-specific transcription factors. This implies that the Hox patterning system is used for the positional information of the trunk rudiments and is, therefore, delayed to the later larval stages. We propose that a new body form was intercalated to the phoronid life cycle by precocious development of the anterior structures or by delayed development of the trunk rudiment in the ancestral phoronid larva.
{"title":"Hox gene expression during development of the phoronid <i>Phoronopsis harmeri</i>.","authors":"Ludwik Gąsiorowski, Andreas Hejnol","doi":"10.1186/s13227-020-0148-z","DOIUrl":"https://doi.org/10.1186/s13227-020-0148-z","url":null,"abstract":"<p><strong>Background: </strong>Phoronida is a small group of marine worm-like suspension feeders, which together with brachiopods and bryozoans form the clade Lophophorata. Although their development is well studied on the morphological level, data regarding gene expression during this process are scarce and restricted to the analysis of relatively few transcription factors. Here, we present a description of the expression patterns of Hox genes during the embryonic and larval development of the phoronid <i>Phoronopsis harmeri</i>.</p><p><strong>Results: </strong>We identified sequences of eight Hox genes in the transcriptome of <i>Ph. harmeri</i> and determined their expression pattern during embryonic and larval development using whole mount in situ hybridization. We found that none of the Hox genes is expressed during embryonic development. Instead their expression is initiated in the later developmental stages, when the larval body is already formed. In the investigated initial larval stages the Hox genes are expressed in the non-collinear manner in the posterior body of the larvae: in the telotroch and the structures that represent rudiments of the adult worm. Additionally, we found that certain head-specific transcription factors are expressed in the oral hood, apical organ, preoral coelom, digestive system and developing larval tentacles, anterior to the Hox-expressing territories.</p><p><strong>Conclusions: </strong>The lack of Hox gene expression during early development of <i>Ph. harmeri</i> indicates that the larval body develops without positional information from the Hox patterning system. Such phenomenon might be a consequence of the evolutionary intercalation of the larval form into an ancestral life cycle of phoronids. The observed Hox gene expression can also be a consequence of the actinotrocha representing a \"head larva\", which is composed of the most anterior body region that is devoid of Hox gene expression. Such interpretation is further supported by the expression of head-specific transcription factors. This implies that the Hox patterning system is used for the positional information of the trunk rudiments and is, therefore, delayed to the later larval stages. We propose that a new body form was intercalated to the phoronid life cycle by precocious development of the anterior structures or by delayed development of the trunk rudiment in the ancestral phoronid larva.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":" ","pages":"2"},"PeriodicalIF":4.1,"publicationDate":"2020-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13227-020-0148-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37649151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-18eCollection Date: 2020-01-01DOI: 10.1186/s13227-020-0147-0
Savvas J Constantinou, Nicole Duan, Lisa M Nagy, Ariel D Chipman, Terri A Williams
Background: Segmentation in arthropods typically occurs by sequential addition of segments from a posterior growth zone. However, the amount of tissue required for growth and the cell behaviors producing posterior elongation are sparsely documented.
Results: Using precisely staged larvae of the crustacean, Thamnocephalus platyurus, we systematically examine cell division patterns and morphometric changes associated with posterior elongation during segmentation. We show that cell division occurs during normal elongation but that cells in the growth zone need only divide ~ 1.5 times to meet growth estimates; correspondingly, direct measures of cell division in the growth zone are low. Morphometric measurements of the growth zone and of newly formed segments suggest tagma-specific features of segment generation. Using methods for detecting two different phases in the cell cycle, we show distinct domains of synchronized cells in the posterior trunk. Borders of cell cycle domains correlate with domains of segmental gene expression, suggesting an intimate link between segment generation and cell cycle regulation.
Conclusions: Emerging measures of cellular dynamics underlying posterior elongation already show a number of intriguing characteristics that may be widespread among sequentially segmenting arthropods and are likely a source of evolutionary variability. These characteristics include: the low rates of posterior mitosis, the apparently tight regulation of cell cycle at the growth zone/new segment border, and a correlation between changes in elongation and tagma boundaries.
{"title":"Elongation during segmentation shows axial variability, low mitotic rates, and synchronized cell cycle domains in the crustacean, <i>Thamnocephalus platyurus</i>.","authors":"Savvas J Constantinou, Nicole Duan, Lisa M Nagy, Ariel D Chipman, Terri A Williams","doi":"10.1186/s13227-020-0147-0","DOIUrl":"https://doi.org/10.1186/s13227-020-0147-0","url":null,"abstract":"<p><strong>Background: </strong>Segmentation in arthropods typically occurs by sequential addition of segments from a posterior growth zone. However, the amount of tissue required for growth and the cell behaviors producing posterior elongation are sparsely documented.</p><p><strong>Results: </strong>Using precisely staged larvae of the crustacean, <i>Thamnocephalus platyurus</i>, we systematically examine cell division patterns and morphometric changes associated with posterior elongation during segmentation. We show that cell division occurs during normal elongation but that cells in the growth zone need only divide ~ 1.5 times to meet growth estimates; correspondingly, direct measures of cell division in the growth zone are low. Morphometric measurements of the growth zone and of newly formed segments suggest tagma-specific features of segment generation. Using methods for detecting two different phases in the cell cycle, we show distinct domains of synchronized cells in the posterior trunk. Borders of cell cycle domains correlate with domains of segmental gene expression, suggesting an intimate link between segment generation and cell cycle regulation.</p><p><strong>Conclusions: </strong>Emerging measures of cellular dynamics underlying posterior elongation already show a number of intriguing characteristics that may be widespread among sequentially segmenting arthropods and are likely a source of evolutionary variability. These characteristics include: the low rates of posterior mitosis, the apparently tight regulation of cell cycle at the growth zone/new segment border, and a correlation between changes in elongation and tagma boundaries.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":" ","pages":"1"},"PeriodicalIF":4.1,"publicationDate":"2020-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13227-020-0147-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37584754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.1186/s13227-020-00150-1
Jakub Wudarski, Bernhard Egger, Steven A Ramm, Lukas Schärer, Peter Ladurner, Kira S Zadesenets, Nikolay B Rubtsov, Stijn Mouton, Eugene Berezikov
Macrostomum lignano is a free-living flatworm that is emerging as an attractive experimental animal for research on a broad range of biological questions. One feature setting it apart from other flatworms is the successful establishment of transgenesis methods, facilitated by a steady supply of eggs in the form of single-cell zygotes that can be readily manipulated. This, in combination with the transparency of the animal and its small size, creates practical advantages for imaging and fluorescence-activated cell sorting in studies related to stem cell biology and regeneration. M. lignano can regenerate most of its body parts, including the germline, thanks to the neoblasts, which represent the flatworm stem cell system. Interestingly, neoblasts seem to have a high capacity of cellular maintenance, as M. lignano can survive up to 210 Gy of γ-irradiation, and partially offset the negative consequence of ageing. As a non-self-fertilizing simultaneous hermaphrodite that reproduces in a sexual manner, M. lignano is also used to study sexual selection and other evolutionary aspects of sexual reproduction. Work over the past several years has led to the development of molecular resources and tools, including high-quality genome and transcriptome assemblies, transcriptional profiling of the germline and somatic neoblasts, gene knockdown, and in situ hybridization. The increasingly detailed characterization of this animal has also resulted in novel research questions, such as bio-adhesion based on its adhesion-release glands and genome evolution due to its recent whole-genome duplication.
{"title":"The free-living flatworm <i>Macrostomum lignano</i>.","authors":"Jakub Wudarski, Bernhard Egger, Steven A Ramm, Lukas Schärer, Peter Ladurner, Kira S Zadesenets, Nikolay B Rubtsov, Stijn Mouton, Eugene Berezikov","doi":"10.1186/s13227-020-00150-1","DOIUrl":"https://doi.org/10.1186/s13227-020-00150-1","url":null,"abstract":"<p><p><i>Macrostomum lignano</i> is a free-living flatworm that is emerging as an attractive experimental animal for research on a broad range of biological questions. One feature setting it apart from other flatworms is the successful establishment of transgenesis methods, facilitated by a steady supply of eggs in the form of single-cell zygotes that can be readily manipulated. This, in combination with the transparency of the animal and its small size, creates practical advantages for imaging and fluorescence-activated cell sorting in studies related to stem cell biology and regeneration. <i>M. lignano</i> can regenerate most of its body parts, including the germline, thanks to the neoblasts, which represent the flatworm stem cell system. Interestingly, neoblasts seem to have a high capacity of cellular maintenance, as <i>M. lignano</i> can survive up to 210 Gy of γ-irradiation, and partially offset the negative consequence of ageing. As a non-self-fertilizing simultaneous hermaphrodite that reproduces in a sexual manner, <i>M. lignano</i> is also used to study sexual selection and other evolutionary aspects of sexual reproduction. Work over the past several years has led to the development of molecular resources and tools, including high-quality genome and transcriptome assemblies, transcriptional profiling of the germline and somatic neoblasts, gene knockdown, and in situ hybridization. The increasingly detailed characterization of this animal has also resulted in novel research questions, such as bio-adhesion based on its adhesion-release glands and genome evolution due to its recent whole-genome duplication.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"11 ","pages":"5"},"PeriodicalIF":4.1,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13227-020-00150-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10076542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-12-12eCollection Date: 2019-01-01DOI: 10.1186/s13227-019-0146-1
Carmen Andrikou, Yale J Passamaneck, Chris J Lowe, Mark Q Martindale, Andreas Hejnol
Background: Phoronids, rhynchonelliform and linguliform brachiopods show striking similarities in their embryonic fate maps, in particular in their axis specification and regionalization. However, although brachiopod development has been studied in detail and demonstrated embryonic patterning as a causal factor of the gastrulation mode (protostomy vs deuterostomy), molecular descriptions are still missing in phoronids. To understand whether phoronids display underlying embryonic molecular mechanisms similar to those of brachiopods, here we report the expression patterns of anterior (otx, gsc, six3/6, nk2.1), posterior (cdx, bra) and endomesodermal (foxA, gata4/5/6, twist) markers during the development of the protostomic phoronid Phoronopsis harmeri.
Results: The transcription factors foxA, gata4/5/6 and cdx show conserved expression in patterning the development and regionalization of the phoronid embryonic gut, with foxA expressed in the presumptive foregut, gata4/5/6 demarcating the midgut and cdx confined to the hindgut. Furthermore, six3/6, usually a well-conserved anterior marker, shows a remarkably dynamic expression, demarcating not only the apical organ and the oral ectoderm, but also clusters of cells of the developing midgut and the anterior mesoderm, similar to what has been reported for brachiopods, bryozoans and some deuterostome Bilateria. Surprisingly, brachyury, a transcription factor often associated with gastrulation movements and mouth and hindgut development, seems not to be involved with these patterning events in phoronids.
Conclusions: Our description and comparison of gene expression patterns with other studied Bilateria reveals that the timing of axis determination and cell fate distribution of the phoronid shows highest similarity to that of rhynchonelliform brachiopods, which is likely related to their shared protostomic mode of development. Despite these similarities, the phoronid Ph. harmeri also shows particularities in its development, which hint to divergences in the arrangement of gene regulatory networks responsible for germ layer formation and axis specification.
{"title":"Molecular patterning during the development of <i>Phoronopsis harmeri</i> reveals similarities to rhynchonelliform brachiopods.","authors":"Carmen Andrikou, Yale J Passamaneck, Chris J Lowe, Mark Q Martindale, Andreas Hejnol","doi":"10.1186/s13227-019-0146-1","DOIUrl":"10.1186/s13227-019-0146-1","url":null,"abstract":"<p><strong>Background: </strong>Phoronids, rhynchonelliform and linguliform brachiopods show striking similarities in their embryonic fate maps, in particular in their axis specification and regionalization. However, although brachiopod development has been studied in detail and demonstrated embryonic patterning as a causal factor of the gastrulation mode (protostomy vs deuterostomy), molecular descriptions are still missing in phoronids. To understand whether phoronids display underlying embryonic molecular mechanisms similar to those of brachiopods, here we report the expression patterns of anterior (<i>otx</i>, <i>gsc</i>, <i>six3/6</i>, <i>nk2.1</i>), posterior (<i>cdx, bra</i>) and endomesodermal (<i>foxA</i>, <i>gata4/5/6</i>, <i>twist</i>) markers during the development of the protostomic phoronid <i>Phoronopsis harmeri.</i></p><p><strong>Results: </strong>The transcription factors <i>foxA, gata4/5/6</i> and <i>cdx</i> show conserved expression in patterning the development and regionalization of the phoronid embryonic gut, with <i>foxA</i> expressed in the presumptive foregut, <i>gata4/5/6</i> demarcating the midgut and <i>cdx</i> confined to the hindgut. Furthermore, <i>six3/6,</i> usually a well-conserved anterior marker, shows a remarkably dynamic expression, demarcating not only the apical organ and the oral ectoderm, but also clusters of cells of the developing midgut and the anterior mesoderm, similar to what has been reported for brachiopods, bryozoans and some deuterostome Bilateria. Surprisingly, <i>brachyury</i>, a transcription factor often associated with gastrulation movements and mouth and hindgut development, seems not to be involved with these patterning events in phoronids.</p><p><strong>Conclusions: </strong>Our description and comparison of gene expression patterns with other studied Bilateria reveals that the timing of axis determination and cell fate distribution of the phoronid shows highest similarity to that of rhynchonelliform brachiopods, which is likely related to their shared protostomic mode of development. Despite these similarities, the phoronid <i>Ph. harmeri</i> also shows particularities in its development, which hint to divergences in the arrangement of gene regulatory networks responsible for germ layer formation and axis specification.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"10 ","pages":"33"},"PeriodicalIF":4.1,"publicationDate":"2019-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13227-019-0146-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37483388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-25DOI: 10.1186/s13227-019-0145-2
Kelsey M. Kjosness, P. Reno
{"title":"Identifying the homology of the short human pisiform and its lost ossification center","authors":"Kelsey M. Kjosness, P. Reno","doi":"10.1186/s13227-019-0145-2","DOIUrl":"https://doi.org/10.1186/s13227-019-0145-2","url":null,"abstract":"","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13227-019-0145-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43316550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-25DOI: 10.1186/s13227-019-0144-3
Juan Jiménez-Merino, Isadora Santos de Abreu, L. Hiebert, S. Allodi, S. Tiozzo, C. M. de Barros, Federico D. Brown
{"title":"Putative stem cells in the hemolymph and in the intestinal submucosa of the solitary ascidian Styela plicata","authors":"Juan Jiménez-Merino, Isadora Santos de Abreu, L. Hiebert, S. Allodi, S. Tiozzo, C. M. de Barros, Federico D. Brown","doi":"10.1186/s13227-019-0144-3","DOIUrl":"https://doi.org/10.1186/s13227-019-0144-3","url":null,"abstract":"","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13227-019-0144-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45486332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-18eCollection Date: 2019-01-01DOI: 10.1186/s13227-019-0143-4
Thomas C Boothby
When animals are exposed to an extreme environmental stress, one of three possible outcomes takes place: the animal dies, the animal avoids the environmental stress and survives, or the animal tolerates the environmental stress and survives. This review is concerned with the third possibility, and will look at mechanisms that rare animals use to survive extreme environmental stresses including freezing, desiccation, intense heat, irradiation, and low-oxygen conditions (hypoxia). In addition, an increasing understanding of the molecular mechanisms involved in environmental stress tolerance allows us to speculate on how these tolerances arose. Uncovering the mechanisms of extreme environmental stress tolerance and how they evolve has broad implications for our understanding of the evolution of early life on this planet, colonization of new environments, and the search for novel forms of life both on Earth and elsewhere, as well as a number of agricultural and health-related applications.
{"title":"Mechanisms and evolution of resistance to environmental extremes in animals.","authors":"Thomas C Boothby","doi":"10.1186/s13227-019-0143-4","DOIUrl":"https://doi.org/10.1186/s13227-019-0143-4","url":null,"abstract":"<p><p>When animals are exposed to an extreme environmental stress, one of three possible outcomes takes place: the animal dies, the animal avoids the environmental stress and survives, or the animal tolerates the environmental stress and survives. This review is concerned with the third possibility, and will look at mechanisms that rare animals use to survive extreme environmental stresses including freezing, desiccation, intense heat, irradiation, and low-oxygen conditions (hypoxia). In addition, an increasing understanding of the molecular mechanisms involved in environmental stress tolerance allows us to speculate on how these tolerances arose. Uncovering the mechanisms of extreme environmental stress tolerance and how they evolve has broad implications for our understanding of the evolution of early life on this planet, colonization of new environments, and the search for novel forms of life both on Earth and elsewhere, as well as a number of agricultural and health-related applications.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"10 ","pages":"30"},"PeriodicalIF":4.1,"publicationDate":"2019-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13227-019-0143-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37449653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-08DOI: 10.1186/s13227-019-0141-6
Miriam Heingård, Natascha Turetzek, Nikola-Michael Prpic, R. Janssen
{"title":"FoxB, a new and highly conserved key factor in arthropod dorsal–ventral (DV) limb patterning","authors":"Miriam Heingård, Natascha Turetzek, Nikola-Michael Prpic, R. Janssen","doi":"10.1186/s13227-019-0141-6","DOIUrl":"https://doi.org/10.1186/s13227-019-0141-6","url":null,"abstract":"","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13227-019-0141-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44893646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-02DOI: 10.1186/s13227-019-0136-3
Dylan Z. Faltine-Gonzalez, Michael J. Layden
{"title":"Characterization of nAChRs in Nematostella vectensis supports neuronal and non-neuronal roles in the cnidarian–bilaterian common ancestor","authors":"Dylan Z. Faltine-Gonzalez, Michael J. Layden","doi":"10.1186/s13227-019-0136-3","DOIUrl":"https://doi.org/10.1186/s13227-019-0136-3","url":null,"abstract":"","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2019-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13227-019-0136-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46015946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}