Pub Date : 2024-02-01Epub Date: 2023-08-28DOI: 10.1007/s13402-023-00856-z
Xiaoyu Li, Ran Kong, Wenhao Hou, Junxia Cao, Li Zhang, Xiaohong Qian, Lijiao Zhao, Wantao Ying
Objective and design: Pancreatic cancer is a highly malignant tumor that is well known for its poor prognosis. Based on glycosylation, we performed integrated quantitative N-glycoproteomics to investigate the synergistic anti-tumor effects of aspirin and gemcitabine on pancreatic cancer cells and explore the potential molecular mechanisms of chemotherapy in pancreatic cancer.
Methods and results: Two pancreatic cancer cell lines (PANC-1 and BxPC-3) were treated with gemcitabine, aspirin, and a combination (gemcitabine + aspirin). We found that the addition of aspirin enhanced the inhibitory effect of gemcitabine on the activity of PANC-1 and BxPC-3 cells. Quantitative N-glycoproteome, proteome, phosphorylation, and transcriptome data were obtained from integrated multi-omics analysis to evaluate the anti-tumor effects of aspirin and gemcitabine on pancreatic cancer cells. Mfuzz analysis of intact N-glycopeptide profiles revealed two consistent trends associated with the addition of aspirin, which showed a strong relationship between N-glycosylation and the synergistic effect of aspirin. Further analysis demonstrated that the dynamic regulation of sialylation and high-mannose glycoforms on ECM-related proteins (LAMP1, LAMP2, ITGA3, etc.) was a significant factor for the ability of aspirin to promote the anti-tumor activity of gemcitabine and the drug resistance of pancreatic cancer cells.
Conclusions: In-depth analysis of N-glycosylation-related processes and pathways in pancreatic cancer cells can provide new insight for future studies regarding pancreatic cancer therapeutic targets and drug resistance mechanisms.
{"title":"Integrative proteomics and n-glycoproteomics reveal the synergistic anti-tumor effects of aspirin- and gemcitabine-based chemotherapy on pancreatic cancer cells.","authors":"Xiaoyu Li, Ran Kong, Wenhao Hou, Junxia Cao, Li Zhang, Xiaohong Qian, Lijiao Zhao, Wantao Ying","doi":"10.1007/s13402-023-00856-z","DOIUrl":"10.1007/s13402-023-00856-z","url":null,"abstract":"<p><strong>Objective and design: </strong>Pancreatic cancer is a highly malignant tumor that is well known for its poor prognosis. Based on glycosylation, we performed integrated quantitative N-glycoproteomics to investigate the synergistic anti-tumor effects of aspirin and gemcitabine on pancreatic cancer cells and explore the potential molecular mechanisms of chemotherapy in pancreatic cancer.</p><p><strong>Methods and results: </strong>Two pancreatic cancer cell lines (PANC-1 and BxPC-3) were treated with gemcitabine, aspirin, and a combination (gemcitabine + aspirin). We found that the addition of aspirin enhanced the inhibitory effect of gemcitabine on the activity of PANC-1 and BxPC-3 cells. Quantitative N-glycoproteome, proteome, phosphorylation, and transcriptome data were obtained from integrated multi-omics analysis to evaluate the anti-tumor effects of aspirin and gemcitabine on pancreatic cancer cells. Mfuzz analysis of intact N-glycopeptide profiles revealed two consistent trends associated with the addition of aspirin, which showed a strong relationship between N-glycosylation and the synergistic effect of aspirin. Further analysis demonstrated that the dynamic regulation of sialylation and high-mannose glycoforms on ECM-related proteins (LAMP1, LAMP2, ITGA3, etc.) was a significant factor for the ability of aspirin to promote the anti-tumor activity of gemcitabine and the drug resistance of pancreatic cancer cells.</p><p><strong>Conclusions: </strong>In-depth analysis of N-glycosylation-related processes and pathways in pancreatic cancer cells can provide new insight for future studies regarding pancreatic cancer therapeutic targets and drug resistance mechanisms.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"141-156"},"PeriodicalIF":6.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10082407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2023-09-04DOI: 10.1007/s13402-023-00862-1
Lucía Gutiérrez-Chamorro, Eudald Felip, Eva Castellà, Vanessa Quiroga, Ifeanyi Jude Ezeonwumelu, Laura Angelats, Anna Esteve, Laia Perez-Roca, Anna Martínez-Cardús, Pedro Luis Fernandez, Angelica Ferrando-Díez, Anna Pous, Milana Bergamino, Beatriz Cirauqui, Marga Romeo, Iris Teruel, Ricard Mesia, Bonaventura Clotet, Eva Riveira-Muñoz, Mireia Margelí, Ester Ballana
Purpose: The lack of validated surrogate biomarkers is still an unmet clinical need in the management of early breast cancer cases that do not achieve complete pathological response after neoadjuvant chemotherapy (NACT). Here, we describe and validate the use of SAMHD1 expression as a prognostic biomarker in residual disease in vivo and in vitro.
Methods: SAMHD1 expression was evaluated in a clinical cohort of early breast cancer patients with stage II-III treated with NACT. Heterotypic 3D cultures including tumor and immune cells were used to investigate the molecular mechanisms responsible of SAMHD1 depletion through whole transcriptomic profiling, immune infiltration capacity and subsequent delineation of dysregulated immune signaling pathways.
Results: SAMHD1 expression was associated to increased risk of recurrence and higher Ki67 levels in post-NACT tumor biopsies of breast cancer patients with residual disease. Survival analysis showed that SAMHD1-expressing tumors presented shorter time-to-progression and overall survival than SAMHD1 negative cases, suggesting that SAMHD1 expression is a relevant prognostic factor in breast cancer. Whole-transcriptomic profiling of SAMHD1-depleted tumors identified downregulation of IL-12 signaling pathway as the molecular mechanism determining breast cancer prognosis. The reduced interleukin signaling upon SAMHD1 depletion induced changes in immune cell infiltration capacity in 3D heterotypic in vitro culture models, confirming the role of the SAMHD1 as a regulator of breast cancer prognosis through the induction of changes in immune response and tumor microenvironment.
Conclusion: SAMHD1 expression is a novel prognostic biomarker in early breast cancer that impacts immune-mediated signaling and differentially regulates inflammatory intra-tumoral response.
{"title":"SAMHD1 expression is a surrogate marker of immune infiltration and determines prognosis after neoadjuvant chemotherapy in early breast cancer.","authors":"Lucía Gutiérrez-Chamorro, Eudald Felip, Eva Castellà, Vanessa Quiroga, Ifeanyi Jude Ezeonwumelu, Laura Angelats, Anna Esteve, Laia Perez-Roca, Anna Martínez-Cardús, Pedro Luis Fernandez, Angelica Ferrando-Díez, Anna Pous, Milana Bergamino, Beatriz Cirauqui, Marga Romeo, Iris Teruel, Ricard Mesia, Bonaventura Clotet, Eva Riveira-Muñoz, Mireia Margelí, Ester Ballana","doi":"10.1007/s13402-023-00862-1","DOIUrl":"10.1007/s13402-023-00862-1","url":null,"abstract":"<p><strong>Purpose: </strong>The lack of validated surrogate biomarkers is still an unmet clinical need in the management of early breast cancer cases that do not achieve complete pathological response after neoadjuvant chemotherapy (NACT). Here, we describe and validate the use of SAMHD1 expression as a prognostic biomarker in residual disease in vivo and in vitro.</p><p><strong>Methods: </strong>SAMHD1 expression was evaluated in a clinical cohort of early breast cancer patients with stage II-III treated with NACT. Heterotypic 3D cultures including tumor and immune cells were used to investigate the molecular mechanisms responsible of SAMHD1 depletion through whole transcriptomic profiling, immune infiltration capacity and subsequent delineation of dysregulated immune signaling pathways.</p><p><strong>Results: </strong>SAMHD1 expression was associated to increased risk of recurrence and higher Ki67 levels in post-NACT tumor biopsies of breast cancer patients with residual disease. Survival analysis showed that SAMHD1-expressing tumors presented shorter time-to-progression and overall survival than SAMHD1 negative cases, suggesting that SAMHD1 expression is a relevant prognostic factor in breast cancer. Whole-transcriptomic profiling of SAMHD1-depleted tumors identified downregulation of IL-12 signaling pathway as the molecular mechanism determining breast cancer prognosis. The reduced interleukin signaling upon SAMHD1 depletion induced changes in immune cell infiltration capacity in 3D heterotypic in vitro culture models, confirming the role of the SAMHD1 as a regulator of breast cancer prognosis through the induction of changes in immune response and tumor microenvironment.</p><p><strong>Conclusion: </strong>SAMHD1 expression is a novel prognostic biomarker in early breast cancer that impacts immune-mediated signaling and differentially regulates inflammatory intra-tumoral response.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"189-208"},"PeriodicalIF":6.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10899429/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10153471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2023-09-07DOI: 10.1007/s13402-023-00866-x
Tanggang Deng, Lin Xie, Chen Xiaofang, Zhenbin Zhang, Yugang Xiao, Yuchong Peng, Linglong Yin, Yongming Fu, Xiong Li
Purpose: Platinum-based chemotherapy remains a standard-of-care for most patients with advanced non-small cell lung cancer (NSCLC). DNA damage response (DDR) induced by platinum or Etoposide activated a panel of cell cycle-regulatory proteins including p21 through p53 pathway. Previous studies have reported that RanBPM has been involved in various cellular processes such as DDR by interacting with multiple proteins. However, the underlying mechanism remains unclear.
Methods: NSCLC tissue microarrays were used for assessing the expression of RanBPM by immunohistochemical staining. The roles of RanBPM in the DDR of NSCLC progression was examined in in vitro cell lines and in vivo animal models. The regulation of RanBPM on protein stability and ubiquitination levels were investigated by immunoblots and in vivo ubiquitylation assay.
Results: The level of p21 or RanBPM is lower in NSCLC than non-malignant tissues and has a highly positive correlation. Mechanistically, RanBPM protein physically interacts with p21, and RanBPM deubiquitinates p21 by recruiting a deubiquitinase USP11 to maintain protein stability of p21. RanBPM silencing significantly decreased p21 protein level. Conversely, RanBPM overexpression led to the accumulation of endogenous p21 protein regardless of p53 status. Functionally, RanBPM regulates DDR in a p21-dependent manner. Furthermore, DNA damage significantly promoted the nuclear translocation of RanBPM protein through ATM signaling pathways.
Conclusion: RanBPM is a novel regulator of P21 protein stability, and plays a critical role in the regulation of DDR.
{"title":"ATM-Mediated translocation of RanBPM regulates DNA damage response by stabilizing p21 in non-small cell lung cancer cells.","authors":"Tanggang Deng, Lin Xie, Chen Xiaofang, Zhenbin Zhang, Yugang Xiao, Yuchong Peng, Linglong Yin, Yongming Fu, Xiong Li","doi":"10.1007/s13402-023-00866-x","DOIUrl":"10.1007/s13402-023-00866-x","url":null,"abstract":"<p><strong>Purpose: </strong>Platinum-based chemotherapy remains a standard-of-care for most patients with advanced non-small cell lung cancer (NSCLC). DNA damage response (DDR) induced by platinum or Etoposide activated a panel of cell cycle-regulatory proteins including p21 through p53 pathway. Previous studies have reported that RanBPM has been involved in various cellular processes such as DDR by interacting with multiple proteins. However, the underlying mechanism remains unclear.</p><p><strong>Methods: </strong>NSCLC tissue microarrays were used for assessing the expression of RanBPM by immunohistochemical staining. The roles of RanBPM in the DDR of NSCLC progression was examined in in vitro cell lines and in vivo animal models. The regulation of RanBPM on protein stability and ubiquitination levels were investigated by immunoblots and in vivo ubiquitylation assay.</p><p><strong>Results: </strong>The level of p21 or RanBPM is lower in NSCLC than non-malignant tissues and has a highly positive correlation. Mechanistically, RanBPM protein physically interacts with p21, and RanBPM deubiquitinates p21 by recruiting a deubiquitinase USP11 to maintain protein stability of p21. RanBPM silencing significantly decreased p21 protein level. Conversely, RanBPM overexpression led to the accumulation of endogenous p21 protein regardless of p53 status. Functionally, RanBPM regulates DDR in a p21-dependent manner. Furthermore, DNA damage significantly promoted the nuclear translocation of RanBPM protein through ATM signaling pathways.</p><p><strong>Conclusion: </strong>RanBPM is a novel regulator of P21 protein stability, and plays a critical role in the regulation of DDR.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"245-258"},"PeriodicalIF":6.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10899406/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10171851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose: Acute myeloid leukaemia (AML) is a heterogeneous disease characterised by the rapid clonal expansion of abnormally differentiated myeloid progenitor cells residing in a complex microenvironment. However, the immune cell types, status, and genome profile of the peripheral blood mononuclear cell (PBMC) microenvironment in AML patients after chemotherapy are poorly understood. In order to explore the immune microenvironment of AML patients after chemotherapy, we conducted this study for providing insights into precision medicine and immunotherapy of AML.
Methods: In this study, we used single-cell RNA sequencing (scRNA-seq) to analyse the PBMC microenvironment from five AML patients treated with different chemotherapy regimens and six healthy donors. We compared the cell compositions in AML patients and healthy donors, and performed gene set enrichment analysis (GSEA), CellPhoneDB, and copy number variation (CNV) analysis.
Results: Using scRNA-seq technology, 91,772 high quality cells of 44,950 PBMCs from AML patients and 46,822 PBMCs from healthy donors were classified as 14 major cell clusters. Our study revealed the sub-cluster diversity of T cells, natural killer (NK) cells, monocytes, dendritic cells (DCs), and haematopoietic stem cell progenitors (HSC-Prog) in AML patients under chemotherapy. NK cells and monocyte-DCs showed significant changes in transcription factor expression and chromosome copy number variation (CNV). We also observed significant heterogeneity in CNV and intercellular interaction networks in HSC-Prog cells.
Conclusion: Our results elucidated the PBMC single-cell landscape and provided insights into precision medicine and immunotherapy for treating AML.
目的:急性髓性白血病(AML)是一种异质性疾病,其特征是居住在复杂微环境中的异常分化髓系祖细胞的快速克隆扩增。然而,人们对急性髓细胞白血病患者化疗后外周血单核细胞(PBMC)微环境中的免疫细胞类型、状态和基因组概况知之甚少。为了探索急性髓细胞性白血病患者化疗后的免疫微环境,我们开展了这项研究,以期为急性髓细胞性白血病的精准医疗和免疫治疗提供见解:在这项研究中,我们使用单细胞 RNA 测序(scRNA-seq)分析了五名接受不同化疗方案治疗的 AML 患者和六名健康供体的 PBMC 微环境。我们比较了AML患者和健康供体的细胞组成,并进行了基因组富集分析(GSEA)、CellPhoneDB和拷贝数变异(CNV)分析:利用 scRNA-seq 技术,从 44,950 例 AML 患者和 46,822 例健康供体的 PBMCs 中提取的 91,772 个高质量细胞被归类为 14 个主要细胞集群。我们的研究揭示了接受化疗的急性髓细胞性白血病患者的 T 细胞、自然杀伤(NK)细胞、单核细胞、树突状细胞(DC)和造血干细胞祖细胞(HSC-Prog)的亚群多样性。NK细胞和单核细胞-DC在转录因子表达和染色体拷贝数变异(CNV)方面出现了显著变化。我们还观察到 HSC-Prog 细胞的 CNV 和细胞间相互作用网络存在明显的异质性:我们的研究结果阐明了PBMC单细胞图谱,为治疗急性髓细胞白血病的精准医疗和免疫疗法提供了见解。
{"title":"Single-cell transcriptomic profiling reveals immune cell heterogeneity in acute myeloid leukaemia peripheral blood mononuclear cells after chemotherapy.","authors":"Xuqiao Hu, Dongyan Cao, Zhenru Zhou, Zhaoyang Wang, Jieying Zeng, Wen-Xu Hong","doi":"10.1007/s13402-023-00853-2","DOIUrl":"10.1007/s13402-023-00853-2","url":null,"abstract":"<p><strong>Purpose: </strong>Acute myeloid leukaemia (AML) is a heterogeneous disease characterised by the rapid clonal expansion of abnormally differentiated myeloid progenitor cells residing in a complex microenvironment. However, the immune cell types, status, and genome profile of the peripheral blood mononuclear cell (PBMC) microenvironment in AML patients after chemotherapy are poorly understood. In order to explore the immune microenvironment of AML patients after chemotherapy, we conducted this study for providing insights into precision medicine and immunotherapy of AML.</p><p><strong>Methods: </strong>In this study, we used single-cell RNA sequencing (scRNA-seq) to analyse the PBMC microenvironment from five AML patients treated with different chemotherapy regimens and six healthy donors. We compared the cell compositions in AML patients and healthy donors, and performed gene set enrichment analysis (GSEA), CellPhoneDB, and copy number variation (CNV) analysis.</p><p><strong>Results: </strong>Using scRNA-seq technology, 91,772 high quality cells of 44,950 PBMCs from AML patients and 46,822 PBMCs from healthy donors were classified as 14 major cell clusters. Our study revealed the sub-cluster diversity of T cells, natural killer (NK) cells, monocytes, dendritic cells (DCs), and haematopoietic stem cell progenitors (HSC-Prog) in AML patients under chemotherapy. NK cells and monocyte-DCs showed significant changes in transcription factor expression and chromosome copy number variation (CNV). We also observed significant heterogeneity in CNV and intercellular interaction networks in HSC-Prog cells.</p><p><strong>Conclusion: </strong>Our results elucidated the PBMC single-cell landscape and provided insights into precision medicine and immunotherapy for treating AML.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"97-112"},"PeriodicalIF":6.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10899424/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10061014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose: Collagen features in breast tumor microenvironment is closely associated with the prognosis of patients. We aim to explore the prognostic significance of collagen features at breast tumor border by combining multiphoton imaging and imaging analysis.
Methods: We used multiphoton microscopy (MPM) to label-freely image human breast tumor samples and then constructed an automatic classification model based on deep learning to identify collagen signatures from multiphoton images. We recognized three kinds of collagen signatures at tumor boundary (CSTB I-III) in a small-scale, and furthermore obtained a CSTB score for each patient based on the combined CSTB I-III by using the ridge regression analysis. The prognostic performance of CSTB score is assessed by the area under the receiver operating characteristic curve (AUC), Cox proportional hazard regression analysis, as well as Kaplan-Meier survival analysis.
Results: As an independent prognostic factor, statistical results reveal that the prognostic performance of CSTB score is better than that of the clinical model combining three independent prognostic indicators, molecular subtype, tumor size, and lymph nodal metastasis (AUC, Training dataset: 0.773 vs. 0.749; External validation: 0.753 vs. 0.724; HR, Training dataset: 4.18 vs. 3.92; External validation: 4.98 vs. 4.16), and as an auxiliary indicator, it can greatly improve the accuracy of prognostic prediction. And furthermore, a nomogram combining the CSTB score with the clinical model is established for prognosis prediction and clinical decision making.
Conclusion: This standardized and automated imaging prognosticator may convince pathologists to adopt it as a prognostic factor, thereby customizing more effective treatment plans for patients.
目的:乳腺肿瘤微环境中的胶原蛋白特征与患者的预后密切相关。我们旨在结合多光子成像和成像分析,探讨乳腺肿瘤边界胶原蛋白特征的预后意义:方法:我们使用多光子显微镜(MPM)对人类乳腺肿瘤样本进行无标记成像,然后构建了一个基于深度学习的自动分类模型,从多光子图像中识别胶原蛋白特征。我们在小范围内识别了肿瘤边界的三种胶原蛋白特征(CSTB I-III),并根据CSTB I-III的组合,通过脊回归分析得出了每位患者的CSTB评分。通过接收者操作特征曲线下面积(AUC)、Cox比例危险回归分析以及Kaplan-Meier生存分析评估CSTB评分的预后效果:统计结果显示,作为一个独立的预后因素,CSTB评分的预后效果优于结合分子亚型、肿瘤大小和淋巴结转移三个独立预后指标的临床模型(AUC,训练数据集:0.773 vs. 0.749; External validation:外部验证:0.753 vs. 0.724;HR,训练数据集:4.18 vs. 3.92):4.18 vs. 3.92; External validation:4.98 vs. 4.16),作为辅助指标,可以大大提高预后预测的准确性。此外,还建立了一个将CSTB评分与临床模型相结合的提名图,用于预后预测和临床决策:结论:这一标准化和自动化的影像预后指标可能会说服病理学家将其作为预后因素,从而为患者定制更有效的治疗方案。
{"title":"Prognostic significance of collagen signatures at breast tumor boundary obtained by combining multiphoton imaging and imaging analysis.","authors":"Xingxin Huang, Fangmeng Fu, Wenhui Guo, Deyong Kang, Xiahui Han, Liqin Zheng, Zhenlin Zhan, Chuan Wang, Qingyuan Zhang, Shu Wang, Shunwu Xu, Jianli Ma, Lida Qiu, Jianxin Chen, Lianhuang Li","doi":"10.1007/s13402-023-00851-4","DOIUrl":"10.1007/s13402-023-00851-4","url":null,"abstract":"<p><strong>Purpose: </strong>Collagen features in breast tumor microenvironment is closely associated with the prognosis of patients. We aim to explore the prognostic significance of collagen features at breast tumor border by combining multiphoton imaging and imaging analysis.</p><p><strong>Methods: </strong>We used multiphoton microscopy (MPM) to label-freely image human breast tumor samples and then constructed an automatic classification model based on deep learning to identify collagen signatures from multiphoton images. We recognized three kinds of collagen signatures at tumor boundary (CSTB I-III) in a small-scale, and furthermore obtained a CSTB score for each patient based on the combined CSTB I-III by using the ridge regression analysis. The prognostic performance of CSTB score is assessed by the area under the receiver operating characteristic curve (AUC), Cox proportional hazard regression analysis, as well as Kaplan-Meier survival analysis.</p><p><strong>Results: </strong>As an independent prognostic factor, statistical results reveal that the prognostic performance of CSTB score is better than that of the clinical model combining three independent prognostic indicators, molecular subtype, tumor size, and lymph nodal metastasis (AUC, Training dataset: 0.773 vs. 0.749; External validation: 0.753 vs. 0.724; HR, Training dataset: 4.18 vs. 3.92; External validation: 4.98 vs. 4.16), and as an auxiliary indicator, it can greatly improve the accuracy of prognostic prediction. And furthermore, a nomogram combining the CSTB score with the clinical model is established for prognosis prediction and clinical decision making.</p><p><strong>Conclusion: </strong>This standardized and automated imaging prognosticator may convince pathologists to adopt it as a prognostic factor, thereby customizing more effective treatment plans for patients.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"69-80"},"PeriodicalIF":6.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10039753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose: Obesity is a risk factor and poor prognostic factor for pancreatic ductal adenocarcinoma (PDAC), but the underlying mechanisms remain unclear.
Methods: PDAC cells and obese visceral adipocytes (O-Ad) derived from mice and humans were used to analyze interactions between the two cell types, and human microvascular endothelial cells were used for angiogenesis assay. A xenograft mouse model with subcutaneously injected PDAC cells was used for animal studies. The relationship between visceral fat and prognosis was analyzed using resected tissues from PDAC patients with and without obesity.
Results: Conditioned media (CM) from O-Ad significantly increased PDAC cell growth and migration and angiogenic capacity in both human and mice cells, and blocking osteopontin (OPN) in O-Ad canceled O-Ad-induced effects in both mouse and human cells. In addition, O-Ad directly increased the migratory and tube-forming capacities of endothelial cells, while blocking OPN canceled these effects. O-Ad increased AKT phosphorylation and VEGFA expression in both PDAC and endothelial cells, and OPN inhibition in O-Ad canceled those O-Ad-induced effects. In the xenograft model, PDAC tumor volume was significantly increased in obese mice compared with lean mice, whereas blocking OPN significantly inhibited obesity-accelerated tumor growth. OPN expression in adipose tissues adjacent to human PDAC tumor was significantly higher in obese patients than in non-obese patients. In PDAC patients with obesity, high OPN expression in adipose tissues was significantly associated with poor prognosis.
Conclusion: Obese adipocytes trigger aggressive transformation in PDAC cells to induce PDAC progression and accelerate angiogenesis via OPN secretion.
{"title":"Osteopontin secreted from obese adipocytes enhances angiogenesis and promotes progression of pancreatic ductal adenocarcinoma in obesity.","authors":"Shigeki Fukusada, Takaya Shimura, Makoto Natsume, Ruriko Nishigaki, Yusuke Okuda, Hiroyasu Iwasaki, Naomi Sugimura, Mika Kitagawa, Takahito Katano, Mamoru Tanaka, Keiji Ozeki, Eiji Kubota, Kazuki Hayashi, Hiromi Kataoka","doi":"10.1007/s13402-023-00865-y","DOIUrl":"10.1007/s13402-023-00865-y","url":null,"abstract":"<p><strong>Purpose: </strong>Obesity is a risk factor and poor prognostic factor for pancreatic ductal adenocarcinoma (PDAC), but the underlying mechanisms remain unclear.</p><p><strong>Methods: </strong>PDAC cells and obese visceral adipocytes (O-Ad) derived from mice and humans were used to analyze interactions between the two cell types, and human microvascular endothelial cells were used for angiogenesis assay. A xenograft mouse model with subcutaneously injected PDAC cells was used for animal studies. The relationship between visceral fat and prognosis was analyzed using resected tissues from PDAC patients with and without obesity.</p><p><strong>Results: </strong>Conditioned media (CM) from O-Ad significantly increased PDAC cell growth and migration and angiogenic capacity in both human and mice cells, and blocking osteopontin (OPN) in O-Ad canceled O-Ad-induced effects in both mouse and human cells. In addition, O-Ad directly increased the migratory and tube-forming capacities of endothelial cells, while blocking OPN canceled these effects. O-Ad increased AKT phosphorylation and VEGFA expression in both PDAC and endothelial cells, and OPN inhibition in O-Ad canceled those O-Ad-induced effects. In the xenograft model, PDAC tumor volume was significantly increased in obese mice compared with lean mice, whereas blocking OPN significantly inhibited obesity-accelerated tumor growth. OPN expression in adipose tissues adjacent to human PDAC tumor was significantly higher in obese patients than in non-obese patients. In PDAC patients with obesity, high OPN expression in adipose tissues was significantly associated with poor prognosis.</p><p><strong>Conclusion: </strong>Obese adipocytes trigger aggressive transformation in PDAC cells to induce PDAC progression and accelerate angiogenesis via OPN secretion.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"229-244"},"PeriodicalIF":6.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10102291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2023-10-02DOI: 10.1007/s13402-023-00868-9
Si Shi, Qicheng Zhang, Kaiwen Zhang, Wenhui Chen, Haijing Xie, Si Pan, Ziyi Xue, Bo You, Jianmei Zhao, Yiwen You
Purpose: Nasopharyngeal carcinoma (NPC) has characteristics of high invasion and early metastasis. Most NPC patients present with locoregionally advanced illness when first diagnosed. Therefore, it is urgent to discover NPC biomarkers. Fibroblast growth Factor 19 (FGF19) plays a role in various physiological or pathological processes, including cancer. In this research, we discovered the importance of FGF19 in NPC, and clarified its role in tumour angiogenesis.
Methods: Western blotting, immunohistochemistry and ELISA were used to investigate FGF19 expression in NPC. Then we took CCK8, colony formation, Transwell and wound healing assays to identify the influence of FGF19 on NPC malignant behaviours. The proliferative and metastatic capacity of FGF19 were evaluated in nude mice and zebrafish. The role of FGF19 in angiogenesis was investigated by tube formation and Matrigel plug angiogenesis assays. We then evaluated the variation in Annexin A2(ANXA2) levels with the treatment of FGF19. Lastly, co-immunoprecipitation and ubiquitination assays were performed to identify the mechanisms involved.
Results: FGF19 levels were elevated in tissues and serum of NPC patients and were associated with poor clinical stages. High expression of FGF19 promoted NPC malignant behaviours. In particular, FGF19 expression was correlated with microvessel density in tissues and NPC-derived FGF19 could accelerate angiogenesis in vitro and in vivo. Mechanistically, FGF19 influenced ANXA2 expression to promote angiogenesis. Moreover, tripartite motif-containing 21(TRIM21) interacted with ANXA2 and was responsible for ANXA2 ubiquitination.
Conclusion: FGF19 promoted NPC angiogenesis by inhibiting TRIM21-mediated ANXA2 ubiquitination. It may serve as a noninvasive biomarker for NPC and provides new insights for therapy.
{"title":"FGF19 promotes nasopharyngeal carcinoma progression by inducing angiogenesis via inhibiting TRIM21-mediated ANXA2 ubiquitination.","authors":"Si Shi, Qicheng Zhang, Kaiwen Zhang, Wenhui Chen, Haijing Xie, Si Pan, Ziyi Xue, Bo You, Jianmei Zhao, Yiwen You","doi":"10.1007/s13402-023-00868-9","DOIUrl":"10.1007/s13402-023-00868-9","url":null,"abstract":"<p><strong>Purpose: </strong>Nasopharyngeal carcinoma (NPC) has characteristics of high invasion and early metastasis. Most NPC patients present with locoregionally advanced illness when first diagnosed. Therefore, it is urgent to discover NPC biomarkers. Fibroblast growth Factor 19 (FGF19) plays a role in various physiological or pathological processes, including cancer. In this research, we discovered the importance of FGF19 in NPC, and clarified its role in tumour angiogenesis.</p><p><strong>Methods: </strong>Western blotting, immunohistochemistry and ELISA were used to investigate FGF19 expression in NPC. Then we took CCK8, colony formation, Transwell and wound healing assays to identify the influence of FGF19 on NPC malignant behaviours. The proliferative and metastatic capacity of FGF19 were evaluated in nude mice and zebrafish. The role of FGF19 in angiogenesis was investigated by tube formation and Matrigel plug angiogenesis assays. We then evaluated the variation in Annexin A2(ANXA2) levels with the treatment of FGF19. Lastly, co-immunoprecipitation and ubiquitination assays were performed to identify the mechanisms involved.</p><p><strong>Results: </strong>FGF19 levels were elevated in tissues and serum of NPC patients and were associated with poor clinical stages. High expression of FGF19 promoted NPC malignant behaviours. In particular, FGF19 expression was correlated with microvessel density in tissues and NPC-derived FGF19 could accelerate angiogenesis in vitro and in vivo. Mechanistically, FGF19 influenced ANXA2 expression to promote angiogenesis. Moreover, tripartite motif-containing 21(TRIM21) interacted with ANXA2 and was responsible for ANXA2 ubiquitination.</p><p><strong>Conclusion: </strong>FGF19 promoted NPC angiogenesis by inhibiting TRIM21-mediated ANXA2 ubiquitination. It may serve as a noninvasive biomarker for NPC and provides new insights for therapy.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"283-301"},"PeriodicalIF":6.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10899426/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41150010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose: The bone marrow niche plays an important role in leukemia development. However, the contributions of different niche components to leukemia development and their underlying mechanisms remain largely unclear.
Method: Cre/LoxP-based conditional knockout technology was used to delete VPS33B or ANGPTL2 gene in niche cells. Murine B-ALL model was established by overexpressing the N-Myc oncogene in hematopoietic stem progenitor cells. The frequency of leukemia cells and immunophenotypic B220+ CD43+ LICs was detected by flow cytometry. SEVs was isolated by sequential centrifugation and mass spectrometry was performed to analyze the different components of SEVs. Immunoprecipitation and western blot were used to measure the interaction of VPS33B and ANGPTL2.
Results: Here, we showed that specific knockout of vascular protein sorting 33b (Vps33b) in endothelial cells (ECs), but not megakaryocytes or mesenchymal stem cells, resulted in a significant decrease in the secretion of small extracellular vesicles (SEVs) and a delay in the development of B-cell lymphoblastic leukemia (B-ALL). Vps33b knockdown endothelial cells contained much lower levels of SEVs that contained angiopoietin-like protein 2 (ANGPTL2) than the control cells. Importantly, conditional knockout of Angptl2 in ECs significantly delayed B-ALL progression. Moreover, C-terminal region of ANGPTL2 (aa247-471) could directly interact with Sec1-like domain 1 of VPS33B (aa1-aa146). We further demonstrated that the point mutations R399H and G402S in ANGPTL2 led to a dramatic decrease in the secretion of ANGPTL2-SEVs. We also showed that wild-type ANGPTL2-containing SEVs, but not mutant ANGPTL2-containing SEVs, significantly enhanced B-ALL development.
Conclusion: In summary, our findings indicate that the secretion of ANGPTL2-containing SEVs in ECs sustains the leukemogenic activities of B-ALL cells, which is fine-tuned by the direct interaction of VPS33B and ANGPTL2. These findings reveal that niche-specific SEVs play an important role in B-ALL development.
{"title":"Endothelial-derived small extracellular vesicles support B-cell acute lymphoblastic leukemia development.","authors":"Dan Huang, Yamin Yuan, Liyuan Cao, Difan Zhang, Yu Jiang, Yaping Zhang, Chiqi Chen, Zhuo Yu, Li Xie, Yujuan Wei, Jiangbo Wan, Junke Zheng","doi":"10.1007/s13402-023-00855-0","DOIUrl":"10.1007/s13402-023-00855-0","url":null,"abstract":"<p><strong>Purpose: </strong>The bone marrow niche plays an important role in leukemia development. However, the contributions of different niche components to leukemia development and their underlying mechanisms remain largely unclear.</p><p><strong>Method: </strong>Cre/LoxP-based conditional knockout technology was used to delete VPS33B or ANGPTL2 gene in niche cells. Murine B-ALL model was established by overexpressing the N-Myc oncogene in hematopoietic stem progenitor cells. The frequency of leukemia cells and immunophenotypic B220<sup>+</sup> CD43<sup>+</sup> LICs was detected by flow cytometry. SEVs was isolated by sequential centrifugation and mass spectrometry was performed to analyze the different components of SEVs. Immunoprecipitation and western blot were used to measure the interaction of VPS33B and ANGPTL2.</p><p><strong>Results: </strong>Here, we showed that specific knockout of vascular protein sorting 33b (Vps33b) in endothelial cells (ECs), but not megakaryocytes or mesenchymal stem cells, resulted in a significant decrease in the secretion of small extracellular vesicles (SEVs) and a delay in the development of B-cell lymphoblastic leukemia (B-ALL). Vps33b knockdown endothelial cells contained much lower levels of SEVs that contained angiopoietin-like protein 2 (ANGPTL2) than the control cells. Importantly, conditional knockout of Angptl2 in ECs significantly delayed B-ALL progression. Moreover, C-terminal region of ANGPTL2 (aa247-471) could directly interact with Sec1-like domain 1 of VPS33B (aa1-aa146). We further demonstrated that the point mutations R399H and G402S in ANGPTL2 led to a dramatic decrease in the secretion of ANGPTL2-SEVs. We also showed that wild-type ANGPTL2-containing SEVs, but not mutant ANGPTL2-containing SEVs, significantly enhanced B-ALL development.</p><p><strong>Conclusion: </strong>In summary, our findings indicate that the secretion of ANGPTL2-containing SEVs in ECs sustains the leukemogenic activities of B-ALL cells, which is fine-tuned by the direct interaction of VPS33B and ANGPTL2. These findings reveal that niche-specific SEVs play an important role in B-ALL development.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"129-140"},"PeriodicalIF":6.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10899377/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41162157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose: To explore the predictive merit of MFAP2+ cancer associated fibroblasts (CAFs) infiltration for clinical outcomes and adjuvant chemotherapy or immunotherapy responsiveness in gastric cancer (GC).
Methods: In this study, several independent cohorts were included respectively to dissect the relationship of clinical outcomes, therapeutic responses and tumor microenvironment with different MFAP2+ CAFs infiltration. Drug sensitivity analysis was conducted to predict the relationship between MFAP2+ CAFs infiltration and targeted drug response. Kaplan-Meier curves and the log-rank test were used to compare clinical outcomes of patients with different MFAP2+ CAFs infiltration.
Results: High MFAP2+ CAFs infiltration yielded inferior prognosis in terms of overall survival, progress free survival and recurrence free survival in GC. Patients with low MFAP2+ CAFs infiltration were more likely to gain benefit from adjuvant therapy. Moreover, low MFAP2+ CAFs infiltration could predict a promising response to immunotherapy in GC patients. MFAP2+ CAFs with immunosuppressive features were highly relevant to immune evasive contexture characterized by the dysfunction of CD8+ T cells. We found that MFAP2+ CAFs communicated with T cells, B cells and Macrophages through releasing macrophage migration inhibitor factor (MIF), which further suggested that MFAP2+ CAFs might promote therapeutic resistance through regulating T cells dysfunction and M2 macrophages polarization.
Conclusion: Immunosuppressive MFAP2+ CAFs constructed an immune evasive tumor microenvironment characterized by incapacitated immune effector cells, consequently predicting inferior clinical outcomes and response on adjuvant therapy and immunotherapy in patients with GC. The potential of immunosuppressive MFAP2+ CAFs as a therapeutic target for GC deserved thoroughly exploration.
{"title":"Immunosuppressive MFAP2<sup>+</sup> cancer associated fibroblasts conferred unfavorable prognosis and therapeutic resistance in gastric cancer.","authors":"Rongyuan Wei, Junquan Song, Xuanjun Liu, Shiying Huo, Chenchen Liu, Xiaowen Liu","doi":"10.1007/s13402-023-00849-y","DOIUrl":"10.1007/s13402-023-00849-y","url":null,"abstract":"<p><strong>Purpose: </strong>To explore the predictive merit of MFAP2<sup>+</sup> cancer associated fibroblasts (CAFs) infiltration for clinical outcomes and adjuvant chemotherapy or immunotherapy responsiveness in gastric cancer (GC).</p><p><strong>Methods: </strong>In this study, several independent cohorts were included respectively to dissect the relationship of clinical outcomes, therapeutic responses and tumor microenvironment with different MFAP2<sup>+</sup> CAFs infiltration. Drug sensitivity analysis was conducted to predict the relationship between MFAP2<sup>+</sup> CAFs infiltration and targeted drug response. Kaplan-Meier curves and the log-rank test were used to compare clinical outcomes of patients with different MFAP2<sup>+</sup> CAFs infiltration.</p><p><strong>Results: </strong>High MFAP2<sup>+</sup> CAFs infiltration yielded inferior prognosis in terms of overall survival, progress free survival and recurrence free survival in GC. Patients with low MFAP2<sup>+</sup> CAFs infiltration were more likely to gain benefit from adjuvant therapy. Moreover, low MFAP2<sup>+</sup> CAFs infiltration could predict a promising response to immunotherapy in GC patients. MFAP2<sup>+</sup> CAFs with immunosuppressive features were highly relevant to immune evasive contexture characterized by the dysfunction of CD8<sup>+</sup> T cells. We found that MFAP2<sup>+</sup> CAFs communicated with T cells, B cells and Macrophages through releasing macrophage migration inhibitor factor (MIF), which further suggested that MFAP2<sup>+</sup> CAFs might promote therapeutic resistance through regulating T cells dysfunction and M2 macrophages polarization.</p><p><strong>Conclusion: </strong>Immunosuppressive MFAP2<sup>+</sup> CAFs constructed an immune evasive tumor microenvironment characterized by incapacitated immune effector cells, consequently predicting inferior clinical outcomes and response on adjuvant therapy and immunotherapy in patients with GC. The potential of immunosuppressive MFAP2<sup>+</sup> CAFs as a therapeutic target for GC deserved thoroughly exploration.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"55-68"},"PeriodicalIF":6.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10291578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2023-09-09DOI: 10.1007/s13402-023-00870-1
Wanhui Wei, Yuanyuan Lu, Qian Hu, Jinwen Yin, Youwei Wang, Heng Zhang, Qiu Zhao, Lan Liu
Purpose: The combination of cisplatin and gemcitabine-based chemotherapy has been recommended as a preferred regimen for pancreatic ductal adenocarcinoma (PDAC) patients with germline-based mutations. However, the underlying mechanism remains poorly elucidated. Therefore, our study aimed to explore the mechanistic basis of the cell-killing activity of gemcitabine plus cisplatin and identify potential therapeutic targets.
Methods: First, we explored the synergistic cytotoxic effects of gemcitabine and cisplatin on PDAC through in vitro and in vivo experiments. Then, we investigated ferroptosis-related biomarkers, to assess the impact of the combination therapy on ferroptosis. Using bioinformatics methods, we identified SAT1 as a potential key mediator of ferroptosis induced by gemcitabine and cisplatin. We tested the polyamine levels in PDAC cells by LC-MS after overexpressed or knocked down SAT1, and explored the role of polyamines in ferroptosis using exogenous supplementation. Finally, we explored the regulatory effect of Sp1 on SAT1 through ChIP-qPCR and dual-luciferase reporter assay.
Results: Gemcitabine plus cisplatin enhanced cell death and induced ferroptosis in PDAC. This combination upregulated SAT1 transcription by inhibiting Sp1. SAT1 activation promoted the catabolism of spermine and spermidine, leading to iron accumulation and lipid peroxide generation, ultimately resulting in ferroptosis.
Conclusions: In summary, our findings suggested the gemcitabine and cisplatin combination therapy induced ferroptosis in a GSH-independent manner in PDAC. The combined treatment inhibited Sp1 and upregulated SAT1 transcription, leading to the breakdown of spermine and spermidine. Therefore, targeting SAT1-induced polyamine metabolism may represent a promising therapeutic strategy for PDAC.
{"title":"Synergistic antitumor efficacy of gemcitabine and cisplatin to induce ferroptosis in pancreatic ductal adenocarcinoma via Sp1-SAT1-polyamine metabolism pathway.","authors":"Wanhui Wei, Yuanyuan Lu, Qian Hu, Jinwen Yin, Youwei Wang, Heng Zhang, Qiu Zhao, Lan Liu","doi":"10.1007/s13402-023-00870-1","DOIUrl":"10.1007/s13402-023-00870-1","url":null,"abstract":"<p><strong>Purpose: </strong>The combination of cisplatin and gemcitabine-based chemotherapy has been recommended as a preferred regimen for pancreatic ductal adenocarcinoma (PDAC) patients with germline-based mutations. However, the underlying mechanism remains poorly elucidated. Therefore, our study aimed to explore the mechanistic basis of the cell-killing activity of gemcitabine plus cisplatin and identify potential therapeutic targets.</p><p><strong>Methods: </strong>First, we explored the synergistic cytotoxic effects of gemcitabine and cisplatin on PDAC through in vitro and in vivo experiments. Then, we investigated ferroptosis-related biomarkers, to assess the impact of the combination therapy on ferroptosis. Using bioinformatics methods, we identified SAT1 as a potential key mediator of ferroptosis induced by gemcitabine and cisplatin. We tested the polyamine levels in PDAC cells by LC-MS after overexpressed or knocked down SAT1, and explored the role of polyamines in ferroptosis using exogenous supplementation. Finally, we explored the regulatory effect of Sp1 on SAT1 through ChIP-qPCR and dual-luciferase reporter assay.</p><p><strong>Results: </strong>Gemcitabine plus cisplatin enhanced cell death and induced ferroptosis in PDAC. This combination upregulated SAT1 transcription by inhibiting Sp1. SAT1 activation promoted the catabolism of spermine and spermidine, leading to iron accumulation and lipid peroxide generation, ultimately resulting in ferroptosis.</p><p><strong>Conclusions: </strong>In summary, our findings suggested the gemcitabine and cisplatin combination therapy induced ferroptosis in a GSH-independent manner in PDAC. The combined treatment inhibited Sp1 and upregulated SAT1 transcription, leading to the breakdown of spermine and spermidine. Therefore, targeting SAT1-induced polyamine metabolism may represent a promising therapeutic strategy for PDAC.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"321-341"},"PeriodicalIF":6.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10188886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}