Pub Date : 2024-06-04DOI: 10.1186/s13578-024-01257-x
Zhaoyi Peng, Lingyu Bao, James Iben, Shouhong Wang, Bingyin Shi, Yun-Bo Shi
Background: The adult intestinal epithelium is a complex, self-renewing tissue composed of specialized cell types with diverse functions. Intestinal stem cells (ISCs) located at the bottom of crypts, where they divide to either self-renew, or move to the transit amplifying zone to divide and differentiate into absorptive and secretory cells as they move along the crypt-villus axis. Enteroendocrine cells (EECs), one type of secretory cells, are the most abundant hormone-producing cells in mammals and involved in the control of energy homeostasis. However, regulation of EEC development and homeostasis is still unclear or controversial. We have previously shown that protein arginine methyltransferase (PRMT) 1, a histone methyltransferase and transcription co-activator, is important for adult intestinal epithelial homeostasis.
Results: To investigate how PRMT1 affects adult intestinal epithelial homeostasis, we performed RNA-Seq on small intestinal crypts of tamoxifen-induced intestinal epithelium-specific PRMT1 knockout and PRMT1fl/fl adult mice. We found that PRMT1fl/fl and PRMT1-deficient small intestinal crypts exhibited markedly different mRNA profiles. Surprisingly, GO terms and KEGG pathway analyses showed that the topmost significantly enriched pathways among the genes upregulated in PRMT1 knockout crypts were associated with EECs. In particular, genes encoding enteroendocrine-specific hormones and transcription factors were upregulated in PRMT1-deficient small intestine. Moreover, a marked increase in the number of EECs was found in the PRMT1 knockout small intestine. Concomitantly, Neurogenin 3-positive enteroendocrine progenitor cells was also increased in the small intestinal crypts of the knockout mice, accompanied by the upregulation of the expression levels of downstream targets of Neurogenin 3, including Neuod1, Pax4, Insm1, in PRMT1-deficient crypts.
Conclusions: Our finding for the first time revealed that the epigenetic enzyme PRMT1 controls mouse enteroendocrine cell development, most likely via inhibition of Neurogenin 3-mediated commitment to EEC lineage. It further suggests a potential role of PRMT1 as a critical transcriptional cofactor in EECs specification and homeostasis to affect metabolism and metabolic diseases.
{"title":"Protein arginine methyltransferase 1 regulates mouse enteroendocrine cell development and homeostasis.","authors":"Zhaoyi Peng, Lingyu Bao, James Iben, Shouhong Wang, Bingyin Shi, Yun-Bo Shi","doi":"10.1186/s13578-024-01257-x","DOIUrl":"10.1186/s13578-024-01257-x","url":null,"abstract":"<p><strong>Background: </strong>The adult intestinal epithelium is a complex, self-renewing tissue composed of specialized cell types with diverse functions. Intestinal stem cells (ISCs) located at the bottom of crypts, where they divide to either self-renew, or move to the transit amplifying zone to divide and differentiate into absorptive and secretory cells as they move along the crypt-villus axis. Enteroendocrine cells (EECs), one type of secretory cells, are the most abundant hormone-producing cells in mammals and involved in the control of energy homeostasis. However, regulation of EEC development and homeostasis is still unclear or controversial. We have previously shown that protein arginine methyltransferase (PRMT) 1, a histone methyltransferase and transcription co-activator, is important for adult intestinal epithelial homeostasis.</p><p><strong>Results: </strong>To investigate how PRMT1 affects adult intestinal epithelial homeostasis, we performed RNA-Seq on small intestinal crypts of tamoxifen-induced intestinal epithelium-specific PRMT1 knockout and PRMT1<sup>fl/fl</sup> adult mice. We found that PRMT1<sup>fl/fl</sup> and PRMT1-deficient small intestinal crypts exhibited markedly different mRNA profiles. Surprisingly, GO terms and KEGG pathway analyses showed that the topmost significantly enriched pathways among the genes upregulated in PRMT1 knockout crypts were associated with EECs. In particular, genes encoding enteroendocrine-specific hormones and transcription factors were upregulated in PRMT1-deficient small intestine. Moreover, a marked increase in the number of EECs was found in the PRMT1 knockout small intestine. Concomitantly, Neurogenin 3-positive enteroendocrine progenitor cells was also increased in the small intestinal crypts of the knockout mice, accompanied by the upregulation of the expression levels of downstream targets of Neurogenin 3, including Neuod1, Pax4, Insm1, in PRMT1-deficient crypts.</p><p><strong>Conclusions: </strong>Our finding for the first time revealed that the epigenetic enzyme PRMT1 controls mouse enteroendocrine cell development, most likely via inhibition of Neurogenin 3-mediated commitment to EEC lineage. It further suggests a potential role of PRMT1 as a critical transcriptional cofactor in EECs specification and homeostasis to affect metabolism and metabolic diseases.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"14 1","pages":"70"},"PeriodicalIF":7.5,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11151601/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141248858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1186/s13578-024-01248-y
Elena Piccinin, Maria Arconzo, Emanuela Pasculli, Angela Fulvia Tricase, Silvia Cultrera, Justine Bertrand-Michel, Nicolas Loiseau, Gaetano Villani, Hervé Guillou, Antonio Moschetta
Hepatocellular carcinoma (HCC) incidence is continuously increasing worldwide, due to the rise of metabolic dysfunction-associated steatohepatitis (MASH) cases. Cholesterol is an essential driver of the metabolic dysregulations that promote HCC progression. Liver X Receptor (LXR) is a nuclear receptor best known for the regulation of lipid and cholesterol homeostasis, with a prominent function in the liver and in the intestine. Here, we aimed to explore whether modifications in intestinal lipid metabolism may contribute to the onset of HCC, particularly taking into account cholesterol metabolism and LXRs. To study the progression of MASH to HCC, we induced metabolic HCC in wild-type male mice and mice carrying an intestinal chronic activation of LXRα. Also, we analysed human hepatic transcriptome datasets. The increased consumption of fat and carbohydrates drives the intestinal activation of LXRα and accelerates the onset of the hepatic tumours. Chronic intestinal-specific activation of LXRα enhances HCC progression only in the presence of a high cholesterol intake. In HCC, despite the increased hepatic cholesterol content, LXR is not active, thus driving liver cancer development. Intriguingly, in line with these results in the mouse model, LXR transcriptome is also downregulated in human hepatocarcinoma and its expression level in liver tumours directly correlates with a decreased survival rate in patients. Overall, our findings establish the relevance of the intestine in influencing the susceptibility to MASH-HCC and point to intestinal LXRα activation as a driver of metabolic liver cancer in the presence of dietary cholesterol.
{"title":"Pivotal role of intestinal cholesterol and nuclear receptor LXR in metabolic liver steatohepatitis and hepatocarcinoma.","authors":"Elena Piccinin, Maria Arconzo, Emanuela Pasculli, Angela Fulvia Tricase, Silvia Cultrera, Justine Bertrand-Michel, Nicolas Loiseau, Gaetano Villani, Hervé Guillou, Antonio Moschetta","doi":"10.1186/s13578-024-01248-y","DOIUrl":"10.1186/s13578-024-01248-y","url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) incidence is continuously increasing worldwide, due to the rise of metabolic dysfunction-associated steatohepatitis (MASH) cases. Cholesterol is an essential driver of the metabolic dysregulations that promote HCC progression. Liver X Receptor (LXR) is a nuclear receptor best known for the regulation of lipid and cholesterol homeostasis, with a prominent function in the liver and in the intestine. Here, we aimed to explore whether modifications in intestinal lipid metabolism may contribute to the onset of HCC, particularly taking into account cholesterol metabolism and LXRs. To study the progression of MASH to HCC, we induced metabolic HCC in wild-type male mice and mice carrying an intestinal chronic activation of LXRα. Also, we analysed human hepatic transcriptome datasets. The increased consumption of fat and carbohydrates drives the intestinal activation of LXRα and accelerates the onset of the hepatic tumours. Chronic intestinal-specific activation of LXRα enhances HCC progression only in the presence of a high cholesterol intake. In HCC, despite the increased hepatic cholesterol content, LXR is not active, thus driving liver cancer development. Intriguingly, in line with these results in the mouse model, LXR transcriptome is also downregulated in human hepatocarcinoma and its expression level in liver tumours directly correlates with a decreased survival rate in patients. Overall, our findings establish the relevance of the intestine in influencing the susceptibility to MASH-HCC and point to intestinal LXRα activation as a driver of metabolic liver cancer in the presence of dietary cholesterol.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"14 1","pages":"69"},"PeriodicalIF":7.5,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11144344/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141186633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Mammalian or mechanistic target of rapamycin complex 1 (mTORC1) is an effective therapeutic target for diseases such as cancer, diabetes, aging, and neurodegeneration. However, an efficient tool for monitoring mTORC1 inhibition in living cells or tissues is lacking.
Results: We developed a genetically encoded mTORC1 sensor called TORSEL. This sensor changes its fluorescence pattern from diffuse to punctate when 4EBP1 dephosphorylation occurs and interacts with eIF4E. TORSEL can specifically sense the physiological, pharmacological, and genetic inhibition of mTORC1 signaling in living cells and tissues. Importantly, TORSEL is a valuable tool for imaging-based visual screening of mTORC1 inhibitors. Using TORSEL, we identified histone deacetylase inhibitors that selectively block nutrient-sensing signaling to inhibit mTORC1.
Conclusions: TORSEL is a unique living cell sensor that efficiently detects the inhibition of mTORC1 activity, and histone deacetylase inhibitors such as panobinostat target mTORC1 signaling through amino acid sensing.
{"title":"TORSEL, a 4EBP1-based mTORC1 live-cell sensor, reveals nutrient-sensing targeting by histone deacetylase inhibitors.","authors":"Canrong Li, Yuguo Yi, Yingyi Ouyang, Fengzhi Chen, Chuxin Lu, Shujun Peng, Yifan Wang, Xinyu Chen, Xiao Yan, Haolun Xu, Shuiming Li, Lin Feng, Xiaoduo Xie","doi":"10.1186/s13578-024-01250-4","DOIUrl":"10.1186/s13578-024-01250-4","url":null,"abstract":"<p><strong>Background: </strong>Mammalian or mechanistic target of rapamycin complex 1 (mTORC1) is an effective therapeutic target for diseases such as cancer, diabetes, aging, and neurodegeneration. However, an efficient tool for monitoring mTORC1 inhibition in living cells or tissues is lacking.</p><p><strong>Results: </strong>We developed a genetically encoded mTORC1 sensor called TORSEL. This sensor changes its fluorescence pattern from diffuse to punctate when 4EBP1 dephosphorylation occurs and interacts with eIF4E. TORSEL can specifically sense the physiological, pharmacological, and genetic inhibition of mTORC1 signaling in living cells and tissues. Importantly, TORSEL is a valuable tool for imaging-based visual screening of mTORC1 inhibitors. Using TORSEL, we identified histone deacetylase inhibitors that selectively block nutrient-sensing signaling to inhibit mTORC1.</p><p><strong>Conclusions: </strong>TORSEL is a unique living cell sensor that efficiently detects the inhibition of mTORC1 activity, and histone deacetylase inhibitors such as panobinostat target mTORC1 signaling through amino acid sensing.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"14 1","pages":"68"},"PeriodicalIF":7.5,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143692/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141186642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Observational studies have reported that gut microbiota composition is associated with metabolic syndrome. However, the causal effect of gut microbiota on metabolic syndrome has yet to be confirmed.
Methods: We performed a bidirectional Mendelian randomization study to investigate the causal effect between gut microbiota and metabolic syndrome in European population. Summary statistics of gut microbiota were from the largest available genome-wide association study meta-analysis (n = 13,266) conducted by the MiBioGen consortium. The summary statistics of outcome were obtained from the most comprehensive genome-wide association studies of metabolic syndrome (n = 291,107). The inverse-variance weighted method was applied as the primary method, and the robustness of the results was assessed by a series of sensitivity analyses.
Results: In the primary causal estimates, Actinobacteria (OR = 0.935, 95% CI = 0.878-0.996, P = 0.037), Bifidobacteriales (OR = 0.928, 95% CI = 0.868-0.992, P = 0.028), Bifidobacteriaceae (OR = 0.928, 95% CI = 0.868-0.992, P = 0.028), Desulfovibrio (OR = 0.920, 95% CI = 0.869-0.975, P = 0.005), and RuminococcaceaeUCG010 (OR = 0.882, 95% CI = 0.803-0.969, P = 0.009) may be associated with a lower risk of metabolic syndrome, while Lachnospiraceae (OR = 1.130, 95% CI = 1.016-1.257, P = 0.025), Veillonellaceae (OR = 1.055, 95% CI = 1.004-1.108, P = 0.034) and Olsenella (OR = 1.046, 95% CI = 1.009-1.085, P = 0.015) may be linked to a higher risk for metabolic syndrome. Reverse MR analysis demonstrated that abundance of RuminococcaceaeUCG010 (OR = 0.938, 95% CI = 0.886-0.994, P = 0.030) may be downregulated by metabolic syndrome. Sensitivity analyses indicated no heterogeneity or horizontal pleiotropy.
Conclusions: Our Mendelian randomization study provided causal relationship between specific gut microbiota and metabolic syndrome, which might provide new insights into the potential pathogenic mechanisms of gut microbiota in metabolic syndrome and the assignment of effective therapeutic strategies.
背景:观察性研究报告称,肠道微生物群的组成与代谢综合征有关。然而,肠道微生物群对代谢综合征的因果效应尚未得到证实:我们进行了一项双向孟德尔随机研究,以调查欧洲人群中肠道微生物群与代谢综合征之间的因果关系。肠道微生物群的汇总统计数据来自 MiBioGen 联盟进行的现有最大的全基因组关联研究荟萃分析(n = 13266)。结果的汇总统计数据来自最全面的代谢综合征全基因组关联研究(n = 291 107)。主要方法是采用逆方差加权法,并通过一系列敏感性分析评估结果的稳健性:在主要因果关系估计中,放线菌(OR = 0.935,95% CI = 0.878-0.996,P = 0.037)、双歧杆菌(OR = 0.928,95% CI = 0.868-0.992,P = 0.028)、双歧杆菌科(OR = 0.928,95% CI = 0.868-0.992,P = 0.028)、脱硫弧菌科(OR = 0.920,95% CI = 0.869-0.975,P = 0.005)和反刍球菌科UCG010(OR = 0.882,95% CI = 0.803-0.969,P = 0.009)可能与较低的代谢综合征风险有关,而Lachnospiraceae(OR = 1.130,95% CI = 1.016-1.257,P = 0.025)、Veillonellaceae(OR = 1.055,95% CI = 1.004-1.108,P = 0.034)和Olsenella(OR = 1.046,95% CI = 1.009-1.085,P = 0.015)可能与代谢综合征的高风险有关。反向 MR 分析表明,代谢综合征可能会下调反刍动物UCG010 的丰度(OR = 0.938,95% CI = 0.886-0.994,P = 0.030)。敏感性分析表明没有异质性或水平多效性:我们的孟德尔随机化研究提供了特定肠道微生物群与代谢综合征之间的因果关系,这可能会对代谢综合征中肠道微生物群的潜在致病机制以及有效治疗策略的分配提供新的见解。
{"title":"Causal effect between gut microbiota and metabolic syndrome in European population: a bidirectional mendelian randomization study.","authors":"Jiawu Yan, Zhongyuan Wang, Guojian Bao, Cailin Xue, Wenxuan Zheng, Rao Fu, Minglu Zhang, Jialu Ding, Fei Yang, Beicheng Sun","doi":"10.1186/s13578-024-01232-6","DOIUrl":"10.1186/s13578-024-01232-6","url":null,"abstract":"<p><strong>Background: </strong>Observational studies have reported that gut microbiota composition is associated with metabolic syndrome. However, the causal effect of gut microbiota on metabolic syndrome has yet to be confirmed.</p><p><strong>Methods: </strong>We performed a bidirectional Mendelian randomization study to investigate the causal effect between gut microbiota and metabolic syndrome in European population. Summary statistics of gut microbiota were from the largest available genome-wide association study meta-analysis (n = 13,266) conducted by the MiBioGen consortium. The summary statistics of outcome were obtained from the most comprehensive genome-wide association studies of metabolic syndrome (n = 291,107). The inverse-variance weighted method was applied as the primary method, and the robustness of the results was assessed by a series of sensitivity analyses.</p><p><strong>Results: </strong>In the primary causal estimates, Actinobacteria (OR = 0.935, 95% CI = 0.878-0.996, P = 0.037), Bifidobacteriales (OR = 0.928, 95% CI = 0.868-0.992, P = 0.028), Bifidobacteriaceae (OR = 0.928, 95% CI = 0.868-0.992, P = 0.028), Desulfovibrio (OR = 0.920, 95% CI = 0.869-0.975, P = 0.005), and RuminococcaceaeUCG010 (OR = 0.882, 95% CI = 0.803-0.969, P = 0.009) may be associated with a lower risk of metabolic syndrome, while Lachnospiraceae (OR = 1.130, 95% CI = 1.016-1.257, P = 0.025), Veillonellaceae (OR = 1.055, 95% CI = 1.004-1.108, P = 0.034) and Olsenella (OR = 1.046, 95% CI = 1.009-1.085, P = 0.015) may be linked to a higher risk for metabolic syndrome. Reverse MR analysis demonstrated that abundance of RuminococcaceaeUCG010 (OR = 0.938, 95% CI = 0.886-0.994, P = 0.030) may be downregulated by metabolic syndrome. Sensitivity analyses indicated no heterogeneity or horizontal pleiotropy.</p><p><strong>Conclusions: </strong>Our Mendelian randomization study provided causal relationship between specific gut microbiota and metabolic syndrome, which might provide new insights into the potential pathogenic mechanisms of gut microbiota in metabolic syndrome and the assignment of effective therapeutic strategies.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"14 1","pages":"67"},"PeriodicalIF":7.5,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11134679/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141160479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Human patients often experience an episode of serious seizure activity, such as status epilepticus (SE), prior to the onset of temporal lobe epilepsy (TLE), suggesting that SE can trigger the development of epilepsy. Yet, the underlying mechanisms are not fully understood. The low-density lipoprotein receptor related protein (Lrp4), a receptor for proteoglycan-agrin, has been indicated to modulate seizure susceptibility. However, whether agrin-Lrp4 pathway also plays a role in the development of SE-induced TLE is not clear.
Methods: Lrp4f/f mice were crossed with hGFAP-Cre and Nex-Cre mice to generate brain conditional Lrp4 knockout mice (hGFAP-Lrp4-/-) and pyramidal neuron specific knockout mice (Nex-Lrp4-/-). Lrp4 was specifically knocked down in hippocampal astrocytes by injecting AAV virus carrying hGFAP-Cre into the hippocampus. The effects of agrin-Lrp4 pathway on the development of SE-induced TLE were evaluated on the chronic seizure model generated by injecting kainic acid (KA) into the amygdala. The spontaneous recurrent seizures (SRS) in mice were video monitored.
Results: We found that Lrp4 deletion from the brain but not from the pyramidal neurons elevated the seizure threshold and reduced SRS numbers, with no change in the stage or duration of SRS. More importantly, knockdown of Lrp4 in the hippocampal astrocytes after SE induction decreased SRS numbers. In accord, direct injection of agrin into the lateral ventricle of control mice but not mice with Lrp4 deletion in hippocampal astrocytes also increased the SRS numbers. These results indicate a promoting effect of agrin-Lrp4 signaling in hippocampal astrocytes on the development of SE-induced TLE. Last, we observed that knockdown of Lrp4 in hippocampal astrocytes increased the extracellular adenosine levels in the hippocampus 2 weeks after SE induction. Blockade of adenosine A1 receptor in the hippocampus by DPCPX after SE induction diminished the effects of Lrp4 on the development of SE-induced TLE.
Conclusion: These results demonstrate a promoting role of agrin-Lrp4 signaling in hippocampal astrocytes in the development of SE-induced development of epilepsy through elevating adenosine levels. Targeting agrin-Lrp4 signaling may serve as a potential therapeutic intervention strategy to treat TLE.
{"title":"Agrin-Lrp4 pathway in hippocampal astrocytes restrains development of temporal lobe epilepsy through adenosine signaling.","authors":"Zi-Yang Liu, Yuan-Quan Li, Die-Lin Wang, Ying Wang, Wan-Ting Qiu, Yu-Yang Qiu, He-Lin Zhang, Qiang-Long You, Shi-Min Liu, Qiu-Ni Liang, Er-Jian Wu, Bing-Jie Hu, Xiang-Dong Sun","doi":"10.1186/s13578-024-01241-5","DOIUrl":"10.1186/s13578-024-01241-5","url":null,"abstract":"<p><strong>Background: </strong>Human patients often experience an episode of serious seizure activity, such as status epilepticus (SE), prior to the onset of temporal lobe epilepsy (TLE), suggesting that SE can trigger the development of epilepsy. Yet, the underlying mechanisms are not fully understood. The low-density lipoprotein receptor related protein (Lrp4), a receptor for proteoglycan-agrin, has been indicated to modulate seizure susceptibility. However, whether agrin-Lrp4 pathway also plays a role in the development of SE-induced TLE is not clear.</p><p><strong>Methods: </strong>Lrp4<sup>f/f</sup> mice were crossed with hGFAP-Cre and Nex-Cre mice to generate brain conditional Lrp4 knockout mice (hGFAP-Lrp4<sup>-/-</sup>) and pyramidal neuron specific knockout mice (Nex-Lrp4<sup>-/-</sup>). Lrp4 was specifically knocked down in hippocampal astrocytes by injecting AAV virus carrying hGFAP-Cre into the hippocampus. The effects of agrin-Lrp4 pathway on the development of SE-induced TLE were evaluated on the chronic seizure model generated by injecting kainic acid (KA) into the amygdala. The spontaneous recurrent seizures (SRS) in mice were video monitored.</p><p><strong>Results: </strong>We found that Lrp4 deletion from the brain but not from the pyramidal neurons elevated the seizure threshold and reduced SRS numbers, with no change in the stage or duration of SRS. More importantly, knockdown of Lrp4 in the hippocampal astrocytes after SE induction decreased SRS numbers. In accord, direct injection of agrin into the lateral ventricle of control mice but not mice with Lrp4 deletion in hippocampal astrocytes also increased the SRS numbers. These results indicate a promoting effect of agrin-Lrp4 signaling in hippocampal astrocytes on the development of SE-induced TLE. Last, we observed that knockdown of Lrp4 in hippocampal astrocytes increased the extracellular adenosine levels in the hippocampus 2 weeks after SE induction. Blockade of adenosine A1 receptor in the hippocampus by DPCPX after SE induction diminished the effects of Lrp4 on the development of SE-induced TLE.</p><p><strong>Conclusion: </strong>These results demonstrate a promoting role of agrin-Lrp4 signaling in hippocampal astrocytes in the development of SE-induced development of epilepsy through elevating adenosine levels. Targeting agrin-Lrp4 signaling may serve as a potential therapeutic intervention strategy to treat TLE.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"14 1","pages":"66"},"PeriodicalIF":7.5,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11112884/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141089171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-22DOI: 10.1186/s13578-024-01247-z
Hyebin Koh, Woojoo Kang, Ying-Ying Mao, Jisoo Park, Sangjune Kim, Seok-Ho Hong, Jong-Hee Lee
Background: In vitro disease modeling enables translational research by providing insight into disease pathophysiology and molecular mechanisms, leading to the development of novel therapeutics. Nevertheless, in vitro systems have limitations for recapitulating the complexity of tissues, and a single model system is insufficient to gain a comprehensive understanding of a disease.
Results: Here we explored the potential of using several models in combination to provide mechanistic insight into hereditary hemorrhagic telangiectasia (HHT), a genetic vascular disorder. Genome editing was performed to establish hPSCs (H9) with ENG haploinsufficiency and several in vitro models were used to recapitulate the functional aspects of the cells that constitute blood vessels. In a 2D culture system, endothelial cells showed early senescence, reduced viability, and heightened susceptibility to apoptotic insults, and smooth muscle cells (SMCs) exhibited similar behavior to their wild-type counterparts. Features of HHT were evident in 3D blood-vessel organoid systems, including thickening of capillary structures, decreased interaction between ECs and surrounding SMCs, and reduced cell viability. Features of ENG haploinsufficiency were observed in arterial and venous EC subtypes, with arterial ECs showing significant impairments. Molecular biological approaches confirmed the significant downregulation of Notch signaling in HHT-ECs.
Conclusions: Overall, we demonstrated refined research strategies to enhance our comprehension of HHT, providing valuable insights for pathogenic analysis and the exploration of innovative therapeutic interventions. Additionally, these results underscore the importance of employing diverse in vitro systems to assess multiple aspects of disease, which is challenging using a single in vitro system.
{"title":"Employment of diverse in vitro systems for analyzing multiple aspects of disease, hereditary hemorrhagic telangiectasia (HHT).","authors":"Hyebin Koh, Woojoo Kang, Ying-Ying Mao, Jisoo Park, Sangjune Kim, Seok-Ho Hong, Jong-Hee Lee","doi":"10.1186/s13578-024-01247-z","DOIUrl":"10.1186/s13578-024-01247-z","url":null,"abstract":"<p><strong>Background: </strong>In vitro disease modeling enables translational research by providing insight into disease pathophysiology and molecular mechanisms, leading to the development of novel therapeutics. Nevertheless, in vitro systems have limitations for recapitulating the complexity of tissues, and a single model system is insufficient to gain a comprehensive understanding of a disease.</p><p><strong>Results: </strong>Here we explored the potential of using several models in combination to provide mechanistic insight into hereditary hemorrhagic telangiectasia (HHT), a genetic vascular disorder. Genome editing was performed to establish hPSCs (H9) with ENG haploinsufficiency and several in vitro models were used to recapitulate the functional aspects of the cells that constitute blood vessels. In a 2D culture system, endothelial cells showed early senescence, reduced viability, and heightened susceptibility to apoptotic insults, and smooth muscle cells (SMCs) exhibited similar behavior to their wild-type counterparts. Features of HHT were evident in 3D blood-vessel organoid systems, including thickening of capillary structures, decreased interaction between ECs and surrounding SMCs, and reduced cell viability. Features of ENG haploinsufficiency were observed in arterial and venous EC subtypes, with arterial ECs showing significant impairments. Molecular biological approaches confirmed the significant downregulation of Notch signaling in HHT-ECs.</p><p><strong>Conclusions: </strong>Overall, we demonstrated refined research strategies to enhance our comprehension of HHT, providing valuable insights for pathogenic analysis and the exploration of innovative therapeutic interventions. Additionally, these results underscore the importance of employing diverse in vitro systems to assess multiple aspects of disease, which is challenging using a single in vitro system.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"14 1","pages":"65"},"PeriodicalIF":7.5,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11110195/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141082702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-21DOI: 10.1186/s13578-024-01243-3
Bruna Lopes da Costa, Peter M J Quinn, Wen-Hsuan Wu, Siyuan Liu, Nicholas D Nolan, Aykut Demirkol, Yi-Ting Tsai, Salvatore Marco Caruso, Thiago Cabral, Nan-Kai Wang, Stephen H Tsang
Background: Retinitis pigmentosa (RP) is a genetically heterogeneous group of degenerative disorders causing progressive vision loss due to photoreceptor death. RP affects other retinal cells, including the retinal pigment epithelium (RPE). MicroRNAs (miRs) are implicated in RP pathogenesis, and downregulating miR-181a/b has shown therapeutic benefit in RP mouse models by improving mitochondrial function. This study investigates the expression profile of miR-181a/b in RPE cells and the neural retina during RP disease progression. We also evaluate how miR-181a/b downregulation, by knocking out miR-181a/b-1 cluster in RPE cells, confers therapeutic efficacy in an RP mouse model and explore the mechanisms underlying this process.
Results: Our findings reveal distinct expression profiles, with downregulated miR-181a/b in RPE cells suggesting a protective response and upregulated miR-181a/b in the neural retina indicating a role in disease progression. We found that miR-181a/b-2, encoded in a separate genomic cluster, compensates for miR-181a/b-1 ablation in RPE cells at late time points. The transient downregulation of miR-181a/b in RPE cells at post-natal week 6 (PW6) led to improved RPE morphology, retarded photoreceptor degeneration and decreased RPE aerobic glycolysis.
Conclusions: Our study elucidates the underlying mechanisms associated with the therapeutic modulation of miR-181a/b, providing insights into the metabolic processes linked to its RPE-specific downregulation. Our data further highlights the impact of compensatory regulation between miR clusters with implications for the development of miR-based therapeutics.
{"title":"Targeting miR-181a/b in retinitis pigmentosa: implications for disease progression and therapy.","authors":"Bruna Lopes da Costa, Peter M J Quinn, Wen-Hsuan Wu, Siyuan Liu, Nicholas D Nolan, Aykut Demirkol, Yi-Ting Tsai, Salvatore Marco Caruso, Thiago Cabral, Nan-Kai Wang, Stephen H Tsang","doi":"10.1186/s13578-024-01243-3","DOIUrl":"10.1186/s13578-024-01243-3","url":null,"abstract":"<p><strong>Background: </strong>Retinitis pigmentosa (RP) is a genetically heterogeneous group of degenerative disorders causing progressive vision loss due to photoreceptor death. RP affects other retinal cells, including the retinal pigment epithelium (RPE). MicroRNAs (miRs) are implicated in RP pathogenesis, and downregulating miR-181a/b has shown therapeutic benefit in RP mouse models by improving mitochondrial function. This study investigates the expression profile of miR-181a/b in RPE cells and the neural retina during RP disease progression. We also evaluate how miR-181a/b downregulation, by knocking out miR-181a/b-1 cluster in RPE cells, confers therapeutic efficacy in an RP mouse model and explore the mechanisms underlying this process.</p><p><strong>Results: </strong>Our findings reveal distinct expression profiles, with downregulated miR-181a/b in RPE cells suggesting a protective response and upregulated miR-181a/b in the neural retina indicating a role in disease progression. We found that miR-181a/b-2, encoded in a separate genomic cluster, compensates for miR-181a/b-1 ablation in RPE cells at late time points. The transient downregulation of miR-181a/b in RPE cells at post-natal week 6 (PW6) led to improved RPE morphology, retarded photoreceptor degeneration and decreased RPE aerobic glycolysis.</p><p><strong>Conclusions: </strong>Our study elucidates the underlying mechanisms associated with the therapeutic modulation of miR-181a/b, providing insights into the metabolic processes linked to its RPE-specific downregulation. Our data further highlights the impact of compensatory regulation between miR clusters with implications for the development of miR-based therapeutics.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"14 1","pages":"64"},"PeriodicalIF":7.5,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11110387/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141077062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Methylmalonic acidemia (MMA) is a rare inborn error of propionate metabolism caused by deficiency of the mitochondrial methylmalonyl-CoA mutase (MUT) enzyme. As matter of fact, MMA patients manifest impairment of the primary metabolic network with profound damages that involve several cell components, many of which have not been discovered yet. We employed cellular models and patients-derived fibroblasts to refine and uncover new pathologic mechanisms connected with MUT deficiency through the combination of multi-proteomics and bioinformatics approaches.
Results: Our data show that MUT deficiency is connected with profound proteome dysregulations, revealing molecular actors involved in lysosome and autophagy functioning. To elucidate the effects of defective MUT on lysosomal and autophagy regulation, we analyzed the morphology and functionality of MMA-lysosomes that showed deep alterations, thus corroborating omics data. Lysosomes of MMA cells present as enlarged vacuoles with low degradative capabilities. Notwithstanding, treatment with an anti-propionigenic drug is capable of totally rescuing lysosomal morphology and functional activity in MUT-deficient cells. These results indicate a strict connection between MUT deficiency and lysosomal-autophagy dysfunction, providing promising therapeutic perspectives for MMA.
Conclusions: Defective homeostatic mechanisms in the regulation of autophagy and lysosome functions have been demonstrated in MUT-deficient cells. Our data prove that MMA triggers such dysfunctions impacting on autophagosome-lysosome fusion and lysosomal activity.
{"title":"Methylmalonic acidemia triggers lysosomal-autophagy dysfunctions.","authors":"Michele Costanzo, Armando Cevenini, Laxmikanth Kollipara, Marianna Caterino, Sabrina Bianco, Francesca Pirozzi, Gianluca Scerra, Massimo D'Agostino, Luigi Michele Pavone, Albert Sickmann, Margherita Ruoppolo","doi":"10.1186/s13578-024-01245-1","DOIUrl":"10.1186/s13578-024-01245-1","url":null,"abstract":"<p><strong>Background: </strong>Methylmalonic acidemia (MMA) is a rare inborn error of propionate metabolism caused by deficiency of the mitochondrial methylmalonyl-CoA mutase (MUT) enzyme. As matter of fact, MMA patients manifest impairment of the primary metabolic network with profound damages that involve several cell components, many of which have not been discovered yet. We employed cellular models and patients-derived fibroblasts to refine and uncover new pathologic mechanisms connected with MUT deficiency through the combination of multi-proteomics and bioinformatics approaches.</p><p><strong>Results: </strong>Our data show that MUT deficiency is connected with profound proteome dysregulations, revealing molecular actors involved in lysosome and autophagy functioning. To elucidate the effects of defective MUT on lysosomal and autophagy regulation, we analyzed the morphology and functionality of MMA-lysosomes that showed deep alterations, thus corroborating omics data. Lysosomes of MMA cells present as enlarged vacuoles with low degradative capabilities. Notwithstanding, treatment with an anti-propionigenic drug is capable of totally rescuing lysosomal morphology and functional activity in MUT-deficient cells. These results indicate a strict connection between MUT deficiency and lysosomal-autophagy dysfunction, providing promising therapeutic perspectives for MMA.</p><p><strong>Conclusions: </strong>Defective homeostatic mechanisms in the regulation of autophagy and lysosome functions have been demonstrated in MUT-deficient cells. Our data prove that MMA triggers such dysfunctions impacting on autophagosome-lysosome fusion and lysosomal activity.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"14 1","pages":"63"},"PeriodicalIF":7.5,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11102240/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140960605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Gut microbiota and their metabolites play a regulatory role in skeletal muscle growth and development, which be known as gut-muscle axis. 3-phenylpropionic acid (3-PPA), a metabolite produced by colonic microorganisms from phenylalanine in the gut, presents in large quantities in the blood circulation. But few study revealed its function in skeletal muscle development.
Results: Here, we demonstrated the beneficial effects of 3-PPA on muscle mass increase and myotubes hypertrophy both in vivo and vitro. Further, we discovered the 3-PPA effectively inhibited protein degradation and promoted protein acetylation in C2C12 and chick embryo primary skeletal muscle myotubes. Mechanistically, we supported that 3-PPA reduced NAD+ synthesis and subsequently suppressed tricarboxylic acid cycle and the mRNA expression of SIRT1/3, thus promoting the acetylation of total protein and Foxo3. Moreover, 3-PPA may inhibit Foxo3 activity by directly binding.
Conclusions: This study firstly revealed the effect of 3-PPA on skeletal muscle growth and development, and newly discovered the interaction between 3-PPA and Foxo3/NAD+ which mechanically promote myotubes hypertrophy. These results expand new understanding for the regulation of gut microbiota metabolites on skeletal muscle growth and development.
{"title":"Microbiota-derived 3-phenylpropionic acid promotes myotube hypertrophy by Foxo3/NAD<sup>+</sup> signaling pathway.","authors":"Penglin Li, Xiaohua Feng, Zewei Ma, Yexian Yuan, Hongfeng Jiang, Guli Xu, Yunlong Zhu, Xue Yang, Yujun Wang, Canjun Zhu, Songbo Wang, Ping Gao, Qingyan Jiang, Gang Shu","doi":"10.1186/s13578-024-01244-2","DOIUrl":"10.1186/s13578-024-01244-2","url":null,"abstract":"<p><strong>Background: </strong>Gut microbiota and their metabolites play a regulatory role in skeletal muscle growth and development, which be known as gut-muscle axis. 3-phenylpropionic acid (3-PPA), a metabolite produced by colonic microorganisms from phenylalanine in the gut, presents in large quantities in the blood circulation. But few study revealed its function in skeletal muscle development.</p><p><strong>Results: </strong>Here, we demonstrated the beneficial effects of 3-PPA on muscle mass increase and myotubes hypertrophy both in vivo and vitro. Further, we discovered the 3-PPA effectively inhibited protein degradation and promoted protein acetylation in C2C12 and chick embryo primary skeletal muscle myotubes. Mechanistically, we supported that 3-PPA reduced NAD<sup>+</sup> synthesis and subsequently suppressed tricarboxylic acid cycle and the mRNA expression of SIRT1/3, thus promoting the acetylation of total protein and Foxo3. Moreover, 3-PPA may inhibit Foxo3 activity by directly binding.</p><p><strong>Conclusions: </strong>This study firstly revealed the effect of 3-PPA on skeletal muscle growth and development, and newly discovered the interaction between 3-PPA and Foxo3/NAD<sup>+</sup> which mechanically promote myotubes hypertrophy. These results expand new understanding for the regulation of gut microbiota metabolites on skeletal muscle growth and development.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"14 1","pages":"62"},"PeriodicalIF":7.5,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11097579/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140946305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-12DOI: 10.1186/s13578-024-01240-6
Selena Horvat, Janko Kos, Anja Pišlar
Enolase, a multifunctional protein with diverse isoforms, has generally been recognized for its primary roles in glycolysis and gluconeogenesis. The shift in isoform expression from α-enolase to neuron-specific γ-enolase extends beyond its enzymatic role. Enolase is essential for neuronal survival, differentiation, and the maturation of neurons and glial cells in the central nervous system. Neuron-specific γ-enolase is a critical biomarker for neurodegenerative pathologies and neurological conditions, not only indicating disease but also participating in nerve cell formation and neuroprotection and exhibiting neurotrophic-like properties. These properties are precisely regulated by cysteine peptidase cathepsin X and scaffold protein γ1-syntrophin. Our findings suggest that γ-enolase, specifically its C-terminal part, may offer neuroprotective benefits against neurotoxicity seen in Alzheimer's and Parkinson's disease. Furthermore, although the therapeutic potential of γ-enolase seems promising, the effectiveness of enolase inhibitors is under debate. This paper reviews the research on the roles of γ-enolase in the central nervous system, especially in pathophysiological events and the regulation of neurodegenerative diseases.
烯醇化酶是一种具有多种异构体的多功能蛋白质,通常被认为在糖酵解和葡萄糖生成过程中发挥主要作用。从α-烯醇化酶到神经元特异性γ-烯醇化酶的同工酶表达的转变超出了其酶作用的范围。烯醇化酶对中枢神经系统中神经元的存活、分化以及神经元和胶质细胞的成熟至关重要。神经元特异性γ-烯醇化酶是神经退行性病变和神经系统疾病的重要生物标志物,不仅能指示疾病,还能参与神经细胞的形成和神经保护,并表现出类似神经营养的特性。这些特性受半胱氨酸肽酶 cathepsin X 和支架蛋白 γ1-syntrophin 的精确调控。我们的研究结果表明,γ-烯醇化酶,特别是其 C 端部分,可能对阿尔茨海默氏症和帕金森氏症的神经毒性有保护作用。此外,尽管γ-烯醇化酶的治疗潜力似乎很有希望,但烯醇化酶抑制剂的有效性还存在争议。本文回顾了有关γ-烯醇化酶在中枢神经系统中作用的研究,特别是在病理生理事件和神经退行性疾病调控中的作用。
{"title":"Multifunctional roles of γ-enolase in the central nervous system: more than a neuronal marker.","authors":"Selena Horvat, Janko Kos, Anja Pišlar","doi":"10.1186/s13578-024-01240-6","DOIUrl":"10.1186/s13578-024-01240-6","url":null,"abstract":"<p><p>Enolase, a multifunctional protein with diverse isoforms, has generally been recognized for its primary roles in glycolysis and gluconeogenesis. The shift in isoform expression from α-enolase to neuron-specific γ-enolase extends beyond its enzymatic role. Enolase is essential for neuronal survival, differentiation, and the maturation of neurons and glial cells in the central nervous system. Neuron-specific γ-enolase is a critical biomarker for neurodegenerative pathologies and neurological conditions, not only indicating disease but also participating in nerve cell formation and neuroprotection and exhibiting neurotrophic-like properties. These properties are precisely regulated by cysteine peptidase cathepsin X and scaffold protein γ<sub>1</sub>-syntrophin. Our findings suggest that γ-enolase, specifically its C-terminal part, may offer neuroprotective benefits against neurotoxicity seen in Alzheimer's and Parkinson's disease. Furthermore, although the therapeutic potential of γ-enolase seems promising, the effectiveness of enolase inhibitors is under debate. This paper reviews the research on the roles of γ-enolase in the central nervous system, especially in pathophysiological events and the regulation of neurodegenerative diseases.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"14 1","pages":"61"},"PeriodicalIF":7.5,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11089681/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140912936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}