首页 > 最新文献

Cellular Oncology最新文献

英文 中文
Integrative proteomics and n-glycoproteomics reveal the synergistic anti-tumor effects of aspirin- and gemcitabine-based chemotherapy on pancreatic cancer cells. 整合蛋白质组学和正糖蛋白组学揭示了以阿司匹林和吉西他滨为基础的化疗对胰腺癌细胞的协同抗肿瘤作用。
IF 6.6 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-02-01 Epub Date: 2023-08-28 DOI: 10.1007/s13402-023-00856-z
Xiaoyu Li, Ran Kong, Wenhao Hou, Junxia Cao, Li Zhang, Xiaohong Qian, Lijiao Zhao, Wantao Ying

Objective and design: Pancreatic cancer is a highly malignant tumor that is well known for its poor prognosis. Based on glycosylation, we performed integrated quantitative N-glycoproteomics to investigate the synergistic anti-tumor effects of aspirin and gemcitabine on pancreatic cancer cells and explore the potential molecular mechanisms of chemotherapy in pancreatic cancer.

Methods and results: Two pancreatic cancer cell lines (PANC-1 and BxPC-3) were treated with gemcitabine, aspirin, and a combination (gemcitabine + aspirin). We found that the addition of aspirin enhanced the inhibitory effect of gemcitabine on the activity of PANC-1 and BxPC-3 cells. Quantitative N-glycoproteome, proteome, phosphorylation, and transcriptome data were obtained from integrated multi-omics analysis to evaluate the anti-tumor effects of aspirin and gemcitabine on pancreatic cancer cells. Mfuzz analysis of intact N-glycopeptide profiles revealed two consistent trends associated with the addition of aspirin, which showed a strong relationship between N-glycosylation and the synergistic effect of aspirin. Further analysis demonstrated that the dynamic regulation of sialylation and high-mannose glycoforms on ECM-related proteins (LAMP1, LAMP2, ITGA3, etc.) was a significant factor for the ability of aspirin to promote the anti-tumor activity of gemcitabine and the drug resistance of pancreatic cancer cells.

Conclusions: In-depth analysis of N-glycosylation-related processes and pathways in pancreatic cancer cells can provide new insight for future studies regarding pancreatic cancer therapeutic targets and drug resistance mechanisms.

目的和设计:胰腺癌是一种高度恶性的肿瘤,预后差是众所周知的。我们以糖基化为基础,进行了综合定量 N-糖蛋白组学研究,以探讨阿司匹林和吉西他滨对胰腺癌细胞的协同抗肿瘤作用,并探索胰腺癌化疗的潜在分子机制:两种胰腺癌细胞系(PANC-1和BxPC-3)分别接受吉西他滨、阿司匹林和联合用药(吉西他滨+阿司匹林)治疗。我们发现,阿司匹林的加入增强了吉西他滨对 PANC-1 和 BxPC-3 细胞活性的抑制作用。通过综合多组学分析获得了定量的 N-糖蛋白组、蛋白质组、磷酸化和转录组数据,以评估阿司匹林和吉西他滨对胰腺癌细胞的抗肿瘤作用。对完整的 N-糖肽图谱进行的 Mfuzz 分析发现了与添加阿司匹林相关的两种一致趋势,这表明 N-糖基化与阿司匹林的协同效应之间存在密切关系。进一步的分析表明,ECM相关蛋白(LAMP1、LAMP2、ITGA3等)上的硅烷基化和高甘露糖糖形的动态调控是阿司匹林促进吉西他滨抗肿瘤活性和胰腺癌细胞耐药性的重要因素:结论:对胰腺癌细胞中N-糖基化相关过程和通路的深入分析可为今后有关胰腺癌治疗靶点和耐药机制的研究提供新的视角。
{"title":"Integrative proteomics and n-glycoproteomics reveal the synergistic anti-tumor effects of aspirin- and gemcitabine-based chemotherapy on pancreatic cancer cells.","authors":"Xiaoyu Li, Ran Kong, Wenhao Hou, Junxia Cao, Li Zhang, Xiaohong Qian, Lijiao Zhao, Wantao Ying","doi":"10.1007/s13402-023-00856-z","DOIUrl":"10.1007/s13402-023-00856-z","url":null,"abstract":"<p><strong>Objective and design: </strong>Pancreatic cancer is a highly malignant tumor that is well known for its poor prognosis. Based on glycosylation, we performed integrated quantitative N-glycoproteomics to investigate the synergistic anti-tumor effects of aspirin and gemcitabine on pancreatic cancer cells and explore the potential molecular mechanisms of chemotherapy in pancreatic cancer.</p><p><strong>Methods and results: </strong>Two pancreatic cancer cell lines (PANC-1 and BxPC-3) were treated with gemcitabine, aspirin, and a combination (gemcitabine + aspirin). We found that the addition of aspirin enhanced the inhibitory effect of gemcitabine on the activity of PANC-1 and BxPC-3 cells. Quantitative N-glycoproteome, proteome, phosphorylation, and transcriptome data were obtained from integrated multi-omics analysis to evaluate the anti-tumor effects of aspirin and gemcitabine on pancreatic cancer cells. Mfuzz analysis of intact N-glycopeptide profiles revealed two consistent trends associated with the addition of aspirin, which showed a strong relationship between N-glycosylation and the synergistic effect of aspirin. Further analysis demonstrated that the dynamic regulation of sialylation and high-mannose glycoforms on ECM-related proteins (LAMP1, LAMP2, ITGA3, etc.) was a significant factor for the ability of aspirin to promote the anti-tumor activity of gemcitabine and the drug resistance of pancreatic cancer cells.</p><p><strong>Conclusions: </strong>In-depth analysis of N-glycosylation-related processes and pathways in pancreatic cancer cells can provide new insight for future studies regarding pancreatic cancer therapeutic targets and drug resistance mechanisms.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"141-156"},"PeriodicalIF":6.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10082407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SAMHD1 expression is a surrogate marker of immune infiltration and determines prognosis after neoadjuvant chemotherapy in early breast cancer. SAMHD1 的表达是免疫浸润的替代标志物,决定着早期乳腺癌新辅助化疗后的预后。
IF 6.6 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-02-01 Epub Date: 2023-09-04 DOI: 10.1007/s13402-023-00862-1
Lucía Gutiérrez-Chamorro, Eudald Felip, Eva Castellà, Vanessa Quiroga, Ifeanyi Jude Ezeonwumelu, Laura Angelats, Anna Esteve, Laia Perez-Roca, Anna Martínez-Cardús, Pedro Luis Fernandez, Angelica Ferrando-Díez, Anna Pous, Milana Bergamino, Beatriz Cirauqui, Marga Romeo, Iris Teruel, Ricard Mesia, Bonaventura Clotet, Eva Riveira-Muñoz, Mireia Margelí, Ester Ballana

Purpose: The lack of validated surrogate biomarkers is still an unmet clinical need in the management of early breast cancer cases that do not achieve complete pathological response after neoadjuvant chemotherapy (NACT). Here, we describe and validate the use of SAMHD1 expression as a prognostic biomarker in residual disease in vivo and in vitro.

Methods: SAMHD1 expression was evaluated in a clinical cohort of early breast cancer patients with stage II-III treated with NACT. Heterotypic 3D cultures including tumor and immune cells were used to investigate the molecular mechanisms responsible of SAMHD1 depletion through whole transcriptomic profiling, immune infiltration capacity and subsequent delineation of dysregulated immune signaling pathways.

Results: SAMHD1 expression was associated to increased risk of recurrence and higher Ki67 levels in post-NACT tumor biopsies of breast cancer patients with residual disease. Survival analysis showed that SAMHD1-expressing tumors presented shorter time-to-progression and overall survival than SAMHD1 negative cases, suggesting that SAMHD1 expression is a relevant prognostic factor in breast cancer. Whole-transcriptomic profiling of SAMHD1-depleted tumors identified downregulation of IL-12 signaling pathway as the molecular mechanism determining breast cancer prognosis. The reduced interleukin signaling upon SAMHD1 depletion induced changes in immune cell infiltration capacity in 3D heterotypic in vitro culture models, confirming the role of the SAMHD1 as a regulator of breast cancer prognosis through the induction of changes in immune response and tumor microenvironment.

Conclusion: SAMHD1 expression is a novel prognostic biomarker in early breast cancer that impacts immune-mediated signaling and differentially regulates inflammatory intra-tumoral response.

目的:在新辅助化疗(NACT)后未获得完全病理反应的早期乳腺癌病例的治疗中,缺乏有效的替代生物标志物仍是一个未满足的临床需求。在此,我们描述并验证了将 SAMHD1 表达作为体内和体外残留疾病预后生物标志物的应用:方法:在接受 NACT 治疗的 II-III 期早期乳腺癌患者临床队列中评估 SAMHD1 的表达。方法:在接受 NACT 治疗的 IIIII 期早期乳腺癌患者临床队列中评估 SAMHD1 的表达情况,使用包括肿瘤细胞和免疫细胞在内的异型三维培养物,通过全转录组分析、免疫浸润能力和随后的免疫信号通路失调的界定,研究 SAMHD1 消耗的分子机制:结果:SAMHD1的表达与乳腺癌患者NACT后肿瘤活检的复发风险增加和Ki67水平升高有关。生存期分析表明,与SAMHD1阴性病例相比,SAMHD1表达肿瘤的恶化时间和总生存期更短,这表明SAMHD1表达是乳腺癌的一个相关预后因素。对去除了SAMHD1的肿瘤进行的全转录组分析发现,IL-12信号通路的下调是决定乳腺癌预后的分子机制。在三维异型体外培养模型中,SAMHD1缺失后白细胞介素信号的减少诱导了免疫细胞浸润能力的变化,这证实了SAMHD1通过诱导免疫反应和肿瘤微环境的变化而成为乳腺癌预后的调控因子:结论:SAMHD1的表达是早期乳腺癌的一种新型预后生物标志物,它会影响免疫介导的信号传导,并对肿瘤内的炎症反应进行不同程度的调节。
{"title":"SAMHD1 expression is a surrogate marker of immune infiltration and determines prognosis after neoadjuvant chemotherapy in early breast cancer.","authors":"Lucía Gutiérrez-Chamorro, Eudald Felip, Eva Castellà, Vanessa Quiroga, Ifeanyi Jude Ezeonwumelu, Laura Angelats, Anna Esteve, Laia Perez-Roca, Anna Martínez-Cardús, Pedro Luis Fernandez, Angelica Ferrando-Díez, Anna Pous, Milana Bergamino, Beatriz Cirauqui, Marga Romeo, Iris Teruel, Ricard Mesia, Bonaventura Clotet, Eva Riveira-Muñoz, Mireia Margelí, Ester Ballana","doi":"10.1007/s13402-023-00862-1","DOIUrl":"10.1007/s13402-023-00862-1","url":null,"abstract":"<p><strong>Purpose: </strong>The lack of validated surrogate biomarkers is still an unmet clinical need in the management of early breast cancer cases that do not achieve complete pathological response after neoadjuvant chemotherapy (NACT). Here, we describe and validate the use of SAMHD1 expression as a prognostic biomarker in residual disease in vivo and in vitro.</p><p><strong>Methods: </strong>SAMHD1 expression was evaluated in a clinical cohort of early breast cancer patients with stage II-III treated with NACT. Heterotypic 3D cultures including tumor and immune cells were used to investigate the molecular mechanisms responsible of SAMHD1 depletion through whole transcriptomic profiling, immune infiltration capacity and subsequent delineation of dysregulated immune signaling pathways.</p><p><strong>Results: </strong>SAMHD1 expression was associated to increased risk of recurrence and higher Ki67 levels in post-NACT tumor biopsies of breast cancer patients with residual disease. Survival analysis showed that SAMHD1-expressing tumors presented shorter time-to-progression and overall survival than SAMHD1 negative cases, suggesting that SAMHD1 expression is a relevant prognostic factor in breast cancer. Whole-transcriptomic profiling of SAMHD1-depleted tumors identified downregulation of IL-12 signaling pathway as the molecular mechanism determining breast cancer prognosis. The reduced interleukin signaling upon SAMHD1 depletion induced changes in immune cell infiltration capacity in 3D heterotypic in vitro culture models, confirming the role of the SAMHD1 as a regulator of breast cancer prognosis through the induction of changes in immune response and tumor microenvironment.</p><p><strong>Conclusion: </strong>SAMHD1 expression is a novel prognostic biomarker in early breast cancer that impacts immune-mediated signaling and differentially regulates inflammatory intra-tumoral response.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"189-208"},"PeriodicalIF":6.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10899429/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10153471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ATM-Mediated translocation of RanBPM regulates DNA damage response by stabilizing p21 in non-small cell lung cancer cells. ATM 介导的 RanBPM 转位通过稳定非小细胞肺癌细胞中的 p21 来调节 DNA 损伤反应。
IF 6.6 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-02-01 Epub Date: 2023-09-07 DOI: 10.1007/s13402-023-00866-x
Tanggang Deng, Lin Xie, Chen Xiaofang, Zhenbin Zhang, Yugang Xiao, Yuchong Peng, Linglong Yin, Yongming Fu, Xiong Li

Purpose: Platinum-based chemotherapy remains a standard-of-care for most patients with advanced non-small cell lung cancer (NSCLC). DNA damage response (DDR) induced by platinum or Etoposide activated a panel of cell cycle-regulatory proteins including p21 through p53 pathway. Previous studies have reported that RanBPM has been involved in various cellular processes such as DDR by interacting with multiple proteins. However, the underlying mechanism remains unclear.

Methods: NSCLC tissue microarrays were used for assessing the expression of RanBPM by immunohistochemical staining. The roles of RanBPM in the DDR of NSCLC progression was examined in in vitro cell lines and in vivo animal models. The regulation of RanBPM on protein stability and ubiquitination levels were investigated by immunoblots and in vivo ubiquitylation assay.

Results: The level of p21 or RanBPM is lower in NSCLC than non-malignant tissues and has a highly positive correlation. Mechanistically, RanBPM protein physically interacts with p21, and RanBPM deubiquitinates p21 by recruiting a deubiquitinase USP11 to maintain protein stability of p21. RanBPM silencing significantly decreased p21 protein level. Conversely, RanBPM overexpression led to the accumulation of endogenous p21 protein regardless of p53 status. Functionally, RanBPM regulates DDR in a p21-dependent manner. Furthermore, DNA damage significantly promoted the nuclear translocation of RanBPM protein through ATM signaling pathways.

Conclusion: RanBPM is a novel regulator of P21 protein stability, and plays a critical role in the regulation of DDR.

目的:铂类化疗仍是大多数晚期非小细胞肺癌(NSCLC)患者的标准治疗方法。铂或依托泊苷诱导的 DNA 损伤反应(DDR)会通过 p53 通路激活包括 p21 在内的一系列细胞周期调节蛋白。先前的研究报告称,RanBPM 通过与多种蛋白相互作用参与了 DDR 等多种细胞过程。然而,其潜在机制仍不清楚:方法:使用 NSCLC 组织芯片通过免疫组化染色评估 RanBPM 的表达。在体外细胞系和体内动物模型中研究了 RanBPM 在 NSCLC 进展的 DDR 中的作用。通过免疫印迹和体内泛素化实验研究了RanBPM对蛋白质稳定性和泛素化水平的调控作用:结果:p21或RanBPM的水平在NSCLC中低于非恶性组织,且呈高度正相关。从机理上讲,RanBPM蛋白与p21发生物理相互作用,RanBPM通过招募去泛素化酶USP11对p21进行去泛素化,以维持p21蛋白的稳定性。RanBPM 沉默可显著降低 p21 蛋白水平。相反,无论 p53 的状态如何,RanBPM 的过表达都会导致内源性 p21 蛋白的积累。从功能上讲,RanBPM 以 p21 依赖性的方式调节 DDR。此外,DNA损伤通过ATM信号通路明显促进了RanBPM蛋白的核转位:结论:RanBPM是P21蛋白稳定性的新型调控因子,在DDR调控中发挥着关键作用。
{"title":"ATM-Mediated translocation of RanBPM regulates DNA damage response by stabilizing p21 in non-small cell lung cancer cells.","authors":"Tanggang Deng, Lin Xie, Chen Xiaofang, Zhenbin Zhang, Yugang Xiao, Yuchong Peng, Linglong Yin, Yongming Fu, Xiong Li","doi":"10.1007/s13402-023-00866-x","DOIUrl":"10.1007/s13402-023-00866-x","url":null,"abstract":"<p><strong>Purpose: </strong>Platinum-based chemotherapy remains a standard-of-care for most patients with advanced non-small cell lung cancer (NSCLC). DNA damage response (DDR) induced by platinum or Etoposide activated a panel of cell cycle-regulatory proteins including p21 through p53 pathway. Previous studies have reported that RanBPM has been involved in various cellular processes such as DDR by interacting with multiple proteins. However, the underlying mechanism remains unclear.</p><p><strong>Methods: </strong>NSCLC tissue microarrays were used for assessing the expression of RanBPM by immunohistochemical staining. The roles of RanBPM in the DDR of NSCLC progression was examined in in vitro cell lines and in vivo animal models. The regulation of RanBPM on protein stability and ubiquitination levels were investigated by immunoblots and in vivo ubiquitylation assay.</p><p><strong>Results: </strong>The level of p21 or RanBPM is lower in NSCLC than non-malignant tissues and has a highly positive correlation. Mechanistically, RanBPM protein physically interacts with p21, and RanBPM deubiquitinates p21 by recruiting a deubiquitinase USP11 to maintain protein stability of p21. RanBPM silencing significantly decreased p21 protein level. Conversely, RanBPM overexpression led to the accumulation of endogenous p21 protein regardless of p53 status. Functionally, RanBPM regulates DDR in a p21-dependent manner. Furthermore, DNA damage significantly promoted the nuclear translocation of RanBPM protein through ATM signaling pathways.</p><p><strong>Conclusion: </strong>RanBPM is a novel regulator of P21 protein stability, and plays a critical role in the regulation of DDR.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"245-258"},"PeriodicalIF":6.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10899406/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10171851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell transcriptomic profiling reveals immune cell heterogeneity in acute myeloid leukaemia peripheral blood mononuclear cells after chemotherapy. 单细胞转录组特征分析揭示了化疗后急性髓性白血病外周血单核细胞中免疫细胞的异质性。
IF 6.6 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-02-01 Epub Date: 2023-08-24 DOI: 10.1007/s13402-023-00853-2
Xuqiao Hu, Dongyan Cao, Zhenru Zhou, Zhaoyang Wang, Jieying Zeng, Wen-Xu Hong

Purpose: Acute myeloid leukaemia (AML) is a heterogeneous disease characterised by the rapid clonal expansion of abnormally differentiated myeloid progenitor cells residing in a complex microenvironment. However, the immune cell types, status, and genome profile of the peripheral blood mononuclear cell (PBMC) microenvironment in AML patients after chemotherapy are poorly understood. In order to explore the immune microenvironment of AML patients after chemotherapy, we conducted this study for providing insights into precision medicine and immunotherapy of AML.

Methods: In this study, we used single-cell RNA sequencing (scRNA-seq) to analyse the PBMC microenvironment from five AML patients treated with different chemotherapy regimens and six healthy donors. We compared the cell compositions in AML patients and healthy donors, and performed gene set enrichment analysis (GSEA), CellPhoneDB, and copy number variation (CNV) analysis.

Results: Using scRNA-seq technology, 91,772 high quality cells of 44,950 PBMCs from AML patients and 46,822 PBMCs from healthy donors were classified as 14 major cell clusters. Our study revealed the sub-cluster diversity of T cells, natural killer (NK) cells, monocytes, dendritic cells (DCs), and haematopoietic stem cell progenitors (HSC-Prog) in AML patients under chemotherapy. NK cells and monocyte-DCs showed significant changes in transcription factor expression and chromosome copy number variation (CNV). We also observed significant heterogeneity in CNV and intercellular interaction networks in HSC-Prog cells.

Conclusion: Our results elucidated the PBMC single-cell landscape and provided insights into precision medicine and immunotherapy for treating AML.

目的:急性髓性白血病(AML)是一种异质性疾病,其特征是居住在复杂微环境中的异常分化髓系祖细胞的快速克隆扩增。然而,人们对急性髓细胞白血病患者化疗后外周血单核细胞(PBMC)微环境中的免疫细胞类型、状态和基因组概况知之甚少。为了探索急性髓细胞性白血病患者化疗后的免疫微环境,我们开展了这项研究,以期为急性髓细胞性白血病的精准医疗和免疫治疗提供见解:在这项研究中,我们使用单细胞 RNA 测序(scRNA-seq)分析了五名接受不同化疗方案治疗的 AML 患者和六名健康供体的 PBMC 微环境。我们比较了AML患者和健康供体的细胞组成,并进行了基因组富集分析(GSEA)、CellPhoneDB和拷贝数变异(CNV)分析:利用 scRNA-seq 技术,从 44,950 例 AML 患者和 46,822 例健康供体的 PBMCs 中提取的 91,772 个高质量细胞被归类为 14 个主要细胞集群。我们的研究揭示了接受化疗的急性髓细胞性白血病患者的 T 细胞、自然杀伤(NK)细胞、单核细胞、树突状细胞(DC)和造血干细胞祖细胞(HSC-Prog)的亚群多样性。NK细胞和单核细胞-DC在转录因子表达和染色体拷贝数变异(CNV)方面出现了显著变化。我们还观察到 HSC-Prog 细胞的 CNV 和细胞间相互作用网络存在明显的异质性:我们的研究结果阐明了PBMC单细胞图谱,为治疗急性髓细胞白血病的精准医疗和免疫疗法提供了见解。
{"title":"Single-cell transcriptomic profiling reveals immune cell heterogeneity in acute myeloid leukaemia peripheral blood mononuclear cells after chemotherapy.","authors":"Xuqiao Hu, Dongyan Cao, Zhenru Zhou, Zhaoyang Wang, Jieying Zeng, Wen-Xu Hong","doi":"10.1007/s13402-023-00853-2","DOIUrl":"10.1007/s13402-023-00853-2","url":null,"abstract":"<p><strong>Purpose: </strong>Acute myeloid leukaemia (AML) is a heterogeneous disease characterised by the rapid clonal expansion of abnormally differentiated myeloid progenitor cells residing in a complex microenvironment. However, the immune cell types, status, and genome profile of the peripheral blood mononuclear cell (PBMC) microenvironment in AML patients after chemotherapy are poorly understood. In order to explore the immune microenvironment of AML patients after chemotherapy, we conducted this study for providing insights into precision medicine and immunotherapy of AML.</p><p><strong>Methods: </strong>In this study, we used single-cell RNA sequencing (scRNA-seq) to analyse the PBMC microenvironment from five AML patients treated with different chemotherapy regimens and six healthy donors. We compared the cell compositions in AML patients and healthy donors, and performed gene set enrichment analysis (GSEA), CellPhoneDB, and copy number variation (CNV) analysis.</p><p><strong>Results: </strong>Using scRNA-seq technology, 91,772 high quality cells of 44,950 PBMCs from AML patients and 46,822 PBMCs from healthy donors were classified as 14 major cell clusters. Our study revealed the sub-cluster diversity of T cells, natural killer (NK) cells, monocytes, dendritic cells (DCs), and haematopoietic stem cell progenitors (HSC-Prog) in AML patients under chemotherapy. NK cells and monocyte-DCs showed significant changes in transcription factor expression and chromosome copy number variation (CNV). We also observed significant heterogeneity in CNV and intercellular interaction networks in HSC-Prog cells.</p><p><strong>Conclusion: </strong>Our results elucidated the PBMC single-cell landscape and provided insights into precision medicine and immunotherapy for treating AML.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"97-112"},"PeriodicalIF":6.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10899424/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10061014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prognostic significance of collagen signatures at breast tumor boundary obtained by combining multiphoton imaging and imaging analysis. 结合多光子成像和成像分析获得的乳腺肿瘤边界胶原特征的预后意义。
IF 6.6 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-02-01 Epub Date: 2023-08-22 DOI: 10.1007/s13402-023-00851-4
Xingxin Huang, Fangmeng Fu, Wenhui Guo, Deyong Kang, Xiahui Han, Liqin Zheng, Zhenlin Zhan, Chuan Wang, Qingyuan Zhang, Shu Wang, Shunwu Xu, Jianli Ma, Lida Qiu, Jianxin Chen, Lianhuang Li

Purpose: Collagen features in breast tumor microenvironment is closely associated with the prognosis of patients. We aim to explore the prognostic significance of collagen features at breast tumor border by combining multiphoton imaging and imaging analysis.

Methods: We used multiphoton microscopy (MPM) to label-freely image human breast tumor samples and then constructed an automatic classification model based on deep learning to identify collagen signatures from multiphoton images. We recognized three kinds of collagen signatures at tumor boundary (CSTB I-III) in a small-scale, and furthermore obtained a CSTB score for each patient based on the combined CSTB I-III by using the ridge regression analysis. The prognostic performance of CSTB score is assessed by the area under the receiver operating characteristic curve (AUC), Cox proportional hazard regression analysis, as well as Kaplan-Meier survival analysis.

Results: As an independent prognostic factor, statistical results reveal that the prognostic performance of CSTB score is better than that of the clinical model combining three independent prognostic indicators, molecular subtype, tumor size, and lymph nodal metastasis (AUC, Training dataset: 0.773 vs. 0.749; External validation: 0.753 vs. 0.724; HR, Training dataset: 4.18 vs. 3.92; External validation: 4.98 vs. 4.16), and as an auxiliary indicator, it can greatly improve the accuracy of prognostic prediction. And furthermore, a nomogram combining the CSTB score with the clinical model is established for prognosis prediction and clinical decision making.

Conclusion: This standardized and automated imaging prognosticator may convince pathologists to adopt it as a prognostic factor, thereby customizing more effective treatment plans for patients.

目的:乳腺肿瘤微环境中的胶原蛋白特征与患者的预后密切相关。我们旨在结合多光子成像和成像分析,探讨乳腺肿瘤边界胶原蛋白特征的预后意义:方法:我们使用多光子显微镜(MPM)对人类乳腺肿瘤样本进行无标记成像,然后构建了一个基于深度学习的自动分类模型,从多光子图像中识别胶原蛋白特征。我们在小范围内识别了肿瘤边界的三种胶原蛋白特征(CSTB I-III),并根据CSTB I-III的组合,通过脊回归分析得出了每位患者的CSTB评分。通过接收者操作特征曲线下面积(AUC)、Cox比例危险回归分析以及Kaplan-Meier生存分析评估CSTB评分的预后效果:统计结果显示,作为一个独立的预后因素,CSTB评分的预后效果优于结合分子亚型、肿瘤大小和淋巴结转移三个独立预后指标的临床模型(AUC,训练数据集:0.773 vs. 0.749; External validation:外部验证:0.753 vs. 0.724;HR,训练数据集:4.18 vs. 3.92):4.18 vs. 3.92; External validation:4.98 vs. 4.16),作为辅助指标,可以大大提高预后预测的准确性。此外,还建立了一个将CSTB评分与临床模型相结合的提名图,用于预后预测和临床决策:结论:这一标准化和自动化的影像预后指标可能会说服病理学家将其作为预后因素,从而为患者定制更有效的治疗方案。
{"title":"Prognostic significance of collagen signatures at breast tumor boundary obtained by combining multiphoton imaging and imaging analysis.","authors":"Xingxin Huang, Fangmeng Fu, Wenhui Guo, Deyong Kang, Xiahui Han, Liqin Zheng, Zhenlin Zhan, Chuan Wang, Qingyuan Zhang, Shu Wang, Shunwu Xu, Jianli Ma, Lida Qiu, Jianxin Chen, Lianhuang Li","doi":"10.1007/s13402-023-00851-4","DOIUrl":"10.1007/s13402-023-00851-4","url":null,"abstract":"<p><strong>Purpose: </strong>Collagen features in breast tumor microenvironment is closely associated with the prognosis of patients. We aim to explore the prognostic significance of collagen features at breast tumor border by combining multiphoton imaging and imaging analysis.</p><p><strong>Methods: </strong>We used multiphoton microscopy (MPM) to label-freely image human breast tumor samples and then constructed an automatic classification model based on deep learning to identify collagen signatures from multiphoton images. We recognized three kinds of collagen signatures at tumor boundary (CSTB I-III) in a small-scale, and furthermore obtained a CSTB score for each patient based on the combined CSTB I-III by using the ridge regression analysis. The prognostic performance of CSTB score is assessed by the area under the receiver operating characteristic curve (AUC), Cox proportional hazard regression analysis, as well as Kaplan-Meier survival analysis.</p><p><strong>Results: </strong>As an independent prognostic factor, statistical results reveal that the prognostic performance of CSTB score is better than that of the clinical model combining three independent prognostic indicators, molecular subtype, tumor size, and lymph nodal metastasis (AUC, Training dataset: 0.773 vs. 0.749; External validation: 0.753 vs. 0.724; HR, Training dataset: 4.18 vs. 3.92; External validation: 4.98 vs. 4.16), and as an auxiliary indicator, it can greatly improve the accuracy of prognostic prediction. And furthermore, a nomogram combining the CSTB score with the clinical model is established for prognosis prediction and clinical decision making.</p><p><strong>Conclusion: </strong>This standardized and automated imaging prognosticator may convince pathologists to adopt it as a prognostic factor, thereby customizing more effective treatment plans for patients.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"69-80"},"PeriodicalIF":6.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10039753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Osteopontin secreted from obese adipocytes enhances angiogenesis and promotes progression of pancreatic ductal adenocarcinoma in obesity. 肥胖脂肪细胞分泌的Osteopontin能增强血管生成并促进肥胖症胰腺导管腺癌的发展。
IF 6.6 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-02-01 Epub Date: 2023-08-29 DOI: 10.1007/s13402-023-00865-y
Shigeki Fukusada, Takaya Shimura, Makoto Natsume, Ruriko Nishigaki, Yusuke Okuda, Hiroyasu Iwasaki, Naomi Sugimura, Mika Kitagawa, Takahito Katano, Mamoru Tanaka, Keiji Ozeki, Eiji Kubota, Kazuki Hayashi, Hiromi Kataoka

Purpose: Obesity is a risk factor and poor prognostic factor for pancreatic ductal adenocarcinoma (PDAC), but the underlying mechanisms remain unclear.

Methods: PDAC cells and obese visceral adipocytes (O-Ad) derived from mice and humans were used to analyze interactions between the two cell types, and human microvascular endothelial cells were used for angiogenesis assay. A xenograft mouse model with subcutaneously injected PDAC cells was used for animal studies. The relationship between visceral fat and prognosis was analyzed using resected tissues from PDAC patients with and without obesity.

Results: Conditioned media (CM) from O-Ad significantly increased PDAC cell growth and migration and angiogenic capacity in both human and mice cells, and blocking osteopontin (OPN) in O-Ad canceled O-Ad-induced effects in both mouse and human cells. In addition, O-Ad directly increased the migratory and tube-forming capacities of endothelial cells, while blocking OPN canceled these effects. O-Ad increased AKT phosphorylation and VEGFA expression in both PDAC and endothelial cells, and OPN inhibition in O-Ad canceled those O-Ad-induced effects. In the xenograft model, PDAC tumor volume was significantly increased in obese mice compared with lean mice, whereas blocking OPN significantly inhibited obesity-accelerated tumor growth. OPN expression in adipose tissues adjacent to human PDAC tumor was significantly higher in obese patients than in non-obese patients. In PDAC patients with obesity, high OPN expression in adipose tissues was significantly associated with poor prognosis.

Conclusion: Obese adipocytes trigger aggressive transformation in PDAC cells to induce PDAC progression and accelerate angiogenesis via OPN secretion.

目的:肥胖是胰腺导管腺癌(PDAC)的风险因素和不良预后因素,但其潜在机制仍不清楚:方法:使用小鼠和人类的 PDAC 细胞和肥胖内脏脂肪细胞(O-Ad)分析两种细胞类型之间的相互作用,并使用人类微血管内皮细胞进行血管生成检测。动物实验采用皮下注射 PDAC 细胞的异种移植小鼠模型。利用肥胖和非肥胖 PDAC 患者的切除组织分析了内脏脂肪与预后之间的关系:结果:O-Ad的条件培养基(CM)明显增加了PDAC细胞在人和小鼠细胞中的生长、迁移和血管生成能力。此外,O-Ad 还直接提高了内皮细胞的迁移能力和管形成能力,而阻断 OPN 则消除了这些影响。O-Ad 增加了 PDAC 和内皮细胞中的 AKT 磷酸化和 VEGFA 表达,而抑制 O-Ad 中的 OPN 可消除这些 O-Ad 诱导的效应。在异种移植模型中,与瘦小鼠相比,肥胖小鼠的PDAC肿瘤体积明显增大,而阻断OPN可明显抑制肥胖加速的肿瘤生长。肥胖患者邻近人类 PDAC 肿瘤的脂肪组织中 OPN 的表达明显高于非肥胖患者。在患有肥胖症的PDAC患者中,脂肪组织中OPN的高表达与预后不良明显相关:结论:肥胖脂肪细胞通过分泌 OPN 触发 PDAC 细胞的侵袭性转化,诱导 PDAC 进展并加速血管生成。
{"title":"Osteopontin secreted from obese adipocytes enhances angiogenesis and promotes progression of pancreatic ductal adenocarcinoma in obesity.","authors":"Shigeki Fukusada, Takaya Shimura, Makoto Natsume, Ruriko Nishigaki, Yusuke Okuda, Hiroyasu Iwasaki, Naomi Sugimura, Mika Kitagawa, Takahito Katano, Mamoru Tanaka, Keiji Ozeki, Eiji Kubota, Kazuki Hayashi, Hiromi Kataoka","doi":"10.1007/s13402-023-00865-y","DOIUrl":"10.1007/s13402-023-00865-y","url":null,"abstract":"<p><strong>Purpose: </strong>Obesity is a risk factor and poor prognostic factor for pancreatic ductal adenocarcinoma (PDAC), but the underlying mechanisms remain unclear.</p><p><strong>Methods: </strong>PDAC cells and obese visceral adipocytes (O-Ad) derived from mice and humans were used to analyze interactions between the two cell types, and human microvascular endothelial cells were used for angiogenesis assay. A xenograft mouse model with subcutaneously injected PDAC cells was used for animal studies. The relationship between visceral fat and prognosis was analyzed using resected tissues from PDAC patients with and without obesity.</p><p><strong>Results: </strong>Conditioned media (CM) from O-Ad significantly increased PDAC cell growth and migration and angiogenic capacity in both human and mice cells, and blocking osteopontin (OPN) in O-Ad canceled O-Ad-induced effects in both mouse and human cells. In addition, O-Ad directly increased the migratory and tube-forming capacities of endothelial cells, while blocking OPN canceled these effects. O-Ad increased AKT phosphorylation and VEGFA expression in both PDAC and endothelial cells, and OPN inhibition in O-Ad canceled those O-Ad-induced effects. In the xenograft model, PDAC tumor volume was significantly increased in obese mice compared with lean mice, whereas blocking OPN significantly inhibited obesity-accelerated tumor growth. OPN expression in adipose tissues adjacent to human PDAC tumor was significantly higher in obese patients than in non-obese patients. In PDAC patients with obesity, high OPN expression in adipose tissues was significantly associated with poor prognosis.</p><p><strong>Conclusion: </strong>Obese adipocytes trigger aggressive transformation in PDAC cells to induce PDAC progression and accelerate angiogenesis via OPN secretion.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"229-244"},"PeriodicalIF":6.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10102291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FGF19 promotes nasopharyngeal carcinoma progression by inducing angiogenesis via inhibiting TRIM21-mediated ANXA2 ubiquitination. FGF19通过抑制TRIM21介导的ANXA2泛素化诱导血管生成来促进鼻咽癌进展。
IF 6.6 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-02-01 Epub Date: 2023-10-02 DOI: 10.1007/s13402-023-00868-9
Si Shi, Qicheng Zhang, Kaiwen Zhang, Wenhui Chen, Haijing Xie, Si Pan, Ziyi Xue, Bo You, Jianmei Zhao, Yiwen You

Purpose: Nasopharyngeal carcinoma (NPC) has characteristics of high invasion and early metastasis. Most NPC patients present with locoregionally advanced illness when first diagnosed. Therefore, it is urgent to discover NPC biomarkers. Fibroblast growth Factor 19 (FGF19) plays a role in various physiological or pathological processes, including cancer. In this research, we discovered the importance of FGF19 in NPC, and clarified its role in tumour angiogenesis.

Methods: Western blotting, immunohistochemistry and ELISA were used to investigate FGF19 expression in NPC. Then we took CCK8, colony formation, Transwell and wound healing assays to identify the influence of FGF19 on NPC malignant behaviours. The proliferative and metastatic capacity of FGF19 were evaluated in nude mice and zebrafish. The role of FGF19 in angiogenesis was investigated by tube formation and Matrigel plug angiogenesis assays. We then evaluated the variation in Annexin A2(ANXA2) levels with the treatment of FGF19. Lastly, co-immunoprecipitation and ubiquitination assays were performed to identify the mechanisms involved.

Results: FGF19 levels were elevated in tissues and serum of NPC patients and were associated with poor clinical stages. High expression of FGF19 promoted NPC malignant behaviours. In particular, FGF19 expression was correlated with microvessel density in tissues and NPC-derived FGF19 could accelerate angiogenesis in vitro and in vivo. Mechanistically, FGF19 influenced ANXA2 expression to promote angiogenesis. Moreover, tripartite motif-containing 21(TRIM21) interacted with ANXA2 and was responsible for ANXA2 ubiquitination.

Conclusion: FGF19 promoted NPC angiogenesis by inhibiting TRIM21-mediated ANXA2 ubiquitination. It may serve as a noninvasive biomarker for NPC and provides new insights for therapy.

目的:鼻咽癌具有高侵袭性和早期转移的特点。大多数鼻咽癌患者在首次诊断时表现为局部晚期疾病。因此,发现NPC生物标志物是当务之急。成纤维细胞生长因子19(FGF19)在包括癌症在内的各种生理或病理过程中发挥作用。在本研究中,我们发现了FGF19在NPC中的重要性,并阐明了其在肿瘤血管生成中的作用。方法:采用蛋白质印迹法、免疫组织化学法和ELISA法检测FGF19在鼻咽癌中的表达。然后我们采用CCK8、集落形成、Transwell和伤口愈合试验来鉴定FGF19对NPC恶性行为的影响。在裸鼠和斑马鱼中评估FGF19的增殖和转移能力。FGF19在血管生成中的作用通过试管形成和Matrigel栓塞血管生成测定进行了研究。然后,我们评估了膜联蛋白A2(ANXA2)水平随FGF19治疗的变化。最后,进行免疫共沉淀和泛素化测定以确定所涉及的机制。结果:鼻咽癌患者组织和血清中FGF19水平升高,与临床分期差有关。FGF19的高表达促进了NPC的恶性行为。特别是,FGF19的表达与组织中的微血管密度相关,NPC衍生的FGF19可以在体外和体内加速血管生成。从机制上讲,FGF19影响ANXA2的表达以促进血管生成。此外,含有21的三元基序(TRIM21)与ANXA2相互作用,并负责ANXA2的泛素化。结论:FGF19通过抑制TRIM21介导的ANXA2泛素化而促进NPC血管生成。它可以作为NPC的非侵入性生物标志物,并为治疗提供新的见解。
{"title":"FGF19 promotes nasopharyngeal carcinoma progression by inducing angiogenesis via inhibiting TRIM21-mediated ANXA2 ubiquitination.","authors":"Si Shi, Qicheng Zhang, Kaiwen Zhang, Wenhui Chen, Haijing Xie, Si Pan, Ziyi Xue, Bo You, Jianmei Zhao, Yiwen You","doi":"10.1007/s13402-023-00868-9","DOIUrl":"10.1007/s13402-023-00868-9","url":null,"abstract":"<p><strong>Purpose: </strong>Nasopharyngeal carcinoma (NPC) has characteristics of high invasion and early metastasis. Most NPC patients present with locoregionally advanced illness when first diagnosed. Therefore, it is urgent to discover NPC biomarkers. Fibroblast growth Factor 19 (FGF19) plays a role in various physiological or pathological processes, including cancer. In this research, we discovered the importance of FGF19 in NPC, and clarified its role in tumour angiogenesis.</p><p><strong>Methods: </strong>Western blotting, immunohistochemistry and ELISA were used to investigate FGF19 expression in NPC. Then we took CCK8, colony formation, Transwell and wound healing assays to identify the influence of FGF19 on NPC malignant behaviours. The proliferative and metastatic capacity of FGF19 were evaluated in nude mice and zebrafish. The role of FGF19 in angiogenesis was investigated by tube formation and Matrigel plug angiogenesis assays. We then evaluated the variation in Annexin A2(ANXA2) levels with the treatment of FGF19. Lastly, co-immunoprecipitation and ubiquitination assays were performed to identify the mechanisms involved.</p><p><strong>Results: </strong>FGF19 levels were elevated in tissues and serum of NPC patients and were associated with poor clinical stages. High expression of FGF19 promoted NPC malignant behaviours. In particular, FGF19 expression was correlated with microvessel density in tissues and NPC-derived FGF19 could accelerate angiogenesis in vitro and in vivo. Mechanistically, FGF19 influenced ANXA2 expression to promote angiogenesis. Moreover, tripartite motif-containing 21(TRIM21) interacted with ANXA2 and was responsible for ANXA2 ubiquitination.</p><p><strong>Conclusion: </strong>FGF19 promoted NPC angiogenesis by inhibiting TRIM21-mediated ANXA2 ubiquitination. It may serve as a noninvasive biomarker for NPC and provides new insights for therapy.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"283-301"},"PeriodicalIF":6.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10899426/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41150010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endothelial-derived small extracellular vesicles support B-cell acute lymphoblastic leukemia development. 内皮细胞衍生的细胞外小泡支持B细胞急性淋巴细胞白血病的发展。
IF 6.6 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-02-01 Epub Date: 2023-09-26 DOI: 10.1007/s13402-023-00855-0
Dan Huang, Yamin Yuan, Liyuan Cao, Difan Zhang, Yu Jiang, Yaping Zhang, Chiqi Chen, Zhuo Yu, Li Xie, Yujuan Wei, Jiangbo Wan, Junke Zheng

Purpose: The bone marrow niche plays an important role in leukemia development. However, the contributions of different niche components to leukemia development and their underlying mechanisms remain largely unclear.

Method: Cre/LoxP-based conditional knockout technology was used to delete VPS33B or ANGPTL2 gene in niche cells. Murine B-ALL model was established by overexpressing the N-Myc oncogene in hematopoietic stem progenitor cells. The frequency of leukemia cells and immunophenotypic B220+ CD43+ LICs was detected by flow cytometry. SEVs was isolated by sequential centrifugation and mass spectrometry was performed to analyze the different components of SEVs. Immunoprecipitation and western blot were used to measure the interaction of VPS33B and ANGPTL2.

Results: Here, we showed that specific knockout of vascular protein sorting 33b (Vps33b) in endothelial cells (ECs), but not megakaryocytes or mesenchymal stem cells, resulted in a significant decrease in the secretion of small extracellular vesicles (SEVs) and a delay in the development of B-cell lymphoblastic leukemia (B-ALL). Vps33b knockdown endothelial cells contained much lower levels of SEVs that contained angiopoietin-like protein 2 (ANGPTL2) than the control cells. Importantly, conditional knockout of Angptl2 in ECs significantly delayed B-ALL progression. Moreover, C-terminal region of ANGPTL2 (aa247-471) could directly interact with Sec1-like domain 1 of VPS33B (aa1-aa146). We further demonstrated that the point mutations R399H and G402S in ANGPTL2 led to a dramatic decrease in the secretion of ANGPTL2-SEVs. We also showed that wild-type ANGPTL2-containing SEVs, but not mutant ANGPTL2-containing SEVs, significantly enhanced B-ALL development.

Conclusion: In summary, our findings indicate that the secretion of ANGPTL2-containing SEVs in ECs sustains the leukemogenic activities of B-ALL cells, which is fine-tuned by the direct interaction of VPS33B and ANGPTL2. These findings reveal that niche-specific SEVs play an important role in B-ALL development.

目的:骨髓生态位在白血病的发生发展中起着重要作用。然而,不同生态位成分对白血病发展的贡献及其潜在机制在很大程度上仍不清楚。方法:采用基于Cre/LoxP的条件敲除技术,对小生境细胞中的VPS33B或ANGPTL2基因进行敲除。通过在造血干祖细胞中过表达N-Myc癌基因建立小鼠B-ALL模型。流式细胞仪检测白血病细胞和免疫表型B220+CD43+LICs的频率。通过顺序离心分离SEV,并进行质谱分析来分析SEV的不同成分。免疫沉淀和蛋白质印迹法检测了VPS33B和ANGPTL2的相互作用。结果:我们发现,血管蛋白分选33b(VPS33B)在内皮细胞(EC)中的特异性敲除,而在巨核细胞或间充质干细胞中没有,导致细胞外小泡(SEVs)的分泌显著减少,并延迟B细胞淋巴细胞白血病(B-ALL)的发展。Vps33b敲低的内皮细胞含有比对照细胞低得多的含有血管生成素样蛋白2(ANGPTL2)的SEV水平。重要的是,ECs中Angptl2的条件性敲除显著延迟了B-ALL的进展。此外,ANGPTL2的C末端区域(aa247-471)可以直接与VPS33B的Sec1样结构域1(aa1-aa146)相互作用。我们进一步证明,ANGPTL2中的点突变R399H和G402S导致ANGPTL2 SEVs的分泌显著减少。我们还发现,含有SEVs的野生型ANGPTL2,而不是含有SEVss的突变体ANGPTL2显著增强了B-ALL的发育。结论:总之,我们的研究结果表明,内皮细胞中含有ANGPTL2的SEVs的分泌维持了B-ALL细胞的致白血病活性,而VPS33B和ANGPTL2之间的直接相互作用对其进行了微调。这些发现表明,小众特异性SEV在B-ALL的发展中起着重要作用。
{"title":"Endothelial-derived small extracellular vesicles support B-cell acute lymphoblastic leukemia development.","authors":"Dan Huang, Yamin Yuan, Liyuan Cao, Difan Zhang, Yu Jiang, Yaping Zhang, Chiqi Chen, Zhuo Yu, Li Xie, Yujuan Wei, Jiangbo Wan, Junke Zheng","doi":"10.1007/s13402-023-00855-0","DOIUrl":"10.1007/s13402-023-00855-0","url":null,"abstract":"<p><strong>Purpose: </strong>The bone marrow niche plays an important role in leukemia development. However, the contributions of different niche components to leukemia development and their underlying mechanisms remain largely unclear.</p><p><strong>Method: </strong>Cre/LoxP-based conditional knockout technology was used to delete VPS33B or ANGPTL2 gene in niche cells. Murine B-ALL model was established by overexpressing the N-Myc oncogene in hematopoietic stem progenitor cells. The frequency of leukemia cells and immunophenotypic B220<sup>+</sup> CD43<sup>+</sup> LICs was detected by flow cytometry. SEVs was isolated by sequential centrifugation and mass spectrometry was performed to analyze the different components of SEVs. Immunoprecipitation and western blot were used to measure the interaction of VPS33B and ANGPTL2.</p><p><strong>Results: </strong>Here, we showed that specific knockout of vascular protein sorting 33b (Vps33b) in endothelial cells (ECs), but not megakaryocytes or mesenchymal stem cells, resulted in a significant decrease in the secretion of small extracellular vesicles (SEVs) and a delay in the development of B-cell lymphoblastic leukemia (B-ALL). Vps33b knockdown endothelial cells contained much lower levels of SEVs that contained angiopoietin-like protein 2 (ANGPTL2) than the control cells. Importantly, conditional knockout of Angptl2 in ECs significantly delayed B-ALL progression. Moreover, C-terminal region of ANGPTL2 (aa247-471) could directly interact with Sec1-like domain 1 of VPS33B (aa1-aa146). We further demonstrated that the point mutations R399H and G402S in ANGPTL2 led to a dramatic decrease in the secretion of ANGPTL2-SEVs. We also showed that wild-type ANGPTL2-containing SEVs, but not mutant ANGPTL2-containing SEVs, significantly enhanced B-ALL development.</p><p><strong>Conclusion: </strong>In summary, our findings indicate that the secretion of ANGPTL2-containing SEVs in ECs sustains the leukemogenic activities of B-ALL cells, which is fine-tuned by the direct interaction of VPS33B and ANGPTL2. These findings reveal that niche-specific SEVs play an important role in B-ALL development.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"129-140"},"PeriodicalIF":6.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10899377/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41162157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunosuppressive MFAP2+ cancer associated fibroblasts conferred unfavorable prognosis and therapeutic resistance in gastric cancer. 具有免疫抑制作用的 MFAP2+ 癌症相关成纤维细胞会导致胃癌的不良预后和耐药性。
IF 6.6 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-02-01 Epub Date: 2023-08-04 DOI: 10.1007/s13402-023-00849-y
Rongyuan Wei, Junquan Song, Xuanjun Liu, Shiying Huo, Chenchen Liu, Xiaowen Liu

Purpose: To explore the predictive merit of MFAP2+ cancer associated fibroblasts (CAFs) infiltration for clinical outcomes and adjuvant chemotherapy or immunotherapy responsiveness in gastric cancer (GC).

Methods: In this study, several independent cohorts were included respectively to dissect the relationship of clinical outcomes, therapeutic responses and tumor microenvironment with different MFAP2+ CAFs infiltration. Drug sensitivity analysis was conducted to predict the relationship between MFAP2+ CAFs infiltration and targeted drug response. Kaplan-Meier curves and the log-rank test were used to compare clinical outcomes of patients with different MFAP2+ CAFs infiltration.

Results: High MFAP2+ CAFs infiltration yielded inferior prognosis in terms of overall survival, progress free survival and recurrence free survival in GC. Patients with low MFAP2+ CAFs infiltration were more likely to gain benefit from adjuvant therapy. Moreover, low MFAP2+ CAFs infiltration could predict a promising response to immunotherapy in GC patients. MFAP2+ CAFs with immunosuppressive features were highly relevant to immune evasive contexture characterized by the dysfunction of CD8+ T cells. We found that MFAP2+ CAFs communicated with T cells, B cells and Macrophages through releasing macrophage migration inhibitor factor (MIF), which further suggested that MFAP2+ CAFs might promote therapeutic resistance through regulating T cells dysfunction and M2 macrophages polarization.

Conclusion: Immunosuppressive MFAP2+ CAFs constructed an immune evasive tumor microenvironment characterized by incapacitated immune effector cells, consequently predicting inferior clinical outcomes and response on adjuvant therapy and immunotherapy in patients with GC. The potential of immunosuppressive MFAP2+ CAFs as a therapeutic target for GC deserved thoroughly exploration.

目的:探讨MFAP2+癌相关成纤维细胞(CAFs)浸润对胃癌(GC)临床预后和辅助化疗或免疫治疗反应性的预测价值:本研究分别纳入了几个独立队列,以探讨临床预后、治疗反应和肿瘤微环境与不同MFAP2+ CAFs浸润的关系。通过药物敏感性分析来预测MFAP2+ CAFs浸润与靶向药物反应之间的关系。采用Kaplan-Meier曲线和对数秩检验比较不同MFAP2+ CAFs浸润患者的临床结果:结果:MFAP2+ CAFs浸润程度越高,GC患者的总生存期、无进展生存期和无复发生存期的预后越差。低MFAP2+ CAFs浸润的患者更有可能从辅助治疗中获益。此外,低MFAP2+ CAFs浸润可预测GC患者对免疫疗法的反应。具有免疫抑制特征的 MFAP2+ CAFs 与以 CD8+ T 细胞功能失调为特征的免疫逃避背景高度相关。我们发现,MFAP2+ CAFs通过释放巨噬细胞迁移抑制因子(MIF)与T细胞、B细胞和巨噬细胞沟通,这进一步表明MFAP2+ CAFs可能通过调节T细胞功能障碍和M2巨噬细胞极化来促进治疗抵抗:结论:免疫抑制性 MFAP2+ CAFs 构建了一个以免疫效应细胞失能为特征的免疫回避性肿瘤微环境,从而预示着 GC 患者的不良临床预后以及对辅助治疗和免疫治疗的反应。免疫抑制性 MFAP2+ CAFs 作为 GC 治疗靶点的潜力值得深入探讨。
{"title":"Immunosuppressive MFAP2<sup>+</sup> cancer associated fibroblasts conferred unfavorable prognosis and therapeutic resistance in gastric cancer.","authors":"Rongyuan Wei, Junquan Song, Xuanjun Liu, Shiying Huo, Chenchen Liu, Xiaowen Liu","doi":"10.1007/s13402-023-00849-y","DOIUrl":"10.1007/s13402-023-00849-y","url":null,"abstract":"<p><strong>Purpose: </strong>To explore the predictive merit of MFAP2<sup>+</sup> cancer associated fibroblasts (CAFs) infiltration for clinical outcomes and adjuvant chemotherapy or immunotherapy responsiveness in gastric cancer (GC).</p><p><strong>Methods: </strong>In this study, several independent cohorts were included respectively to dissect the relationship of clinical outcomes, therapeutic responses and tumor microenvironment with different MFAP2<sup>+</sup> CAFs infiltration. Drug sensitivity analysis was conducted to predict the relationship between MFAP2<sup>+</sup> CAFs infiltration and targeted drug response. Kaplan-Meier curves and the log-rank test were used to compare clinical outcomes of patients with different MFAP2<sup>+</sup> CAFs infiltration.</p><p><strong>Results: </strong>High MFAP2<sup>+</sup> CAFs infiltration yielded inferior prognosis in terms of overall survival, progress free survival and recurrence free survival in GC. Patients with low MFAP2<sup>+</sup> CAFs infiltration were more likely to gain benefit from adjuvant therapy. Moreover, low MFAP2<sup>+</sup> CAFs infiltration could predict a promising response to immunotherapy in GC patients. MFAP2<sup>+</sup> CAFs with immunosuppressive features were highly relevant to immune evasive contexture characterized by the dysfunction of CD8<sup>+</sup> T cells. We found that MFAP2<sup>+</sup> CAFs communicated with T cells, B cells and Macrophages through releasing macrophage migration inhibitor factor (MIF), which further suggested that MFAP2<sup>+</sup> CAFs might promote therapeutic resistance through regulating T cells dysfunction and M2 macrophages polarization.</p><p><strong>Conclusion: </strong>Immunosuppressive MFAP2<sup>+</sup> CAFs constructed an immune evasive tumor microenvironment characterized by incapacitated immune effector cells, consequently predicting inferior clinical outcomes and response on adjuvant therapy and immunotherapy in patients with GC. The potential of immunosuppressive MFAP2<sup>+</sup> CAFs as a therapeutic target for GC deserved thoroughly exploration.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"55-68"},"PeriodicalIF":6.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10291578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic antitumor efficacy of gemcitabine and cisplatin to induce ferroptosis in pancreatic ductal adenocarcinoma via Sp1-SAT1-polyamine metabolism pathway. 吉西他滨和顺铂通过Sp1-SAT1-多胺代谢途径诱导胰腺导管腺癌铁变态反应的协同抗肿瘤效应
IF 6.6 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-02-01 Epub Date: 2023-09-09 DOI: 10.1007/s13402-023-00870-1
Wanhui Wei, Yuanyuan Lu, Qian Hu, Jinwen Yin, Youwei Wang, Heng Zhang, Qiu Zhao, Lan Liu

Purpose: The combination of cisplatin and gemcitabine-based chemotherapy has been recommended as a preferred regimen for pancreatic ductal adenocarcinoma (PDAC) patients with germline-based mutations. However, the underlying mechanism remains poorly elucidated. Therefore, our study aimed to explore the mechanistic basis of the cell-killing activity of gemcitabine plus cisplatin and identify potential therapeutic targets.

Methods: First, we explored the synergistic cytotoxic effects of gemcitabine and cisplatin on PDAC through in vitro and in vivo experiments. Then, we investigated ferroptosis-related biomarkers, to assess the impact of the combination therapy on ferroptosis. Using bioinformatics methods, we identified SAT1 as a potential key mediator of ferroptosis induced by gemcitabine and cisplatin. We tested the polyamine levels in PDAC cells by LC-MS after overexpressed or knocked down SAT1, and explored the role of polyamines in ferroptosis using exogenous supplementation. Finally, we explored the regulatory effect of Sp1 on SAT1 through ChIP-qPCR and dual-luciferase reporter assay.

Results: Gemcitabine plus cisplatin enhanced cell death and induced ferroptosis in PDAC. This combination upregulated SAT1 transcription by inhibiting Sp1. SAT1 activation promoted the catabolism of spermine and spermidine, leading to iron accumulation and lipid peroxide generation, ultimately resulting in ferroptosis.

Conclusions: In summary, our findings suggested the gemcitabine and cisplatin combination therapy induced ferroptosis in a GSH-independent manner in PDAC. The combined treatment inhibited Sp1 and upregulated SAT1 transcription, leading to the breakdown of spermine and spermidine. Therefore, targeting SAT1-induced polyamine metabolism may represent a promising therapeutic strategy for PDAC.

目的:顺铂和吉西他滨联合化疗已被推荐为基于基因突变的胰腺导管腺癌(PDAC)患者的首选方案。然而,其潜在机制仍未得到充分阐明。因此,我们的研究旨在探索吉西他滨加顺铂的细胞杀伤活性的机制基础,并确定潜在的治疗靶点:首先,我们通过体外和体内实验探讨了吉西他滨和顺铂对 PDAC 的协同细胞毒性作用。然后,我们研究了铁蛋白沉积相关的生物标志物,以评估联合疗法对铁蛋白沉积的影响。通过生物信息学方法,我们发现 SAT1 是吉西他滨和顺铂诱导铁突变的潜在关键介质。我们通过 LC-MS 检测了过表达或敲除 SAT1 后 PDAC 细胞中的多胺水平,并利用外源补充多胺的方法探讨了多胺在铁嗜性中的作用。最后,我们通过 ChIP-qPCR 和双荧光素酶报告实验探讨了 Sp1 对 SAT1 的调控作用:结果:吉西他滨加顺铂可增强 PDAC 的细胞死亡并诱导铁变态反应。这一组合通过抑制 Sp1 上调了 SAT1 的转录。SAT1 的激活促进了精胺和亚精胺的分解,导致铁积累和过氧化脂质的生成,最终导致铁变态反应:综上所述,我们的研究结果表明,吉西他滨和顺铂联合疗法能以GSH依赖性方式诱导PDAC发生铁变态反应。联合治疗抑制了 Sp1 并上调了 SAT1 的转录,导致精胺和亚精胺的分解。因此,靶向 SAT1 诱导的多胺代谢可能是治疗 PDAC 的一种有前景的策略。
{"title":"Synergistic antitumor efficacy of gemcitabine and cisplatin to induce ferroptosis in pancreatic ductal adenocarcinoma via Sp1-SAT1-polyamine metabolism pathway.","authors":"Wanhui Wei, Yuanyuan Lu, Qian Hu, Jinwen Yin, Youwei Wang, Heng Zhang, Qiu Zhao, Lan Liu","doi":"10.1007/s13402-023-00870-1","DOIUrl":"10.1007/s13402-023-00870-1","url":null,"abstract":"<p><strong>Purpose: </strong>The combination of cisplatin and gemcitabine-based chemotherapy has been recommended as a preferred regimen for pancreatic ductal adenocarcinoma (PDAC) patients with germline-based mutations. However, the underlying mechanism remains poorly elucidated. Therefore, our study aimed to explore the mechanistic basis of the cell-killing activity of gemcitabine plus cisplatin and identify potential therapeutic targets.</p><p><strong>Methods: </strong>First, we explored the synergistic cytotoxic effects of gemcitabine and cisplatin on PDAC through in vitro and in vivo experiments. Then, we investigated ferroptosis-related biomarkers, to assess the impact of the combination therapy on ferroptosis. Using bioinformatics methods, we identified SAT1 as a potential key mediator of ferroptosis induced by gemcitabine and cisplatin. We tested the polyamine levels in PDAC cells by LC-MS after overexpressed or knocked down SAT1, and explored the role of polyamines in ferroptosis using exogenous supplementation. Finally, we explored the regulatory effect of Sp1 on SAT1 through ChIP-qPCR and dual-luciferase reporter assay.</p><p><strong>Results: </strong>Gemcitabine plus cisplatin enhanced cell death and induced ferroptosis in PDAC. This combination upregulated SAT1 transcription by inhibiting Sp1. SAT1 activation promoted the catabolism of spermine and spermidine, leading to iron accumulation and lipid peroxide generation, ultimately resulting in ferroptosis.</p><p><strong>Conclusions: </strong>In summary, our findings suggested the gemcitabine and cisplatin combination therapy induced ferroptosis in a GSH-independent manner in PDAC. The combined treatment inhibited Sp1 and upregulated SAT1 transcription, leading to the breakdown of spermine and spermidine. Therefore, targeting SAT1-induced polyamine metabolism may represent a promising therapeutic strategy for PDAC.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"321-341"},"PeriodicalIF":6.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10188886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cellular Oncology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1