In this study, the Lie symmetry analysis is given for the time-fractional telegraph equation with the Riemann–Liouville derivative. This equation is useable to describe the physical processes of models possessing memory. By applying classical and nonclassical Lie symmetry analysis for the telegraph equation with α , β time-fractional derivatives and some technical computations, new infinitesimal generators are obtained. The actual methods give some classical symmetries while the nonclassical approach will bring back other symmetries to these equations. The similarity reduction and conservation laws to the fractional telegraph equation are found.
{"title":"Invariant Solutions and Conservation Laws of the Time-Fractional Telegraph Equation","authors":"R. Najafi, E. Çelik, Neslihan Uyanik","doi":"10.1155/2023/1294070","DOIUrl":"https://doi.org/10.1155/2023/1294070","url":null,"abstract":"In this study, the Lie symmetry analysis is given for the time-fractional telegraph equation with the Riemann–Liouville derivative. This equation is useable to describe the physical processes of models possessing memory. By applying classical and nonclassical Lie symmetry analysis for the telegraph equation with \u0000 \u0000 α\u0000 ,\u0000 β\u0000 \u0000 time-fractional derivatives and some technical computations, new infinitesimal generators are obtained. The actual methods give some classical symmetries while the nonclassical approach will bring back other symmetries to these equations. The similarity reduction and conservation laws to the fractional telegraph equation are found.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48492360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper uses Müntz orthogonal functions to numerically solve the fractional Bagley–Torvik equation with initial and boundary conditions. Müntz orthogonal functions are defined on the interval 0 , 1 and have simple and distinct real roots on this interval. For the function f ∈ L 2 0 , 1 , we obtain the best unique approximation using Müntz orthogonal functions. We obtain the Riemann–Liouville fractional integral operator for Müntz orthogonal functions so that we can reduce the complexity of calculations and increase the speed of solving the problem, which can be seen in the process of running the Maple program. To solve the fractional Bagley–Torvik equation with initial and boundary conditions, we use Müntz orthogonal functions and consider simple and distinct real roots of Müntz orthogonal functions as collocation points. By using the Riemann–Liouville fractional integral operator that we define for the Müntz orthogonal functions, the process of numerically solving the fractional Bagley–Torvik equation that is solved using Müntz orthogonal functions is reduced, and finally, we reach a system of algebraic equations. By solving algebraic equations and obtaining the vector of unknowns, the fractional Bagley–Torvik equation is solved using Müntz orthogonal functions, and the error value of the method can be calculated. The low error value of this numerical solution method shows the high accuracy of this method. With the help of the Müntz functions, we obtain the error bound for the approximation of the function. We have obtained the error bounds for the numerical method using which we solved the fractional Bagley–Torvik equation with initial and boundary conditions. Finally, we have given a numerical example to show the accuracy of the solution of the method presented in this paper. The results of solving this example using Müntz orthogonal functions and comparing the results with other methods that have been used the solve this example show the higher accuracy of the method proposed in this paper.
{"title":"Application of Müntz Orthogonal Functions on the Solution of the Fractional Bagley–Torvik Equation Using Collocation Method with Error Stimate","authors":"S. Akhlaghi, M. Tavassoli Kajani, M. Allame","doi":"10.1155/2023/5520787","DOIUrl":"https://doi.org/10.1155/2023/5520787","url":null,"abstract":"This paper uses Müntz orthogonal functions to numerically solve the fractional Bagley–Torvik equation with initial and boundary conditions. Müntz orthogonal functions are defined on the interval \u0000 \u0000 \u0000 \u0000 0\u0000 ,\u0000 1\u0000 \u0000 \u0000 \u0000 and have simple and distinct real roots on this interval. For the function \u0000 \u0000 f\u0000 ∈\u0000 \u0000 L\u0000 \u0000 2\u0000 \u0000 \u0000 \u0000 \u0000 0\u0000 ,\u0000 1\u0000 \u0000 \u0000 \u0000 , we obtain the best unique approximation using Müntz orthogonal functions. We obtain the Riemann–Liouville fractional integral operator for Müntz orthogonal functions so that we can reduce the complexity of calculations and increase the speed of solving the problem, which can be seen in the process of running the Maple program. To solve the fractional Bagley–Torvik equation with initial and boundary conditions, we use Müntz orthogonal functions and consider simple and distinct real roots of Müntz orthogonal functions as collocation points. By using the Riemann–Liouville fractional integral operator that we define for the Müntz orthogonal functions, the process of numerically solving the fractional Bagley–Torvik equation that is solved using Müntz orthogonal functions is reduced, and finally, we reach a system of algebraic equations. By solving algebraic equations and obtaining the vector of unknowns, the fractional Bagley–Torvik equation is solved using Müntz orthogonal functions, and the error value of the method can be calculated. The low error value of this numerical solution method shows the high accuracy of this method. With the help of the Müntz functions, we obtain the error bound for the approximation of the function. We have obtained the error bounds for the numerical method using which we solved the fractional Bagley–Torvik equation with initial and boundary conditions. Finally, we have given a numerical example to show the accuracy of the solution of the method presented in this paper. The results of solving this example using Müntz orthogonal functions and comparing the results with other methods that have been used the solve this example show the higher accuracy of the method proposed in this paper.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43515610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retracted: Use Python Data Analysis to Gain Insights from Airbnb Hosts","authors":"Advances in Mathematical Physics","doi":"10.1155/2023/9893030","DOIUrl":"https://doi.org/10.1155/2023/9893030","url":null,"abstract":"<jats:p />","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45223338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, the longitudinal model of an uncertain aircraft is taken as the research object, and the aircraft path inclination is controlled by controlling the input rudder deflection angle. An adaptive iterative learning control (AILC) scheme is proposed to solve the accurate tracking control problem of the flight path inclination on a finite time interval. The aircraft track angle system is abstractly modeled to obtain a triangular model in the form of strict feedback. For the abstracted strict feedback model, the fuzzy logic is used to approximate the uncertain part of the model. A command filter and an error compensation mechanism are introduced to prevent the computational bloat problem caused by excessive system order, and a convergent series sequence is used to deal with the truncation error caused by the approximation of the fuzzy logic. Based on the Lyapunov stability theorem, all signals of the closed-loop system are bounded on the finite time interval 0 , T , and the output of the system can track the desired trajectory accurately. Finally, the feasibility and effectiveness of the method are verified by MATLAB simulation results.
{"title":"Command Filter AILC for Finite Time Accurate Tracking of Aircraft Track Angle System Based on Fuzzy Logic","authors":"Chunli Zhang, Xu Tian, Yangjie Gao, F. Qian","doi":"10.1155/2023/4744873","DOIUrl":"https://doi.org/10.1155/2023/4744873","url":null,"abstract":"In this paper, the longitudinal model of an uncertain aircraft is taken as the research object, and the aircraft path inclination is controlled by controlling the input rudder deflection angle. An adaptive iterative learning control (AILC) scheme is proposed to solve the accurate tracking control problem of the flight path inclination on a finite time interval. The aircraft track angle system is abstractly modeled to obtain a triangular model in the form of strict feedback. For the abstracted strict feedback model, the fuzzy logic is used to approximate the uncertain part of the model. A command filter and an error compensation mechanism are introduced to prevent the computational bloat problem caused by excessive system order, and a convergent series sequence is used to deal with the truncation error caused by the approximation of the fuzzy logic. Based on the Lyapunov stability theorem, all signals of the closed-loop system are bounded on the finite time interval \u0000 \u0000 \u0000 \u0000 0\u0000 ,\u0000 T\u0000 \u0000 \u0000 \u0000 , and the output of the system can track the desired trajectory accurately. Finally, the feasibility and effectiveness of the method are verified by MATLAB simulation results.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47142404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
There are some previous works on designing efficient and high-order numerical methods of density estimation for stochastic partial differential equation (SPDE) driven by multivariate Gaussian random variables. They mostly focus on proposing numerical methods of density estimation for SPDE with independent random variables and rarely research density estimation for SPDE is driven by multivariate Gaussian random variables. In this paper, we propose a high-order algorithm of gPC-based density estimation where SPDE driven by multivariate Gaussian random variables. Our main techniques are (1) we build a new multivariate orthogonal basis by adopting the Gauss–Schmidt orthogonalization; (2) with the newly constructed orthogonal basis in hand, we first assume the unknown function in the SPDE has the stochastic general polynomial chaos (gPC) expansion, second implement the stochastic gPC expansion for the SPDE in the multivariate Gaussian measure space, and third we obtain and numerical calculation deterministic differential equations for the coefficients of the expansion; (3) we used high-order algorithm of gPC-based for density estimation and moment estimation. We apply the newly proposed numerical method to a known random function, stochastic 1D wave equation, and stochastic 2D Schnakenberg model, respectively. All the presented stochastic equations are driven by bivariate Gaussian random variables. The efficiency is compared with the Monte-Carlo method based on the known random function.
{"title":"High-Order Spectral Method of Density Estimation for Stochastic Differential Equation Driven by Multivariate Gaussian Random Variables","authors":"Hongling Xie","doi":"10.1155/2023/9974539","DOIUrl":"https://doi.org/10.1155/2023/9974539","url":null,"abstract":"There are some previous works on designing efficient and high-order numerical methods of density estimation for stochastic partial differential equation (SPDE) driven by multivariate Gaussian random variables. They mostly focus on proposing numerical methods of density estimation for SPDE with independent random variables and rarely research density estimation for SPDE is driven by multivariate Gaussian random variables. In this paper, we propose a high-order algorithm of gPC-based density estimation where SPDE driven by multivariate Gaussian random variables. Our main techniques are (1) we build a new multivariate orthogonal basis by adopting the Gauss–Schmidt orthogonalization; (2) with the newly constructed orthogonal basis in hand, we first assume the unknown function in the SPDE has the stochastic general polynomial chaos (gPC) expansion, second implement the stochastic gPC expansion for the SPDE in the multivariate Gaussian measure space, and third we obtain and numerical calculation deterministic differential equations for the coefficients of the expansion; (3) we used high-order algorithm of gPC-based for density estimation and moment estimation. We apply the newly proposed numerical method to a known random function, stochastic 1D wave equation, and stochastic 2D Schnakenberg model, respectively. All the presented stochastic equations are driven by bivariate Gaussian random variables. The efficiency is compared with the Monte-Carlo method based on the known random function.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44104158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this manuscript, we introduce the notions of fuzzy strong controlled metric spaces, fuzzy strong controlled quasi-metric spaces, and non-Archimedean fuzzy strong controlled quasi-metric spaces and generalize the famous Banach contraction principle. We prove several fixed point results in the context of non-Archimedean fuzzy strong controlled quasi-metric space. Furthermore, we use our main result to obtain the existence of a solution for a recurrence problem linked with the study of Quicksort algorithms.
{"title":"Fixed Point Results in Fuzzy Strong Controlled Metric Spaces with an Application to the Domain Words","authors":"Aftab Hussain, Umar Ishtiaq, Hamed Al Sulami","doi":"10.1155/2023/4350504","DOIUrl":"https://doi.org/10.1155/2023/4350504","url":null,"abstract":"In this manuscript, we introduce the notions of fuzzy strong controlled metric spaces, fuzzy strong controlled quasi-metric spaces, and non-Archimedean fuzzy strong controlled quasi-metric spaces and generalize the famous Banach contraction principle. We prove several fixed point results in the context of non-Archimedean fuzzy strong controlled quasi-metric space. Furthermore, we use our main result to obtain the existence of a solution for a recurrence problem linked with the study of Quicksort algorithms.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41594584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neutrosophic logic is frequently applied to the engineering technology, scientific administration, and financial matters, among other fields. In addition, neutrosophic linear systems can be used to illustrate various practical problems. Due to the complexity of neutrosophic operators, however, solving linear neutrosophic systems is challenging. This work proposes a new straightforward method for solving the neutrosophic system of linear equations based on the neutrosophic structured element (NSE). Here unknown and right-hand side vectors are considered as triangular neutrosophic numbers. Based on the NSE, analytical expressions of the solution to this equation and its degrees are also provided. Finally, several examples of the methodology are provided.
{"title":"An Efficient Technique for Algebraic System of Linear Equations Based on Neutrosophic Structured Element","authors":"Wenbo Xu, Qunli Xia, Hitesh Mohapatra, Sangay Chedup","doi":"10.1155/2023/4469908","DOIUrl":"https://doi.org/10.1155/2023/4469908","url":null,"abstract":"Neutrosophic logic is frequently applied to the engineering technology, scientific administration, and financial matters, among other fields. In addition, neutrosophic linear systems can be used to illustrate various practical problems. Due to the complexity of neutrosophic operators, however, solving linear neutrosophic systems is challenging. This work proposes a new straightforward method for solving the neutrosophic system of linear equations based on the neutrosophic structured element (NSE). Here unknown and right-hand side vectors are considered as triangular neutrosophic numbers. Based on the NSE, analytical expressions of the solution to this equation and its degrees are also provided. Finally, several examples of the methodology are provided.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45000973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sharmin Akter, M. D. Hossain, M. F. Uddin, M. Hafez
This article deals with the basic features of collisional radial displacements in a prestressed thin elastic tube filled having inviscid fluid with the presence of nonlocal operator. By implementing the extended Poincare–Lighthill–Kuo method and a variational approach, the new two-sided beta time fractional Korteweg-de-Vries (BTF-KdV) equations are derived based on the concept of beta fractional derivative (BFD). Additionally, the BTF-KdV equations are suggested to observe the effect of related parameters on the local and nonlocal coherent head-on collision phenomena for the considered system. It is observed that the proposed equations along with their new solutions not only applicable with the presence of locality but also nonlocality to study the resonance wave phenomena in fluid-filled elastic tube. The outcomes reveal that the BFD and other physical parameters related to tube and fluid have a significant impact on the propagation of pressure wave structures.
{"title":"Collisional Solitons Described by Two-Sided Beta Time Fractional Korteweg-de Vries Equations in Fluid-Filled Elastic Tubes","authors":"Sharmin Akter, M. D. Hossain, M. F. Uddin, M. Hafez","doi":"10.1155/2023/9594339","DOIUrl":"https://doi.org/10.1155/2023/9594339","url":null,"abstract":"This article deals with the basic features of collisional radial displacements in a prestressed thin elastic tube filled having inviscid fluid with the presence of nonlocal operator. By implementing the extended Poincare–Lighthill–Kuo method and a variational approach, the new two-sided beta time fractional Korteweg-de-Vries (BTF-KdV) equations are derived based on the concept of beta fractional derivative (BFD). Additionally, the BTF-KdV equations are suggested to observe the effect of related parameters on the local and nonlocal coherent head-on collision phenomena for the considered system. It is observed that the proposed equations along with their new solutions not only applicable with the presence of locality but also nonlocality to study the resonance wave phenomena in fluid-filled elastic tube. The outcomes reveal that the BFD and other physical parameters related to tube and fluid have a significant impact on the propagation of pressure wave structures.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43155613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}