首页 > 最新文献

Advances in Mathematical Physics最新文献

英文 中文
A New Fundamental Asymmetric Wave Equation and Its Application to Acoustic Wave Propagation 一个新的基本不对称波动方程及其在声波传播中的应用
IF 1.2 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL Pub Date : 2022-11-04 DOI: 10.1155/2023/5736419
Z. Musielak
The irreducible representations of the extended Galilean group are used to derive the symmetric and asymmetric wave equations. It is shown that among these equations only a new asymmetric wave equation is fundamental. By being fundamental the equation gives the most complete description of propagating waves as it accounts for the Doppler effect, forward and backward waves, and makes the wave speed to be the same in all inertial frames. To demonstrate these properties, the equation is applied to acoustic wave propagation in an isothermal atmosphere, and to determine Lamb’s cutoff frequency.
利用扩展伽利略群的不可约表示,导出了对称和非对称波动方程。结果表明,在这些方程中,只有一个新的非对称波动方程是基本的。作为基础,该方程给出了传播波的最完整描述,因为它考虑了多普勒效应、前向波和后向波,并使所有惯性系中的波速相同。为了证明这些特性,将该方程应用于等温大气中的声波传播,并确定兰姆的截止频率。
{"title":"A New Fundamental Asymmetric Wave Equation and Its Application to Acoustic Wave Propagation","authors":"Z. Musielak","doi":"10.1155/2023/5736419","DOIUrl":"https://doi.org/10.1155/2023/5736419","url":null,"abstract":"The irreducible representations of the extended Galilean group are used to derive the symmetric and asymmetric wave equations. It is shown that among these equations only a new asymmetric wave equation is fundamental. By being fundamental the equation gives the most complete description of propagating waves as it accounts for the Doppler effect, forward and backward waves, and makes the wave speed to be the same in all inertial frames. To demonstrate these properties, the equation is applied to acoustic wave propagation in an isothermal atmosphere, and to determine Lamb’s cutoff frequency.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45860714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of Reciprocal Thermal Conductivity on Free Convection Flow along a Wavy Vertical Surface 波浪形垂直表面自由对流流动的倒数导热系数分析
IF 1.2 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL Pub Date : 2022-11-02 DOI: 10.1155/2022/6389275
T. Saha, N. Parveen, T. Islam
The effects of thermal conductivity which depend on temperature are conversely proportional with the linear function of temperature on free convective flow where the fluid is viscous and incompressible along a heated uniform and the vertical wavy surface has been examined in this study. The boundary layer equations with the associated boundary conditions that govern the flow are converted into a nondimensional form by using an appropriate transformation. In the domain of a vertical plate that is flat, the resulting method of nonlinear PDEs is mapped and then worked out numerically by applying the implicit central finite difference technique with Newton’s quasilinearization method, and the block Thomas algorithm is well known as the Keller-box method. The outputs are obtained in the terms of the heat transferring rate, the frictional coefficient of skin, the isotherms, and streamlines. The outcomes showed that the local heat transferring rate, the local skin friction coefficient, the temperature, and the velocity all are decreasing, and both the thermal layer of boundary and velocity become narrower with the rising values of reciprocal variation of temperature-dependent thermal conductivity. On the other hand, the friction coefficient of skin, the velocity, and the temperature decrease where the friction coefficient of skin and velocity decrease by 43% and 64%, respectively, but the heat transfer rate increases by 61% approximately, and both the boundary layer thermal and velocity become thinner when the Prandtl number increases.
在本研究中,研究了流体沿受热均匀面和垂直波浪面具有粘性和不可压缩性的自由对流中,取决于温度的热导率的影响与温度的线性函数成反比。通过使用适当的变换,将具有控制流动的相关边界条件的边界层方程转换为无量纲形式。在平面垂直板的域中,应用隐式中心有限差分技术和牛顿拟线性化方法,映射并数值求解了非线性偏微分方程的生成方法,块-托马斯算法被称为Keller盒法。输出是根据传热率、皮肤摩擦系数、等温线和流线获得的。结果表明,随着温度相关导热系数倒数变化值的增加,局部传热率、局部皮肤摩擦系数、温度和速度都在下降,边界热层和速度都变窄。另一方面,当表面摩擦系数和速度分别降低43%和64%时,表面摩擦系数、速度和温度降低,但传热率增加了约61%,并且当普朗特数增加时,边界层的热和速度都变薄。
{"title":"Analysis of Reciprocal Thermal Conductivity on Free Convection Flow along a Wavy Vertical Surface","authors":"T. Saha, N. Parveen, T. Islam","doi":"10.1155/2022/6389275","DOIUrl":"https://doi.org/10.1155/2022/6389275","url":null,"abstract":"The effects of thermal conductivity which depend on temperature are conversely proportional with the linear function of temperature on free convective flow where the fluid is viscous and incompressible along a heated uniform and the vertical wavy surface has been examined in this study. The boundary layer equations with the associated boundary conditions that govern the flow are converted into a nondimensional form by using an appropriate transformation. In the domain of a vertical plate that is flat, the resulting method of nonlinear PDEs is mapped and then worked out numerically by applying the implicit central finite difference technique with Newton’s quasilinearization method, and the block Thomas algorithm is well known as the Keller-box method. The outputs are obtained in the terms of the heat transferring rate, the frictional coefficient of skin, the isotherms, and streamlines. The outcomes showed that the local heat transferring rate, the local skin friction coefficient, the temperature, and the velocity all are decreasing, and both the thermal layer of boundary and velocity become narrower with the rising values of reciprocal variation of temperature-dependent thermal conductivity. On the other hand, the friction coefficient of skin, the velocity, and the temperature decrease where the friction coefficient of skin and velocity decrease by 43% and 64%, respectively, but the heat transfer rate increases by 61% approximately, and both the boundary layer thermal and velocity become thinner when the Prandtl number increases.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42771492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symmetry Analysis, Invariant Solutions, and Conservation Laws of Fractional KdV-Like Equation 分数KdV类方程的对称性分析、不变解和守恒定律
IF 1.2 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL Pub Date : 2022-10-28 DOI: 10.1155/2022/5825938
Maria Ihsane El Bahi, K. Hilal
In this paper, Lie symmetries of time-fractional KdV-Like equation with Riemann-Liouville derivative are performed. With the aid of infinitesimal symmetries, the vector fields and symmetry reductions of the equation are constructed, respectively; as a result, the invariant solutions are acquired in one case; we show that the KdV-like equation can be reduced to a fractional ordinary differential equation (FODE) which is connected with the Erdélyi-Kober functional derivative; for this kind of reduced form, we use the power series method for extracting the explicit solutions in the form of power series solution. Finally, Ibragimov’s theorem has been employed to construct the conservation laws.
研究了一类具有Riemann-Liouville导数的时间分数阶类kdv方程的Lie对称性。借助于无穷小对称,分别构造了方程的向量场和对称约简;结果,在一种情况下得到了不变解;我们证明了类kdv方程可以简化为一个分数阶常微分方程(FODE),该方程与erd - kober泛函导数有关;对于这种简化形式,我们使用幂级数方法来提取幂级数解形式的显式解。最后,利用伊布拉吉莫夫定理构造了守恒定律。
{"title":"Symmetry Analysis, Invariant Solutions, and Conservation Laws of Fractional KdV-Like Equation","authors":"Maria Ihsane El Bahi, K. Hilal","doi":"10.1155/2022/5825938","DOIUrl":"https://doi.org/10.1155/2022/5825938","url":null,"abstract":"In this paper, Lie symmetries of time-fractional KdV-Like equation with Riemann-Liouville derivative are performed. With the aid of infinitesimal symmetries, the vector fields and symmetry reductions of the equation are constructed, respectively; as a result, the invariant solutions are acquired in one case; we show that the KdV-like equation can be reduced to a fractional ordinary differential equation (FODE) which is connected with the Erdélyi-Kober functional derivative; for this kind of reduced form, we use the power series method for extracting the explicit solutions in the form of power series solution. Finally, Ibragimov’s theorem has been employed to construct the conservation laws.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41753718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Stationary Solutions to the Three-Dimensional Compressible Nonisothermal Nematic Liquid Crystal Flows 三维可压缩非等温向列液晶流动的固定解
IF 1.2 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL Pub Date : 2022-10-27 DOI: 10.1155/2022/4695308
Wanchen Cui, H. Cai
In this paper, we study the stationary compressible nonisothermal nematic liquid crystal flows affected by the external force of general form in three-dimensional space. By using the contraction mapping principle, we prove the existence and uniqueness of strong solution around the constant state in some suitable function space.
本文研究了三维空间中一般形式外力作用下的静态可压缩非等温向列液晶流动。利用收缩映射原理,证明了在合适的函数空间中围绕常态强解的存在唯一性。
{"title":"Stationary Solutions to the Three-Dimensional Compressible Nonisothermal Nematic Liquid Crystal Flows","authors":"Wanchen Cui, H. Cai","doi":"10.1155/2022/4695308","DOIUrl":"https://doi.org/10.1155/2022/4695308","url":null,"abstract":"In this paper, we study the stationary compressible nonisothermal nematic liquid crystal flows affected by the external force of general form in three-dimensional space. By using the contraction mapping principle, we prove the existence and uniqueness of strong solution around the constant state in some suitable function space.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43584793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approximate Analytical Solution to Nonlinear Delay Differential Equations by Using Sumudu Iterative Method 非线性时滞微分方程的Sumudu迭代近似解析解
IF 1.2 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL Pub Date : 2022-10-19 DOI: 10.1155/2022/2466367
Asfaw Tsegaye Moltot, Alemayehu Tamirie Deresse
In this study, an efficient analytical method called the Sumudu Iterative Method (SIM) is introduced to obtain the solutions for the nonlinear delay differential equation (NDDE). This technique is a mixture of the Sumudu transform method and the new iterative method. The Sumudu transform method is used in this approach to solve the equation’s linear portion, and the new iterative method’s successive iterative producers are used to solve the equation’s nonlinear portion. Some basic properties and theorems which help us to solve the governing problem using the suggested approach are revised. The benefit of this approach is that it solves the equations directly and reliably, without the prerequisite for perturbations or linearization or extensive computer labor. Five sample instances from the DDEs are given to confirm the method’s reliability and effectiveness, and the outcomes are compared with the exact solution with the assistance of tables and graphs after taking the sum of the first eight iterations of the approximate solution. Furthermore, the findings indicate that the recommended strategy is encouraging for solving other types of nonlinear delay differential equations.
在本研究中,引入了一种有效的分析方法Sumudu迭代法(SIM)来获得非线性延迟微分方程(NDDE)的解。该技术是Sumudu变换方法和新迭代方法的混合。该方法使用Sumudu变换方法求解方程的线性部分,使用新迭代方法的逐次迭代生成器求解方程的非线性部分。修正了一些基本性质和定理,这些性质和定理有助于我们用所提出的方法解决控制问题。这种方法的好处是,它直接可靠地求解方程,而不需要扰动或线性化或大量的计算机工作。给出了DDE的五个样本实例,以证实该方法的可靠性和有效性,并在取近似解的前八次迭代之和后,借助表格和图表将结果与精确解进行比较。此外,研究结果表明,推荐的策略对于求解其他类型的非线性时滞微分方程是令人鼓舞的。
{"title":"Approximate Analytical Solution to Nonlinear Delay Differential Equations by Using Sumudu Iterative Method","authors":"Asfaw Tsegaye Moltot, Alemayehu Tamirie Deresse","doi":"10.1155/2022/2466367","DOIUrl":"https://doi.org/10.1155/2022/2466367","url":null,"abstract":"In this study, an efficient analytical method called the Sumudu Iterative Method (SIM) is introduced to obtain the solutions for the nonlinear delay differential equation (NDDE). This technique is a mixture of the Sumudu transform method and the new iterative method. The Sumudu transform method is used in this approach to solve the equation’s linear portion, and the new iterative method’s successive iterative producers are used to solve the equation’s nonlinear portion. Some basic properties and theorems which help us to solve the governing problem using the suggested approach are revised. The benefit of this approach is that it solves the equations directly and reliably, without the prerequisite for perturbations or linearization or extensive computer labor. Five sample instances from the DDEs are given to confirm the method’s reliability and effectiveness, and the outcomes are compared with the exact solution with the assistance of tables and graphs after taking the sum of the first eight iterations of the approximate solution. Furthermore, the findings indicate that the recommended strategy is encouraging for solving other types of nonlinear delay differential equations.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41364000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Analysis of the Relationship of Video Text and Urban Image Communication Based on the Calculation Method of Wedge Diffraction in Geometrical Optics 基于几何光学楔形衍射计算方法的视频文本与城市图像通信关系分析
IF 1.2 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL Pub Date : 2022-10-15 DOI: 10.1155/2022/1528663
Qigan Sun
City image reflects a city’s comprehensive competitiveness and is also an important indicator of a city’s spiritual civilization and urbanization process. A good city image is an intangible asset of a city, which can contribute to the political, economic, cultural, and social construction of a city and create more value for the city. This paper mainly discusses the research status and research methods of urban image at home and abroad. Based on the calculation method of wedge diffraction in geometrical optics, various heuristic uniform diffraction formulas of lossy wedge are compared and analyzed, and a better heuristic formula of uniform diffraction of lossy wedge is given. Finally, the selection of important channel parameters in the propagation channel is discussed, and a method for predicting the statistical parameters of the propagation channel of urban images based on the results of ray tracing is proposed. Then, the channel parameters are analyzed by using statistical parameters, and the channel parameters of the city image propagation model are analyzed.
城市形象反映了一个城市的综合竞争力,也是衡量一个城市精神文明程度和城市化进程的重要标志。良好的城市形象是城市的无形资产,可以为城市的政治、经济、文化、社会建设做出贡献,为城市创造更多的价值。本文主要论述了国内外城市形象的研究现状和研究方法。根据几何光学中楔形衍射的计算方法,对各种有耗楔形均匀衍射的启发式公式进行了比较分析,给出了较好的有耗楔形均匀衍射的启发式公式。最后,讨论了传播通道中重要通道参数的选择,提出了一种基于光线追踪结果预测城市图像传播通道统计参数的方法。然后,利用统计参数对通道参数进行分析,对城市图像传播模型的通道参数进行分析。
{"title":"Analysis of the Relationship of Video Text and Urban Image Communication Based on the Calculation Method of Wedge Diffraction in Geometrical Optics","authors":"Qigan Sun","doi":"10.1155/2022/1528663","DOIUrl":"https://doi.org/10.1155/2022/1528663","url":null,"abstract":"City image reflects a city’s comprehensive competitiveness and is also an important indicator of a city’s spiritual civilization and urbanization process. A good city image is an intangible asset of a city, which can contribute to the political, economic, cultural, and social construction of a city and create more value for the city. This paper mainly discusses the research status and research methods of urban image at home and abroad. Based on the calculation method of wedge diffraction in geometrical optics, various heuristic uniform diffraction formulas of lossy wedge are compared and analyzed, and a better heuristic formula of uniform diffraction of lossy wedge is given. Finally, the selection of important channel parameters in the propagation channel is discussed, and a method for predicting the statistical parameters of the propagation channel of urban images based on the results of ray tracing is proposed. Then, the channel parameters are analyzed by using statistical parameters, and the channel parameters of the city image propagation model are analyzed.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2022-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46927431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “Generalization Contractive Mappings on Rectangular b-Metric Space” 对“矩形b-度量空间上的广义压缩映射”的更正
IF 1.2 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL Pub Date : 2022-10-14 DOI: 10.1155/2022/9761017
Jayshree Patil, B. Hardan, Ahmed A. Hamoud, A. Bachhav, H. Emadifar, H. Günerhan
{"title":"Corrigendum to “Generalization Contractive Mappings on Rectangular b-Metric Space”","authors":"Jayshree Patil, B. Hardan, Ahmed A. Hamoud, A. Bachhav, H. Emadifar, H. Günerhan","doi":"10.1155/2022/9761017","DOIUrl":"https://doi.org/10.1155/2022/9761017","url":null,"abstract":"<jats:p />","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43848709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
ABC Fractional Derivative for Varicella-Zoster Virus Using Tw 用Tw对水痘-带状疱疹病毒进行A - B - C分数阶导数
IF 1.2 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL Pub Date : 2022-10-14 DOI: 10.1155/2022/1725110
Jirong Yang, F. Afzal, Perpetual Appiah
Chickenpox or varicella is an infectious disease caused by the varicella-zoster virus V Z V . This virus is the cause of chickenpox (usually a primary infection in the nonimmune host) and herpes zoster. In this paper, a compartmental model for the dynamics of V Z transmission with the effect of vaccination is solved using the A B C fractional derivative. The possibility of using the fractal dimension as a biomarker to identify different diseases is being investigated. The problem is investigated in two different levels of research using two scale dimensions. To ascertain the existence and uniqueness of the solution, we qualitatively evaluate the model. We have used the Euler method to compute the numerical solution for the system. At the end, we provide the graphical results showing the effectiveness of two-scale dimension and fractional calculus in the current model.
水痘是由水痘-带状疱疹病毒V Z V引起的一种传染病。这种病毒是水痘(通常是非免疫宿主的原发性感染)和带状疱疹的病因。在本文中,使用a B C分数导数求解了具有疫苗接种效应的V Z传播动力学的房室模型。目前正在研究使用分形维数作为生物标志物来识别不同疾病的可能性。该问题在两个不同层次的研究中使用两个尺度维度进行了调查。为了确定解的存在性和唯一性,我们对模型进行了定性评估。我们已经使用欧拉方法来计算该系统的数值解。最后,我们提供了图形结果,显示了在当前模型中二维和分数演算的有效性。
{"title":"<math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\u0000 <mi mathvariant=\"script\">A</mi>\u0000 <mi mathvariant=\"script\">B</mi>\u0000 <mi mathvariant=\"script\">C</mi>\u0000 </math> Fractional Derivative for Varicella-Zoster Virus Using Tw","authors":"Jirong Yang, F. Afzal, Perpetual Appiah","doi":"10.1155/2022/1725110","DOIUrl":"https://doi.org/10.1155/2022/1725110","url":null,"abstract":"Chickenpox or varicella is an infectious disease caused by the varicella-zoster virus \u0000 \u0000 \u0000 \u0000 V\u0000 Z\u0000 V\u0000 \u0000 \u0000 \u0000 . This virus is the cause of chickenpox (usually a primary infection in the nonimmune host) and herpes zoster. In this paper, a compartmental model for the dynamics of \u0000 \u0000 V\u0000 Z\u0000 \u0000 transmission with the effect of vaccination is solved using the \u0000 \u0000 A\u0000 B\u0000 C\u0000 \u0000 fractional derivative. The possibility of using the fractal dimension as a biomarker to identify different diseases is being investigated. The problem is investigated in two different levels of research using two scale dimensions. To ascertain the existence and uniqueness of the solution, we qualitatively evaluate the model. We have used the Euler method to compute the numerical solution for the system. At the end, we provide the graphical results showing the effectiveness of two-scale dimension and fractional calculus in the current model.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45830090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of Virtual Reality Technology and Unsupervised Video Object Segmentation Algorithm in 3D Model Modeling 虚拟现实技术和无监督视频对象分割算法在三维模型建模中的应用
IF 1.2 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL Pub Date : 2022-10-13 DOI: 10.1155/2022/4743456
Hui-Lin Yang, Qiuming Liu
3D modeling is the most basic technology to realize VR (virtual reality). VOS (video object segmentation) is a pixel-level task, which aims to segment the moving objects in each frame of the video. Combining theory with practice, this paper studies the process of 3D virtual scene construction, and on this basis, researches the optimization methods of 3D modeling. In this paper, an unsupervised VOS algorithm is proposed, which initializes the target by combining the moving edge of the target image and the appearance edge of the target and assists the modeling of the VR 3D model, which has reference significance for the future construction of large-scale VR scenes. The results show that the segmentation accuracy of this algorithm can reach more than 94%, which is about 9% higher than that of the FASTSEG method. 3D modeling technology is the foundation of 3D virtual scene; so, it is of practical significance to study the application of 3D modeling technology. At the same time, it is of positive significance to use the unsupervised VOS algorithm to assist the VR 3D model modeling.
3D建模是实现VR(虚拟现实)的最基本技术。视频对象分割(VOS)是一种像素级的任务,其目的是分割视频中每一帧的运动对象。本文结合理论与实践,研究了三维虚拟场景的构建过程,并在此基础上研究了三维建模的优化方法。本文提出了一种无监督VOS算法,通过结合目标图像的运动边缘和目标的外观边缘对目标进行初始化,辅助VR三维模型的建模,对未来大规模VR场景的构建具有参考意义。结果表明,该算法的分割准确率可达到94%以上,比FASTSEG方法提高约9%。三维建模技术是三维虚拟场景的基础;因此,研究三维建模技术的应用具有重要的现实意义。同时,利用无监督VOS算法辅助VR三维模型建模也具有积极意义。
{"title":"Application of Virtual Reality Technology and Unsupervised Video Object Segmentation Algorithm in 3D Model Modeling","authors":"Hui-Lin Yang, Qiuming Liu","doi":"10.1155/2022/4743456","DOIUrl":"https://doi.org/10.1155/2022/4743456","url":null,"abstract":"3D modeling is the most basic technology to realize VR (virtual reality). VOS (video object segmentation) is a pixel-level task, which aims to segment the moving objects in each frame of the video. Combining theory with practice, this paper studies the process of 3D virtual scene construction, and on this basis, researches the optimization methods of 3D modeling. In this paper, an unsupervised VOS algorithm is proposed, which initializes the target by combining the moving edge of the target image and the appearance edge of the target and assists the modeling of the VR 3D model, which has reference significance for the future construction of large-scale VR scenes. The results show that the segmentation accuracy of this algorithm can reach more than 94%, which is about 9% higher than that of the FASTSEG method. 3D modeling technology is the foundation of 3D virtual scene; so, it is of practical significance to study the application of 3D modeling technology. At the same time, it is of positive significance to use the unsupervised VOS algorithm to assist the VR 3D model modeling.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47955128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Video Visualization Technology and Its Application in Health Statistics Teaching for College Students 视频可视化技术及其在大学生健康统计教学中的应用
IF 1.2 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL Pub Date : 2022-10-13 DOI: 10.1155/2022/3212014
Chengfei Li, Yuan-long Xie, Shuanbao Li
In view of the present situation of “learning difficulty” in health statistics, this paper proposes a video visualization technology based on the convolutional neural network, which updates parameters by calculating the gradient of loss function to obtain accurate or nearly accurate loss function. Taking the students from 2014 to 2017 in a university in Henan as the research object, this paper analyzes the video visualization technology and its application effect on the teaching of college students’ health statistics from the aspects of students’ course awareness, learning behavior, communication between teachers and students, knowledge mastery, and course satisfaction. The results show that the external model load difference between each explicit variable and latent variable is statistically significant. Learning behavior and communication between teachers and students have a direct impact on the mastery of knowledge, and the degree of influence from high to low is as follows: learning behavior and communication between teachers and students. The teaching effect model of health statistics based on video visualization technology of the convolutional neural network has certain practicability.
针对健康统计学“学习困难”的现状,本文提出了一种基于卷积神经网络的视频可视化技术,通过计算损失函数的梯度来更新参数,以获得准确或接近准确的损失函数。本文以河南某高校2014-2017年学生为研究对象,从学生的课程意识、学习行为、师生沟通、知识掌握、课程满意度等方面,分析了视频可视化技术及其在大学生健康统计学教学中的应用效果。结果表明,各显变量和潜变量的外模负荷差异具有统计学意义。教师和学生之间的学习行为和交流直接影响知识的掌握,影响程度从高到低依次为:教师和学生的学习行为与交流。基于卷积神经网络视频可视化技术的健康统计学教学效果模型具有一定的实用性。
{"title":"Video Visualization Technology and Its Application in Health Statistics Teaching for College Students","authors":"Chengfei Li, Yuan-long Xie, Shuanbao Li","doi":"10.1155/2022/3212014","DOIUrl":"https://doi.org/10.1155/2022/3212014","url":null,"abstract":"In view of the present situation of “learning difficulty” in health statistics, this paper proposes a video visualization technology based on the convolutional neural network, which updates parameters by calculating the gradient of loss function to obtain accurate or nearly accurate loss function. Taking the students from 2014 to 2017 in a university in Henan as the research object, this paper analyzes the video visualization technology and its application effect on the teaching of college students’ health statistics from the aspects of students’ course awareness, learning behavior, communication between teachers and students, knowledge mastery, and course satisfaction. The results show that the external model load difference between each explicit variable and latent variable is statistically significant. Learning behavior and communication between teachers and students have a direct impact on the mastery of knowledge, and the degree of influence from high to low is as follows: learning behavior and communication between teachers and students. The teaching effect model of health statistics based on video visualization technology of the convolutional neural network has certain practicability.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44644041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advances in Mathematical Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1