Pub Date : 2024-09-06DOI: 10.1186/s13578-024-01297-3
Dat P Ha, Woo-Jin Shin, Ze Liu, Michael E Doche, Roy Lau, Nektaria Maria Leli, Crystal S Conn, Mariangela Russo, Annalisa Lorenzato, Constantinos Koumenis, Min Yu, Shannon M Mumenthaler, Amy S Lee
Background: Despite recent therapeutic advances, combating cancer resistance remains a formidable challenge. The 78-kilodalton glucose-regulated protein (GRP78), a key stress-inducible endoplasmic reticulum (ER) chaperone, plays a crucial role in both cancer cell survival and stress adaptation. GRP78 is also upregulated during SARS-CoV-2 infection and acts as a critical host factor. Recently, we discovered cardiac glycosides (CGs) as novel suppressors of GRP78 stress induction through a high-throughput screen of clinically relevant compound libraries. This study aims to test the possibility that agents capable of blocking stress induction of GRP78 could dually suppress cancer and COVID-19.
Results: Here we report that oleandrin (OLN), is the most potent among the CGs in inhibiting acute stress induction of total GRP78, which also results in reduced cell surface and nuclear forms of GRP78 in stressed cells. The inhibition of stress induction of GRP78 is at the post-transcriptional level, independent of protein degradation and autophagy and may involve translational control as OLN blocks stress-induced loading of ribosomes onto GRP78 mRNAs. Moreover, the human Na+/K+-ATPase α3 isoform is critical for OLN suppression of GRP78 stress induction. OLN, in nanomolar range, enhances apoptosis, sensitizes colorectal cancer cells to chemotherapeutic agents, and reduces the viability of patient-derived colon cancer organoids. Likewise, OLN, suppresses GRP78 expression and impedes tumor growth in an orthotopic breast cancer xenograft model. Furthermore, OLN blocks infection by SARS-CoV-2 and its variants and enhances existing anti-viral therapies. Notably, GRP78 overexpression mitigates OLN-mediated cancer cell apoptotic onset and suppression of virus release.
Conclusion: Our findings validate GRP78 as a target of OLN anti-cancer and anti-viral activities. These proof-of-principle studies support further investigation of OLN as a readily accessible compound to dually combat cancer and COVID-19.
{"title":"Targeting stress induction of GRP78 by cardiac glycoside oleandrin dually suppresses cancer and COVID-19.","authors":"Dat P Ha, Woo-Jin Shin, Ze Liu, Michael E Doche, Roy Lau, Nektaria Maria Leli, Crystal S Conn, Mariangela Russo, Annalisa Lorenzato, Constantinos Koumenis, Min Yu, Shannon M Mumenthaler, Amy S Lee","doi":"10.1186/s13578-024-01297-3","DOIUrl":"10.1186/s13578-024-01297-3","url":null,"abstract":"<p><strong>Background: </strong>Despite recent therapeutic advances, combating cancer resistance remains a formidable challenge. The 78-kilodalton glucose-regulated protein (GRP78), a key stress-inducible endoplasmic reticulum (ER) chaperone, plays a crucial role in both cancer cell survival and stress adaptation. GRP78 is also upregulated during SARS-CoV-2 infection and acts as a critical host factor. Recently, we discovered cardiac glycosides (CGs) as novel suppressors of GRP78 stress induction through a high-throughput screen of clinically relevant compound libraries. This study aims to test the possibility that agents capable of blocking stress induction of GRP78 could dually suppress cancer and COVID-19.</p><p><strong>Results: </strong>Here we report that oleandrin (OLN), is the most potent among the CGs in inhibiting acute stress induction of total GRP78, which also results in reduced cell surface and nuclear forms of GRP78 in stressed cells. The inhibition of stress induction of GRP78 is at the post-transcriptional level, independent of protein degradation and autophagy and may involve translational control as OLN blocks stress-induced loading of ribosomes onto GRP78 mRNAs. Moreover, the human Na<sup>+</sup>/K<sup>+</sup>-ATPase α3 isoform is critical for OLN suppression of GRP78 stress induction. OLN, in nanomolar range, enhances apoptosis, sensitizes colorectal cancer cells to chemotherapeutic agents, and reduces the viability of patient-derived colon cancer organoids. Likewise, OLN, suppresses GRP78 expression and impedes tumor growth in an orthotopic breast cancer xenograft model. Furthermore, OLN blocks infection by SARS-CoV-2 and its variants and enhances existing anti-viral therapies. Notably, GRP78 overexpression mitigates OLN-mediated cancer cell apoptotic onset and suppression of virus release.</p><p><strong>Conclusion: </strong>Our findings validate GRP78 as a target of OLN anti-cancer and anti-viral activities. These proof-of-principle studies support further investigation of OLN as a readily accessible compound to dually combat cancer and COVID-19.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"14 1","pages":"115"},"PeriodicalIF":6.1,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378597/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1186/s13578-024-01300-x
Xiao Zhang, Tao Wang
Understanding of the mechanisms for genome integrity maintenance can help in developing effective intervention strategies to combat aging. A whole-genome RNAi screen was conducted to identify novel factors involved in maintaining genome stability. The potential target genes identified in the screening are related to the cell cycle, proteasome, and spliceosomes. Unexpectedly, the Golgi protein YIPF2 has been found to play a critical role in maintaining genome stability. The depletion of YIPF2 hinders the process of homologous recombination (HR) repair, which then triggers DNA damage response mechanisms, ultimately leading to cellular senescence. The overexpression of YIPF2 facilitated cellular recovery from DNA damage induced by chemotherapy agents or replicative senescence-associated DNA damage. Our findings indicate that only the intact Golgi apparatus containing YIPF2 provides a protective effect on genome integrity.
{"title":"YIPF2 regulates genome integrity.","authors":"Xiao Zhang, Tao Wang","doi":"10.1186/s13578-024-01300-x","DOIUrl":"10.1186/s13578-024-01300-x","url":null,"abstract":"<p><p>Understanding of the mechanisms for genome integrity maintenance can help in developing effective intervention strategies to combat aging. A whole-genome RNAi screen was conducted to identify novel factors involved in maintaining genome stability. The potential target genes identified in the screening are related to the cell cycle, proteasome, and spliceosomes. Unexpectedly, the Golgi protein YIPF2 has been found to play a critical role in maintaining genome stability. The depletion of YIPF2 hinders the process of homologous recombination (HR) repair, which then triggers DNA damage response mechanisms, ultimately leading to cellular senescence. The overexpression of YIPF2 facilitated cellular recovery from DNA damage induced by chemotherapy agents or replicative senescence-associated DNA damage. Our findings indicate that only the intact Golgi apparatus containing YIPF2 provides a protective effect on genome integrity.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"14 1","pages":"114"},"PeriodicalIF":6.1,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376028/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-03DOI: 10.1186/s13578-024-01294-6
Yao-Ge Liu, Shi-Tao Jiang, Jun-Wei Zhang, Han Zheng, Lei Zhang, Hai-Tao Zhao, Xin-Ting Sang, Yi-Yao Xu, Xin Lu
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, characterized by difficulties in early diagnosis, prone to distant metastasis, and high recurrence rates following surgery. Extracellular vesicles (EVs) are a class of cell-derived particles, including exosomes, characterized by a phospholipid bilayer. They serve as effective carriers for intercellular communication cargo, including proteins and nucleic acids, and are widely involved in tumor progression. They are being explored as potential tumor biomarkers and novel therapeutic avenues. We provide a brief overview of the biogenesis and characteristics of EVs to better understand their classification standards. The focus of this review is on the research progress of EV-associated proteins in the field of HCC. EV-associated proteins are involved in tumor growth and regulation in HCC, participate in intercellular communication within the tumor microenvironment (TME), and are implicated in events including angiogenesis and epithelial-mesenchymal transition (EMT) during tumor metastasis. In addition, EV-associated proteins show promising diagnostic efficacy for HCC. For the treatment of HCC, they also demonstrate significant potential including enhancing the efficacy of tumor vaccines, and as targeting cargo anchors. Facing current challenges, we propose the future directions of research in this field. Above all, research on EV-associated proteins offers the potential to enhance our comprehension of HCC and offer novel insights for developing new treatment strategies.
肝细胞癌(HCC)是最常见的原发性肝癌,其特点是难以早期诊断、易发生远处转移以及手术后复发率高。细胞外囊泡(EVs)是一类细胞衍生颗粒,包括外泌体,其特点是具有磷脂双分子层。它们是细胞间通信货物(包括蛋白质和核酸)的有效载体,广泛参与肿瘤的进展。人们正在探索将它们作为潜在的肿瘤生物标志物和新型治疗途径。我们简要概述了 EVs 的生物生成和特征,以便更好地理解其分类标准。本综述的重点是 EV 相关蛋白在 HCC 领域的研究进展。EV相关蛋白参与了HCC的肿瘤生长和调控,参与了肿瘤微环境(TME)中的细胞间通讯,并与肿瘤转移过程中的血管生成和上皮-间质转化(EMT)等事件有关。此外,EV 相关蛋白对诊断 HCC 有很好的疗效。在治疗 HCC 方面,它们也显示出巨大的潜力,包括提高肿瘤疫苗的疗效,以及作为靶向货物锚。面对当前的挑战,我们提出了该领域未来的研究方向。最重要的是,对 EV 相关蛋白的研究有可能增强我们对 HCC 的理解,并为开发新的治疗策略提供新的见解。
{"title":"Role of extracellular vesicle-associated proteins in the progression, diagnosis, and treatment of hepatocellular carcinoma.","authors":"Yao-Ge Liu, Shi-Tao Jiang, Jun-Wei Zhang, Han Zheng, Lei Zhang, Hai-Tao Zhao, Xin-Ting Sang, Yi-Yao Xu, Xin Lu","doi":"10.1186/s13578-024-01294-6","DOIUrl":"10.1186/s13578-024-01294-6","url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, characterized by difficulties in early diagnosis, prone to distant metastasis, and high recurrence rates following surgery. Extracellular vesicles (EVs) are a class of cell-derived particles, including exosomes, characterized by a phospholipid bilayer. They serve as effective carriers for intercellular communication cargo, including proteins and nucleic acids, and are widely involved in tumor progression. They are being explored as potential tumor biomarkers and novel therapeutic avenues. We provide a brief overview of the biogenesis and characteristics of EVs to better understand their classification standards. The focus of this review is on the research progress of EV-associated proteins in the field of HCC. EV-associated proteins are involved in tumor growth and regulation in HCC, participate in intercellular communication within the tumor microenvironment (TME), and are implicated in events including angiogenesis and epithelial-mesenchymal transition (EMT) during tumor metastasis. In addition, EV-associated proteins show promising diagnostic efficacy for HCC. For the treatment of HCC, they also demonstrate significant potential including enhancing the efficacy of tumor vaccines, and as targeting cargo anchors. Facing current challenges, we propose the future directions of research in this field. Above all, research on EV-associated proteins offers the potential to enhance our comprehension of HCC and offer novel insights for developing new treatment strategies.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"14 1","pages":"113"},"PeriodicalIF":6.1,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373138/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142127121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Deubiquitinating enzymes (DUBs) are pivotal in maintaining cell homeostasis by regulating substrate protein ubiquitination in both healthy and cancer cells. Ubiquitin-specific protease 10 (USP10) belongs to the DUB family. In this study, we investigated the clinical and pathological significance of USP10 and Unc-51-like autophagy activating kinase 1 (ULK1) in osteosarcoma (OS), as well as the mechanism of USP10 action in ULK1-mediated autophagy and disease progression.
Results: The analysis of OS and adjacent normal tissues demonstrated that USP10 and ULK1 were significantly overexpressed in OS, and a positive association between their expression and malignant properties was observed. USP10 knockdown in OS cells reduced ULK1 mRNA and protein expression, whereas USP10 overexpression increased ULK1 mRNA and protein expression. In vitro experiments showed that USP10 induced autophagy, cell proliferation, and invasion by enhancing ULK1 expression in OS cell lines. Furthermore, we found that the regulation of ULK1-mediated autophagy, cell proliferation, and invasion in OS by USP10 was dependent on glycogen synthase kinase 3β (GSK3β) activity. Mechanistically, USP10 promoted ULK1 transcription by interacting with and stabilising GSK3β through deubiquitination, which, in turn, increased the activity of the ULK1 promoter, thereby accelerating OS progression. Using a xenograft mouse model, we showed that Spautin-1, a small-molecule inhibitor targeting USP10, significantly reduced OS development, with its anti-tumour activity significantly enhanced when combined with the chemotherapeutic agent cisplatin.
Conclusion: Collectively, we demonstrated that the USP10-GSK3β-ULK1 axis promoted autophagy, cell proliferation, and invasion in OS. The findings imply that targeting USP10 may offer a promising therapeutic avenue for treating OS.
背景:去泛素化酶(DUB)通过调节健康细胞和癌细胞中底物蛋白的泛素化,在维持细胞稳态方面发挥着关键作用。泛素特异性蛋白酶 10(USP10)属于 DUB 家族。本研究探讨了USP10和Unc-51样自噬激活激酶1(ULK1)在骨肉瘤(OS)中的临床和病理意义,以及USP10在ULK1介导的自噬和疾病进展中的作用机制:结果:对骨肉瘤和邻近正常组织的分析表明,USP10和ULK1在骨肉瘤中显著过表达,且其表达与恶性程度呈正相关。USP10 在 OS 细胞中敲除会降低 ULK1 mRNA 和蛋白的表达,而 USP10 过表达则会增加 ULK1 mRNA 和蛋白的表达。体外实验表明,USP10 通过增强 OS 细胞系中 ULK1 的表达,诱导自噬、细胞增殖和侵袭。此外,我们还发现 USP10 对 OS 中 ULK1 介导的自噬、细胞增殖和侵袭的调控依赖于糖原合酶激酶 3β (GSK3β) 的活性。从机制上讲,USP10通过与GSK3β相互作用并通过去泛素化稳定GSK3β,从而促进ULK1的转录,反过来又增加了ULK1启动子的活性,从而加速了OS的进展。通过异种移植小鼠模型,我们发现靶向 USP10 的小分子抑制剂 Spautin-1 能显著减少 OS 的发展,当与化疗药物顺铂联合使用时,其抗肿瘤活性显著增强:总之,我们证明了 USP10-GSK3β-ULK1 轴促进了 OS 的自噬、细胞增殖和侵袭。这些研究结果表明,以 USP10 为靶点可能会为治疗 OS 提供一条前景广阔的治疗途径。
{"title":"Deubiquitinase USP10 promotes osteosarcoma autophagy and progression through regulating GSK3β-ULK1 axis.","authors":"Zuxi Feng, Yanghuan Ou, Xueqiang Deng, Minghao Deng, Xiaohua Yan, Leifeng Chen, Fan Zhou, Liang Hao","doi":"10.1186/s13578-024-01291-9","DOIUrl":"10.1186/s13578-024-01291-9","url":null,"abstract":"<p><strong>Background: </strong>Deubiquitinating enzymes (DUBs) are pivotal in maintaining cell homeostasis by regulating substrate protein ubiquitination in both healthy and cancer cells. Ubiquitin-specific protease 10 (USP10) belongs to the DUB family. In this study, we investigated the clinical and pathological significance of USP10 and Unc-51-like autophagy activating kinase 1 (ULK1) in osteosarcoma (OS), as well as the mechanism of USP10 action in ULK1-mediated autophagy and disease progression.</p><p><strong>Results: </strong>The analysis of OS and adjacent normal tissues demonstrated that USP10 and ULK1 were significantly overexpressed in OS, and a positive association between their expression and malignant properties was observed. USP10 knockdown in OS cells reduced ULK1 mRNA and protein expression, whereas USP10 overexpression increased ULK1 mRNA and protein expression. In vitro experiments showed that USP10 induced autophagy, cell proliferation, and invasion by enhancing ULK1 expression in OS cell lines. Furthermore, we found that the regulation of ULK1-mediated autophagy, cell proliferation, and invasion in OS by USP10 was dependent on glycogen synthase kinase 3β (GSK3β) activity. Mechanistically, USP10 promoted ULK1 transcription by interacting with and stabilising GSK3β through deubiquitination, which, in turn, increased the activity of the ULK1 promoter, thereby accelerating OS progression. Using a xenograft mouse model, we showed that Spautin-1, a small-molecule inhibitor targeting USP10, significantly reduced OS development, with its anti-tumour activity significantly enhanced when combined with the chemotherapeutic agent cisplatin.</p><p><strong>Conclusion: </strong>Collectively, we demonstrated that the USP10-GSK3β-ULK1 axis promoted autophagy, cell proliferation, and invasion in OS. The findings imply that targeting USP10 may offer a promising therapeutic avenue for treating OS.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"14 1","pages":"111"},"PeriodicalIF":6.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367994/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142113875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adamantinomatous craniopharyngioma (ACP) is a clinically aggressive tumor without effective treatment method. Previous studies proposed a paracrine tumorigenesis model, in which oncogenic β-catenin induces senescence in pituitary stem cells and the senescent cells lead the formation of paracrine tumors through secretion of pro-tumorigenic factors. However, there lacks characterization on senescent cells in ACPs. Here, we profiled 12 ACPs with single-cell RNA and TCR-sequencing to elucidate the cellular atlas in ACPs and 3 of them were also subject to spatial sequencing to localize different subpopulations of the tumor cells. In total, we obtained the transcriptome profiles of 70,682 cells. Tumor cells, which were unambiguously identified through the cellular mutation status of the driver CTNNB1 mutations, were clustered into 6 subsets. The whorl-like cluster (WC) cells show distinct molecular features from the other tumor cells and the palisading epithelium (PE) cells consists of a proliferating subset. Other than typical PE and WC, we identified two novel subpopulations of the tumor cells. In one subpopulation, the cells express a high level of cytokines, e.g., FDCSP and S100A8/A9, and are enriched with the senescence-associated secretory phenotype (SASP) factors. Hematoxylin and eosin staining reveals that these SASP cells lack an ordered structures and their nuclei are elongated. In the other subpopulation, the cell sizes are small and they are tightly packed together with an unusual high density expressing a high level of mitochondrial genes (median 10.9%). These cells are the origin of the tumor developmental trajectories revealed by RNA velocity and pseudo-time analysis. Single-cell RNA and TCR analysis reveals that some ACPs are infiltrated with clonally expanded cytotoxic T cells. We propose a hypothesis that WC and PE are formed via different negative regulation mechanisms of the overactivated WNT/β-catenin signaling which provides a new understanding on the tumorigenesis of ACPs. The study lays a foundation for future studies on targeting senescent cells in ACPs with senolytic compounds or other therapeutic agents.
{"title":"Single-cell and spatial sequencing identifies senescent and germinal tumor cells in adamantinomatous craniopharyngiomas.","authors":"Xianlong Wang, Jincheng Lin, Hongxing Liu, Chuan Zhao, Zhiwei Tu, Dapeng Xu, En Zhang, Zhongqing Zhou, Xueling Qi, Xingfu Wang, Zhixiong Lin","doi":"10.1186/s13578-024-01299-1","DOIUrl":"10.1186/s13578-024-01299-1","url":null,"abstract":"<p><p>Adamantinomatous craniopharyngioma (ACP) is a clinically aggressive tumor without effective treatment method. Previous studies proposed a paracrine tumorigenesis model, in which oncogenic β-catenin induces senescence in pituitary stem cells and the senescent cells lead the formation of paracrine tumors through secretion of pro-tumorigenic factors. However, there lacks characterization on senescent cells in ACPs. Here, we profiled 12 ACPs with single-cell RNA and TCR-sequencing to elucidate the cellular atlas in ACPs and 3 of them were also subject to spatial sequencing to localize different subpopulations of the tumor cells. In total, we obtained the transcriptome profiles of 70,682 cells. Tumor cells, which were unambiguously identified through the cellular mutation status of the driver CTNNB1 mutations, were clustered into 6 subsets. The whorl-like cluster (WC) cells show distinct molecular features from the other tumor cells and the palisading epithelium (PE) cells consists of a proliferating subset. Other than typical PE and WC, we identified two novel subpopulations of the tumor cells. In one subpopulation, the cells express a high level of cytokines, e.g., FDCSP and S100A8/A9, and are enriched with the senescence-associated secretory phenotype (SASP) factors. Hematoxylin and eosin staining reveals that these SASP cells lack an ordered structures and their nuclei are elongated. In the other subpopulation, the cell sizes are small and they are tightly packed together with an unusual high density expressing a high level of mitochondrial genes (median 10.9%). These cells are the origin of the tumor developmental trajectories revealed by RNA velocity and pseudo-time analysis. Single-cell RNA and TCR analysis reveals that some ACPs are infiltrated with clonally expanded cytotoxic T cells. We propose a hypothesis that WC and PE are formed via different negative regulation mechanisms of the overactivated WNT/β-catenin signaling which provides a new understanding on the tumorigenesis of ACPs. The study lays a foundation for future studies on targeting senescent cells in ACPs with senolytic compounds or other therapeutic agents.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"14 1","pages":"112"},"PeriodicalIF":6.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370139/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-31DOI: 10.1186/s13578-024-01288-4
Ying Yun, Shimeng Guo, Xin Xie
Background: Arginine vasopressin (AVP) has been reported to regulate insulin secretion and glucose homeostasis in the body. Previous study has shown that AVP and its receptor V1bR modulate insulin secretion via the hypothalamic-pituitary-adrenal axis. AVP has also been shown to enhance insulin secretion in islets, but the exact mechanism remains unclear.
Results: In our study, we unexpectedly discovered that AVP could only stimulates insulin secretion from islets, but not β cells, and AVP-induced insulin secretion could be blocked by V1bR selective antagonist. Single-cell transcriptome analysis identified that V1bR is only expressed by the α cells. Further studies indicated that activation of the V1bR stimulates the α cells to secrete glucagon, which then promotes glucose-dependent insulin secretion from β cells in a paracrine way by activating GLP-1R but not GCGR on these cells.
Conclusions: Our study revealed a crosstalk between α and β cells initiated by AVP/V1bR and mediated by glucagon/GLP-1R, providing a mechanism to develop new glucose-controlling therapies targeting V1bR.
{"title":"V1bR enhances glucose-stimulated insulin secretion by paracrine production of glucagon which activates GLP-1 receptor.","authors":"Ying Yun, Shimeng Guo, Xin Xie","doi":"10.1186/s13578-024-01288-4","DOIUrl":"10.1186/s13578-024-01288-4","url":null,"abstract":"<p><strong>Background: </strong>Arginine vasopressin (AVP) has been reported to regulate insulin secretion and glucose homeostasis in the body. Previous study has shown that AVP and its receptor V1bR modulate insulin secretion via the hypothalamic-pituitary-adrenal axis. AVP has also been shown to enhance insulin secretion in islets, but the exact mechanism remains unclear.</p><p><strong>Results: </strong>In our study, we unexpectedly discovered that AVP could only stimulates insulin secretion from islets, but not β cells, and AVP-induced insulin secretion could be blocked by V1bR selective antagonist. Single-cell transcriptome analysis identified that V1bR is only expressed by the α cells. Further studies indicated that activation of the V1bR stimulates the α cells to secrete glucagon, which then promotes glucose-dependent insulin secretion from β cells in a paracrine way by activating GLP-1R but not GCGR on these cells.</p><p><strong>Conclusions: </strong>Our study revealed a crosstalk between α and β cells initiated by AVP/V1bR and mediated by glucagon/GLP-1R, providing a mechanism to develop new glucose-controlling therapies targeting V1bR.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"14 1","pages":"110"},"PeriodicalIF":6.1,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365140/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142113877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Gallbladder cancer (GBC) is characterized by high mortality rate. Our study sought therapeutic candidates for GBC.
Results: Bioinformatics analysis identified significant upregulation of MST1R in GBC. In vitro experiments demonstrated that the MST1R inhibitor MGCD-265 effectively restrained GBC cell proliferation at lower concentrations. Additionally, it induced cycle arrest and apoptosis in GBC cells in a dose-dependent manner. Mouse models exhibited that MGCD-265 treatment significantly diminished the proliferative capacity of GBC-SD cells. Transcriptomics sequencing revealed significant transcriptome alterations, with 200 transcripts upregulated and 883 downregulated. KEGG and GO analyses highlighted enrichment in processes like cell adhesion and pathways such as protein digestion and absorption. Downstream genes analysis identified JMJD6 upregulation post-MGCD-265 treatment. In vivo experiments confirmed that combining MGCD-265 with the JMJD6 inhibitor SKLB325 enhanced the anticancer effect against GBC.
Conclusion: Overall, targeting MST1R and its downstream genes, particularly combining MGCD-265 with SKLB325, holds promise as a therapeutic strategy for GBC.
{"title":"MST1R-targeted therapy in the battle against gallbladder cancer.","authors":"Wei Wang, Chao Huang, Li Zhang, Liqin Yu, Yangming Liu, Puxiongzhi Wang, Rongmu Xia","doi":"10.1186/s13578-024-01290-w","DOIUrl":"10.1186/s13578-024-01290-w","url":null,"abstract":"<p><strong>Background: </strong>Gallbladder cancer (GBC) is characterized by high mortality rate. Our study sought therapeutic candidates for GBC.</p><p><strong>Results: </strong>Bioinformatics analysis identified significant upregulation of MST1R in GBC. In vitro experiments demonstrated that the MST1R inhibitor MGCD-265 effectively restrained GBC cell proliferation at lower concentrations. Additionally, it induced cycle arrest and apoptosis in GBC cells in a dose-dependent manner. Mouse models exhibited that MGCD-265 treatment significantly diminished the proliferative capacity of GBC-SD cells. Transcriptomics sequencing revealed significant transcriptome alterations, with 200 transcripts upregulated and 883 downregulated. KEGG and GO analyses highlighted enrichment in processes like cell adhesion and pathways such as protein digestion and absorption. Downstream genes analysis identified JMJD6 upregulation post-MGCD-265 treatment. In vivo experiments confirmed that combining MGCD-265 with the JMJD6 inhibitor SKLB325 enhanced the anticancer effect against GBC.</p><p><strong>Conclusion: </strong>Overall, targeting MST1R and its downstream genes, particularly combining MGCD-265 with SKLB325, holds promise as a therapeutic strategy for GBC.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"14 1","pages":"109"},"PeriodicalIF":6.1,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363441/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142113876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Primary liver cancer (PLC) is one of the most common malignant gastrointestinal tumors worldwide. Limited by the shortage of liver transplantation donors and the heterogeneity of tumors, patients with liver cancer lack effective treatment options, which leads to rapid progression and metastasis. Currently, preclinical models of PLC fall short of clinical reality and are limited in their response to disease progression and the effectiveness of drug therapy. Organoids are in vitro three-dimensional cultured preclinical models with a high degree of heterogeneity that preserve the histomorphological and genomic features of primary tumors. Liver cancer organoids have been widely used for drug screening, new target discovery, and precision medicine; thus representing a promising tool to study PLC. Here, we summarize the progress of research on liver cancer organoids and their potential application as disease models. This review provides a comprehensive introduction to this emerging technology and offers new ideas for researchers to explore in the field of precision medicine.
{"title":"Organoid as a promising tool for primary liver cancer research: a comprehensive review.","authors":"Xuekai Hu, Jiayun Wei, Pinyan Liu, Qiuxia Zheng, Yue Zhang, Qichen Zhang, Jia Yao, Jingman Ni","doi":"10.1186/s13578-024-01287-5","DOIUrl":"10.1186/s13578-024-01287-5","url":null,"abstract":"<p><p>Primary liver cancer (PLC) is one of the most common malignant gastrointestinal tumors worldwide. Limited by the shortage of liver transplantation donors and the heterogeneity of tumors, patients with liver cancer lack effective treatment options, which leads to rapid progression and metastasis. Currently, preclinical models of PLC fall short of clinical reality and are limited in their response to disease progression and the effectiveness of drug therapy. Organoids are in vitro three-dimensional cultured preclinical models with a high degree of heterogeneity that preserve the histomorphological and genomic features of primary tumors. Liver cancer organoids have been widely used for drug screening, new target discovery, and precision medicine; thus representing a promising tool to study PLC. Here, we summarize the progress of research on liver cancer organoids and their potential application as disease models. This review provides a comprehensive introduction to this emerging technology and offers new ideas for researchers to explore in the field of precision medicine.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"14 1","pages":"107"},"PeriodicalIF":6.1,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348559/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27DOI: 10.1186/s13578-024-01286-6
Zewei Gao, Xuan Zha, Min Li, Xueli Xia, Shengjun Wang
N6-methyladenosine (m6A) is dynamically regulated by methyltransferases (termed "writers") and demethylases (referred to as "erasers"), facilitating a reversible modulation. Changes in m6A levels significantly influence cellular functions, such as RNA export from the nucleus, mRNA metabolism, protein synthesis, and RNA splicing. They are intricately associated with a spectrum of pathologies. Moreover, dysregulation of m6A modulation has emerged as a promising therapeutic target across many diseases. m6A plays a pivotal role in controlling vital downstream molecules and critical biological pathways, contributing to the pathogenesis and evolution of numerous conditions. This review provides an overview of m6A demethylases, explicitly detailing the structural and functional characteristics of FTO and ALKBH5. Additionally, we explore their distinct involvement in various diseases, examine factors regulating their expression, and discuss the progress in inhibitor development.
{"title":"Insights into the m<sup>6</sup>A demethylases FTO and ALKBH5 : structural, biological function, and inhibitor development.","authors":"Zewei Gao, Xuan Zha, Min Li, Xueli Xia, Shengjun Wang","doi":"10.1186/s13578-024-01286-6","DOIUrl":"10.1186/s13578-024-01286-6","url":null,"abstract":"<p><p>N6-methyladenosine (m<sup>6</sup>A) is dynamically regulated by methyltransferases (termed \"writers\") and demethylases (referred to as \"erasers\"), facilitating a reversible modulation. Changes in m<sup>6</sup>A levels significantly influence cellular functions, such as RNA export from the nucleus, mRNA metabolism, protein synthesis, and RNA splicing. They are intricately associated with a spectrum of pathologies. Moreover, dysregulation of m<sup>6</sup>A modulation has emerged as a promising therapeutic target across many diseases. m<sup>6</sup>A plays a pivotal role in controlling vital downstream molecules and critical biological pathways, contributing to the pathogenesis and evolution of numerous conditions. This review provides an overview of m<sup>6</sup>A demethylases, explicitly detailing the structural and functional characteristics of FTO and ALKBH5. Additionally, we explore their distinct involvement in various diseases, examine factors regulating their expression, and discuss the progress in inhibitor development.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"14 1","pages":"108"},"PeriodicalIF":6.1,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351023/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The impact of acrylamide (ACR) on learning and memory has garnered considerable attention. However, the targets and mechanisms are still unclear.
Results: Elongation factor 2 (eEF2) was significantly upregulated in the results of serum proteomics. Results from in vitro and in vivo experiments indicated a notable upregulation of Eukaryotic elongation factor 2 kinase (eEF2K), the sole kinase responsible for eEF2 phosphorylation, following exposure to ACR (P < 0.05). Subsequent in vitro experiments using eEF2K siRNA and in vivo experiments with eEF2K-knockout mice demonstrated significant improvements in abnormal indicators related to ACR-induced learning and memory deficits (P < 0.05). Proteomic analysis of the hippocampus revealed Lpcat1 as a crucial downstream protein regulated by eEF2K. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that eEF2K may play a role in the process of ACR-induced learning and memory impairment by affecting ether lipid metabolism.
Conclusions: In summary, eEF2K as a pivotal treatment target in the mechanisms underlying ACR-induced learning and memory impairment, and studies have shown that it provides robust evidence for potential clinical interventions targeting ACR-induced impairments.
{"title":"Reduction of eEF2 kinase alleviates the learning and memory impairment caused by acrylamide.","authors":"Xiao-Li Wang, Ru-Nan Zhang, Yu-Lin Pan, Zhi-Ming Li, Hong-Qiu Li, Ya-Ting Lei, Fang-Fang Zhao, Xiao-Xiao Hao, Wei-Wei Ma, Cui-Ping Yu, Hong-Wei Yao, Xin-Yu Wang, Jun-Jie Lv, Yong-Hui Wu, Sheng-Yuan Wang","doi":"10.1186/s13578-024-01285-7","DOIUrl":"10.1186/s13578-024-01285-7","url":null,"abstract":"<p><strong>Background: </strong>The impact of acrylamide (ACR) on learning and memory has garnered considerable attention. However, the targets and mechanisms are still unclear.</p><p><strong>Results: </strong>Elongation factor 2 (eEF2) was significantly upregulated in the results of serum proteomics. Results from in vitro and in vivo experiments indicated a notable upregulation of Eukaryotic elongation factor 2 kinase (eEF2K), the sole kinase responsible for eEF2 phosphorylation, following exposure to ACR (P < 0.05). Subsequent in vitro experiments using eEF2K siRNA and in vivo experiments with eEF2K-knockout mice demonstrated significant improvements in abnormal indicators related to ACR-induced learning and memory deficits (P < 0.05). Proteomic analysis of the hippocampus revealed Lpcat1 as a crucial downstream protein regulated by eEF2K. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that eEF2K may play a role in the process of ACR-induced learning and memory impairment by affecting ether lipid metabolism.</p><p><strong>Conclusions: </strong>In summary, eEF2K as a pivotal treatment target in the mechanisms underlying ACR-induced learning and memory impairment, and studies have shown that it provides robust evidence for potential clinical interventions targeting ACR-induced impairments.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"14 1","pages":"106"},"PeriodicalIF":6.1,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344312/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}