首页 > 最新文献

Evodevo最新文献

英文 中文
Mechanisms and evolution of resistance to environmental extremes in animals. 动物对极端环境的抵抗机制和进化。
IF 4.1 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2019-11-18 eCollection Date: 2019-01-01 DOI: 10.1186/s13227-019-0143-4
Thomas C Boothby

When animals are exposed to an extreme environmental stress, one of three possible outcomes takes place: the animal dies, the animal avoids the environmental stress and survives, or the animal tolerates the environmental stress and survives. This review is concerned with the third possibility, and will look at mechanisms that rare animals use to survive extreme environmental stresses including freezing, desiccation, intense heat, irradiation, and low-oxygen conditions (hypoxia). In addition, an increasing understanding of the molecular mechanisms involved in environmental stress tolerance allows us to speculate on how these tolerances arose. Uncovering the mechanisms of extreme environmental stress tolerance and how they evolve has broad implications for our understanding of the evolution of early life on this planet, colonization of new environments, and the search for novel forms of life both on Earth and elsewhere, as well as a number of agricultural and health-related applications.

当动物暴露在极端的环境压力下时,有三种可能的结果:动物死亡,动物避免环境压力而生存,或者动物耐受环境压力而生存。这篇综述关注第三种可能性,并将研究稀有动物在极端环境胁迫下生存的机制,包括冷冻、干燥、高温、辐射和低氧条件(缺氧)。此外,对环境胁迫耐受性的分子机制的日益了解使我们能够推测这些耐受性是如何产生的。揭示极端环境压力耐受性的机制及其进化方式对我们理解地球上早期生命的进化、新环境的殖民化、在地球和其他地方寻找新的生命形式以及一些农业和健康相关的应用具有广泛的意义。
{"title":"Mechanisms and evolution of resistance to environmental extremes in animals.","authors":"Thomas C Boothby","doi":"10.1186/s13227-019-0143-4","DOIUrl":"https://doi.org/10.1186/s13227-019-0143-4","url":null,"abstract":"<p><p>When animals are exposed to an extreme environmental stress, one of three possible outcomes takes place: the animal dies, the animal avoids the environmental stress and survives, or the animal tolerates the environmental stress and survives. This review is concerned with the third possibility, and will look at mechanisms that rare animals use to survive extreme environmental stresses including freezing, desiccation, intense heat, irradiation, and low-oxygen conditions (hypoxia). In addition, an increasing understanding of the molecular mechanisms involved in environmental stress tolerance allows us to speculate on how these tolerances arose. Uncovering the mechanisms of extreme environmental stress tolerance and how they evolve has broad implications for our understanding of the evolution of early life on this planet, colonization of new environments, and the search for novel forms of life both on Earth and elsewhere, as well as a number of agricultural and health-related applications.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2019-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13227-019-0143-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37449653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
FoxB, a new and highly conserved key factor in arthropod dorsal–ventral (DV) limb patterning FoxB:节肢动物背-腹侧(DV)肢体模式中一个新的高度保守的关键因子
IF 4.1 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2019-11-08 DOI: 10.1186/s13227-019-0141-6
Miriam Heingård, Natascha Turetzek, Nikola-Michael Prpic, R. Janssen
{"title":"FoxB, a new and highly conserved key factor in arthropod dorsal–ventral (DV) limb patterning","authors":"Miriam Heingård, Natascha Turetzek, Nikola-Michael Prpic, R. Janssen","doi":"10.1186/s13227-019-0141-6","DOIUrl":"https://doi.org/10.1186/s13227-019-0141-6","url":null,"abstract":"","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13227-019-0141-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44893646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Characterization of nAChRs in Nematostella vectensis supports neuronal and non-neuronal roles in the cnidarian–bilaterian common ancestor 向量线虫中nAChRs的特征支持在卷须虫-双边共同祖先中的神经元和非神经元作用
IF 4.1 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2019-11-02 DOI: 10.1186/s13227-019-0136-3
Dylan Z. Faltine-Gonzalez, Michael J. Layden
{"title":"Characterization of nAChRs in Nematostella vectensis supports neuronal and non-neuronal roles in the cnidarian–bilaterian common ancestor","authors":"Dylan Z. Faltine-Gonzalez, Michael J. Layden","doi":"10.1186/s13227-019-0136-3","DOIUrl":"https://doi.org/10.1186/s13227-019-0136-3","url":null,"abstract":"","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2019-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13227-019-0136-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46015946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Remnants of ancestral larval eyes in an eyeless mollusk? Molecular characterization of photoreceptors in the scaphopod Antalis entalis 无眼软体动物祖先幼虫眼睛的残留物?舟足Antalis entalis光感受器的分子特征
IF 4.1 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2019-10-19 DOI: 10.1186/s13227-019-0140-7
T. Wollesen, C. McDougall, D. Arendt
{"title":"Remnants of ancestral larval eyes in an eyeless mollusk? Molecular characterization of photoreceptors in the scaphopod Antalis entalis","authors":"T. Wollesen, C. McDougall, D. Arendt","doi":"10.1186/s13227-019-0140-7","DOIUrl":"https://doi.org/10.1186/s13227-019-0140-7","url":null,"abstract":"","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2019-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13227-019-0140-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45809502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Variable levels of drift in tunicate cardiopharyngeal gene regulatory elements. 被膜心咽基因调控元件漂移水平的变化。
IF 4.1 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2019-10-11 eCollection Date: 2019-01-01 DOI: 10.1186/s13227-019-0137-2
William Colgan, Alexis Leanza, Ariel Hwang, Melissa B DeBiasse, Isabel Llosa, Daniel Rodrigues, Hriju Adhikari, Guillermo Barreto Corona, Saskia Bock, Amanda Carillo-Perez, Meagan Currie, Simone Darkoa-Larbi, Daniel Dellal, Hanna Gutow, Pascha Hokama, Emily Kibby, Noah Linhart, Sophia Moody, Allison Naganuma, Diep Nguyen, Ryan Stanton, Sierra Stark, Cameron Tumey, Anthony Velleca, Joseph F Ryan, Brad Davidson

Background: Mutations in gene regulatory networks often lead to genetic divergence without impacting gene expression or developmental patterning. The rules governing this process of developmental systems drift, including the variable impact of selective constraints on different nodes in a gene regulatory network, remain poorly delineated.

Results: Here we examine developmental systems drift within the cardiopharyngeal gene regulatory networks of two tunicate species, Corella inflata and Ciona robusta. Cross-species analysis of regulatory elements suggests that trans-regulatory architecture is largely conserved between these highly divergent species. In contrast, cis-regulatory elements within this network exhibit distinct levels of conservation. In particular, while most of the regulatory elements we analyzed showed extensive rearrangements of functional binding sites, the enhancer for the cardiopharyngeal transcription factor FoxF is remarkably well-conserved. Even minor alterations in spacing between binding sites lead to loss of FoxF enhancer function, suggesting that bound trans-factors form position-dependent complexes.

Conclusions: Our findings reveal heterogeneous levels of divergence across cardiopharyngeal cis-regulatory elements. These distinct levels of divergence presumably reflect constraints that are not clearly associated with gene function or position within the regulatory network. Thus, levels of cis-regulatory divergence or drift appear to be governed by distinct structural constraints that will be difficult to predict based on network architecture.

背景:基因调控网络的突变通常会导致遗传分化,而不会影响基因表达或发育模式。控制发育系统漂移过程的规则,包括选择性约束对基因调控网络中不同节点的可变影响,仍然没有得到很好的描述。结果:在这里,我们研究了两种被膜物种,充气珊瑚和粗壮珊瑚的心咽基因调控网络中的发育系统漂移。对调节元件的跨物种分析表明,在这些高度分化的物种之间,跨调节结构在很大程度上是保守的。相反,该网络中的顺式调控元件表现出不同程度的保守性。特别是,尽管我们分析的大多数调控元件显示出功能结合位点的广泛重排,但心咽转录因子FoxF的增强子是非常保守的。即使结合位点之间的间隔发生微小变化,也会导致FoxF增强子功能的丧失,这表明结合的反式因子形成位置依赖性复合物。结论:我们的研究结果揭示了心咽顺式调节元件的异质性分化水平。这些不同程度的差异可能反映了与基因功能或在调控网络中的位置没有明确关联的限制。因此,顺式调节偏离或漂移的水平似乎受到不同的结构约束的控制,这些约束很难基于网络架构进行预测。
{"title":"Variable levels of drift in tunicate cardiopharyngeal gene regulatory elements.","authors":"William Colgan,&nbsp;Alexis Leanza,&nbsp;Ariel Hwang,&nbsp;Melissa B DeBiasse,&nbsp;Isabel Llosa,&nbsp;Daniel Rodrigues,&nbsp;Hriju Adhikari,&nbsp;Guillermo Barreto Corona,&nbsp;Saskia Bock,&nbsp;Amanda Carillo-Perez,&nbsp;Meagan Currie,&nbsp;Simone Darkoa-Larbi,&nbsp;Daniel Dellal,&nbsp;Hanna Gutow,&nbsp;Pascha Hokama,&nbsp;Emily Kibby,&nbsp;Noah Linhart,&nbsp;Sophia Moody,&nbsp;Allison Naganuma,&nbsp;Diep Nguyen,&nbsp;Ryan Stanton,&nbsp;Sierra Stark,&nbsp;Cameron Tumey,&nbsp;Anthony Velleca,&nbsp;Joseph F Ryan,&nbsp;Brad Davidson","doi":"10.1186/s13227-019-0137-2","DOIUrl":"https://doi.org/10.1186/s13227-019-0137-2","url":null,"abstract":"<p><strong>Background: </strong>Mutations in gene regulatory networks often lead to genetic divergence without impacting gene expression or developmental patterning. The rules governing this process of developmental systems drift, including the variable impact of selective constraints on different nodes in a gene regulatory network, remain poorly delineated.</p><p><strong>Results: </strong>Here we examine developmental systems drift within the cardiopharyngeal gene regulatory networks of two tunicate species, <i>Corella inflata</i> and <i>Ciona robusta.</i> Cross-species analysis of regulatory elements suggests that <i>trans</i>-regulatory architecture is largely conserved between these highly divergent species. In contrast, <i>cis</i>-regulatory elements within this network exhibit distinct levels of conservation. In particular, while most of the regulatory elements we analyzed showed extensive rearrangements of functional binding sites, the enhancer for the cardiopharyngeal transcription factor <i>FoxF</i> is remarkably well-conserved. Even minor alterations in spacing between binding sites lead to loss of <i>FoxF</i> enhancer function, suggesting that bound <i>trans</i>-factors form position-dependent complexes.</p><p><strong>Conclusions: </strong>Our findings reveal heterogeneous levels of divergence across cardiopharyngeal <i>cis</i>-regulatory elements. These distinct levels of divergence presumably reflect constraints that are not clearly associated with gene function or position within the regulatory network. Thus, levels of <i>cis</i>-regulatory divergence or drift appear to be governed by distinct structural constraints that will be difficult to predict based on network architecture.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2019-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13227-019-0137-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41217427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Peripheral sensory neurons govern development of the nervous system in bivalve larvae. 外周感觉神经元支配双壳类幼虫神经系统的发育。
IF 4.1 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY Pub Date : 2019-09-12 eCollection Date: 2019-01-01 DOI: 10.1186/s13227-019-0133-6
Olga V Yurchenko, Anna V Savelieva, Natalia K Kolotuchina, Elena E Voronezhskaya, Vyacheslav A Dyachuk

Recent findings regarding early lophotrochozoan development have altered the conventional model of neurogenesis and revealed that peripheral sensory elements play a key role in the initial organization of the larval nervous system. Here, we describe the main neurogenetic events in bivalve mollusks in comparison with other Lophotrochozoa, emphasizing a novel role for early neurons in establishing larval nervous systems and speculating about the morphogenetic function of the apical organ. We demonstrate that during bivalve development, peripheral sensory neurons utilizing various transmitters differentiate before the apical organ emerges. The first neurons and their neurites serve as a scaffold for the development of the nervous system. During veliger stage, cerebral, pleural, and visceral ganglia form along the lateral (visceral) nerve cords in anterior-to-posterior axis. The pedal ganglia and corresponding ventral (pedal) nerve cords develop much later, after larval settlement and metamorphosis. Pharmacological abolishment of the serotonin gradient within the larval body disrupts the navigation of "pioneer" axons resulting in malformation of the whole nervous system architecture. Comparative morphological data on neurogenetic events in bivalve mollusks shed new light on the origin of the nervous system, mechanisms of early axon navigation, and sequence of the tetraneurous nervous system formation. Furthermore, this information improves our understanding of the basic nervous system architecture in larval Bivalvia and Mollusca.

最近关于洛波特罗虫早期发育的发现改变了传统的神经发生模型,并揭示了外周感觉元件在幼虫神经系统的初始组织中起着关键作用。在这里,我们描述了与其他Lophotrochozoa相比,双壳软体动物的主要神经发生事件,强调了早期神经元在建立幼虫神经系统中的新作用,并推测了顶端器官的形态发生功能。我们证明,在双壳类的发育过程中,利用各种递质的外周感觉神经元在顶端器官出现之前就会分化。第一个神经元及其轴突是神经系统发育的支架。在veliger期,大脑、胸膜和内脏神经节沿着前后轴的外侧(内脏)神经索形成。足神经节和相应的腹侧(足)神经索的发育要晚得多,在幼虫定居和变态之后。幼虫体内血清素梯度的药理学废除破坏了“先驱”轴突的导航,导致整个神经系统结构畸形。双壳类软体动物神经发生事件的比较形态学数据为神经系统的起源、早期轴突导航机制和四神经系统形成的序列提供了新的线索。此外,这些信息提高了我们对双壳纲和软体动物幼虫基本神经系统结构的理解。
{"title":"Peripheral sensory neurons govern development of the nervous system in bivalve larvae.","authors":"Olga V Yurchenko, Anna V Savelieva, Natalia K Kolotuchina, Elena E Voronezhskaya, Vyacheslav A Dyachuk","doi":"10.1186/s13227-019-0133-6","DOIUrl":"10.1186/s13227-019-0133-6","url":null,"abstract":"<p><p>Recent findings regarding early lophotrochozoan development have altered the conventional model of neurogenesis and revealed that peripheral sensory elements play a key role in the initial organization of the larval nervous system. Here, we describe the main neurogenetic events in bivalve mollusks in comparison with other Lophotrochozoa, emphasizing a novel role for early neurons in establishing larval nervous systems and speculating about the morphogenetic function of the apical organ. We demonstrate that during bivalve development, peripheral sensory neurons utilizing various transmitters differentiate before the apical organ emerges. The first neurons and their neurites serve as a scaffold for the development of the nervous system. During veliger stage, cerebral, pleural, and visceral ganglia form along the lateral (visceral) nerve cords in anterior-to-posterior axis. The pedal ganglia and corresponding ventral (pedal) nerve cords develop much later, after larval settlement and metamorphosis. Pharmacological abolishment of the serotonin gradient within the larval body disrupts the navigation of \"pioneer\" axons resulting in malformation of the whole nervous system architecture. Comparative morphological data on neurogenetic events in bivalve mollusks shed new light on the origin of the nervous system, mechanisms of early axon navigation, and sequence of the tetraneurous nervous system formation. Furthermore, this information improves our understanding of the basic nervous system architecture in larval Bivalvia and Mollusca.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2019-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6743156/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41217426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cnidofest 2018: the future is bright for cnidarian research. 2018年国际互联网大会:互联网研究的未来是光明的。
IF 4.1 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2019-09-04 eCollection Date: 2019-01-01 DOI: 10.1186/s13227-019-0134-5
Shuonan He, Juris A Grasis, Matthew L Nicotra, Celina E Juliano, Christine E Schnitzler

The 2018 Cnidarian Model Systems Meeting (Cnidofest) was held September 6-9th at the University of Florida Whitney Laboratory for Marine Bioscience in St. Augustine, FL. Cnidofest 2018, which built upon the momentum of Hydroidfest 2016, brought together research communities working on a broad spectrum of cnidarian organisms from North America and around the world. Meeting talks covered diverse aspects of cnidarian biology, with sessions focused on genomics, development, neurobiology, immunology, symbiosis, ecology, and evolution. In addition to interesting biology, Cnidofest also emphasized the advancement of modern research techniques. Invited technology speakers showcased the power of microfluidics and single-cell transcriptomics and demonstrated their application in cnidarian models. In this report, we provide an overview of the exciting research that was presented at the meeting and discuss opportunities for future research.

2018年海洋生物模型系统会议(Cnidofest)于9月6日至9日在佛罗里达州圣奥古斯丁的佛罗里达大学惠特尼海洋生物科学实验室举行。2018年海洋动物模型系统会议在2016年Hydroidfest的基础上,汇集了北美和世界各地研究广泛海洋生物的研究团体。会议讨论了神经学家生物学的各个方面,会议重点讨论了基因组学、发展、神经生物学、免疫学、共生、生态学和进化。除了有趣的生物学,Cnidofest还强调了现代研究技术的进步。受邀的技术演讲者展示了微流体和单细胞转录组学的力量,并展示了它们在细胞模型中的应用。在这份报告中,我们概述了会议上提出的令人兴奋的研究,并讨论了未来研究的机会。
{"title":"Cnidofest 2018: the future is bright for cnidarian research.","authors":"Shuonan He,&nbsp;Juris A Grasis,&nbsp;Matthew L Nicotra,&nbsp;Celina E Juliano,&nbsp;Christine E Schnitzler","doi":"10.1186/s13227-019-0134-5","DOIUrl":"https://doi.org/10.1186/s13227-019-0134-5","url":null,"abstract":"<p><p>The 2018 Cnidarian Model Systems Meeting (Cnidofest) was held September 6-9th at the University of Florida Whitney Laboratory for Marine Bioscience in St. Augustine, FL. Cnidofest 2018, which built upon the momentum of Hydroidfest 2016, brought together research communities working on a broad spectrum of cnidarian organisms from North America and around the world. Meeting talks covered diverse aspects of cnidarian biology, with sessions focused on genomics, development, neurobiology, immunology, symbiosis, ecology, and evolution. In addition to interesting biology, Cnidofest also emphasized the advancement of modern research techniques. Invited technology speakers showcased the power of microfluidics and single-cell transcriptomics and demonstrated their application in cnidarian models. In this report, we provide an overview of the exciting research that was presented at the meeting and discuss opportunities for future research.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2019-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13227-019-0134-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41217425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Conserved gene signalling and a derived patterning mechanism underlie the development of avian footpad scales. 保守的基因信号传导和衍生的模式机制是鸟类脚垫鳞片发育的基础
IF 4.1 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY Pub Date : 2019-08-13 eCollection Date: 2019-01-01 DOI: 10.1186/s13227-019-0130-9
Rory L Cooper, Victoria J Lloyd, Nicolas Di-Poï, Alexander G Fletcher, Paul M Barrett, Gareth J Fraser

Background: Vertebrates possess a diverse range of integumentary epithelial appendages, including scales, feathers and hair. These structures share extensive early developmental homology, as they mostly originate from a conserved anatomical placode. In the context of avian epithelial appendages, feathers and scutate scales are known to develop from an anatomical placode. However, our understanding of avian reticulate (footpad) scale development remains unclear.

Results: Here, we demonstrate that reticulate scales develop from restricted circular domains of thickened epithelium, with localised conserved gene expression in both the epithelium and underlying mesenchyme. These domains constitute either anatomical placodes, or circular initiatory fields (comparable to the avian feather tract). Subsequent patterning of reticulate scales is consistent with reaction-diffusion (RD) simulation, whereby this primary domain subdivides into smaller secondary units, which produce individual scales. In contrast, the footpad scales of a squamate model (the bearded dragon, Pogona vitticeps) develop synchronously across the ventral footpad surface.

Conclusions: Widely conserved gene signalling underlies the initial development of avian reticulate scales. However, their subsequent patterning is distinct from the footpad scale patterning of a squamate model, and the feather and scutate scale patterning of birds. Therefore, we suggest reticulate scales are a comparatively derived epithelial appendage, patterned through a modified RD system.

背景:脊椎动物拥有多种多样的集成上皮附属物,包括鳞片、羽毛和毛发。这些结构具有广泛的早期发育同源性,因为它们大多起源于一个保守的解剖胎座。就鸟类上皮附属物而言,已知羽毛和鳞片是从解剖胎座发育而来的。然而,我们对鸟类网状(脚垫)鳞片发育的了解仍不清楚:结果:在这里,我们证明网状鳞片是由增厚的上皮形成的局限性环形区域发育而成的,上皮和下层间质中都有局部保守的基因表达。这些区域要么是解剖学上的胎座,要么是环形的启动区(类似于鸟类的羽毛束)。网状鳞片的后续形态与反应-扩散(RD)模拟一致,即初级域细分为更小的次级单元,从而产生单个鳞片。与此相反,有鳞类动物模型(胡须龙)的脚垫鳞片在整个脚垫腹面同步发育:结论:广泛保守的基因信号是鸟类网状鳞片最初发育的基础。结论:广泛保守的基因信号传递是鸟类网状鳞片最初发育的基础,然而,它们随后的花纹与有鳞类模型的脚垫鳞片花纹以及鸟类的羽毛和鳞片花纹截然不同。因此,我们认为网状鳞片是一种相对衍生的上皮附属物,是通过改进的 RD 系统形成的。
{"title":"Conserved gene signalling and a derived patterning mechanism underlie the development of avian footpad scales.","authors":"Rory L Cooper, Victoria J Lloyd, Nicolas Di-Poï, Alexander G Fletcher, Paul M Barrett, Gareth J Fraser","doi":"10.1186/s13227-019-0130-9","DOIUrl":"10.1186/s13227-019-0130-9","url":null,"abstract":"<p><strong>Background: </strong>Vertebrates possess a diverse range of integumentary epithelial appendages, including scales, feathers and hair. These structures share extensive early developmental homology, as they mostly originate from a conserved anatomical placode. In the context of avian epithelial appendages, feathers and scutate scales are known to develop from an anatomical placode. However, our understanding of avian reticulate (footpad) scale development remains unclear.</p><p><strong>Results: </strong>Here, we demonstrate that reticulate scales develop from restricted circular domains of thickened epithelium, with localised conserved gene expression in both the epithelium and underlying mesenchyme. These domains constitute either anatomical placodes, or circular initiatory fields (comparable to the avian feather tract). Subsequent patterning of reticulate scales is consistent with reaction-diffusion (RD) simulation, whereby this primary domain subdivides into smaller secondary units, which produce individual scales. In contrast, the footpad scales of a squamate model (the bearded dragon, <i>Pogona vitticeps</i>) develop synchronously across the ventral footpad surface.</p><p><strong>Conclusions: </strong>Widely conserved gene signalling underlies the initial development of avian reticulate scales. However, their subsequent patterning is distinct from the footpad scale patterning of a squamate model, and the feather and scutate scale patterning of birds. Therefore, we suggest reticulate scales are a comparatively derived epithelial appendage, patterned through a modified RD system.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2019-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693258/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43463406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw 羊膜颌骨形态和功能进化的分子和细胞机制
IF 4.1 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2019-08-12 DOI: 10.1186/s13227-019-0131-8
Katherine C. Woronowicz, R. Schneider
{"title":"Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw","authors":"Katherine C. Woronowicz, R. Schneider","doi":"10.1186/s13227-019-0131-8","DOIUrl":"https://doi.org/10.1186/s13227-019-0131-8","url":null,"abstract":"","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2019-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13227-019-0131-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45646291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Bar, stripe and spot development in sand-dwelling cichlids from Lake Malawi 马拉维湖沙栖慈鲷的条形、条纹和斑点发育
IF 4.1 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2019-08-12 DOI: 10.1186/s13227-019-0132-7
Laura A. Hendrick, Grace A. Carter, Erin H. Hilbrands, Brian P. Heubel, T. Schilling, Pierre Le Pabic
{"title":"Bar, stripe and spot development in sand-dwelling cichlids from Lake Malawi","authors":"Laura A. Hendrick, Grace A. Carter, Erin H. Hilbrands, Brian P. Heubel, T. Schilling, Pierre Le Pabic","doi":"10.1186/s13227-019-0132-7","DOIUrl":"https://doi.org/10.1186/s13227-019-0132-7","url":null,"abstract":"","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2019-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13227-019-0132-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49292030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 27
期刊
Evodevo
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1