Pub Date : 2024-02-01Epub Date: 2023-10-02DOI: 10.1007/s13402-023-00868-9
Si Shi, Qicheng Zhang, Kaiwen Zhang, Wenhui Chen, Haijing Xie, Si Pan, Ziyi Xue, Bo You, Jianmei Zhao, Yiwen You
Purpose: Nasopharyngeal carcinoma (NPC) has characteristics of high invasion and early metastasis. Most NPC patients present with locoregionally advanced illness when first diagnosed. Therefore, it is urgent to discover NPC biomarkers. Fibroblast growth Factor 19 (FGF19) plays a role in various physiological or pathological processes, including cancer. In this research, we discovered the importance of FGF19 in NPC, and clarified its role in tumour angiogenesis.
Methods: Western blotting, immunohistochemistry and ELISA were used to investigate FGF19 expression in NPC. Then we took CCK8, colony formation, Transwell and wound healing assays to identify the influence of FGF19 on NPC malignant behaviours. The proliferative and metastatic capacity of FGF19 were evaluated in nude mice and zebrafish. The role of FGF19 in angiogenesis was investigated by tube formation and Matrigel plug angiogenesis assays. We then evaluated the variation in Annexin A2(ANXA2) levels with the treatment of FGF19. Lastly, co-immunoprecipitation and ubiquitination assays were performed to identify the mechanisms involved.
Results: FGF19 levels were elevated in tissues and serum of NPC patients and were associated with poor clinical stages. High expression of FGF19 promoted NPC malignant behaviours. In particular, FGF19 expression was correlated with microvessel density in tissues and NPC-derived FGF19 could accelerate angiogenesis in vitro and in vivo. Mechanistically, FGF19 influenced ANXA2 expression to promote angiogenesis. Moreover, tripartite motif-containing 21(TRIM21) interacted with ANXA2 and was responsible for ANXA2 ubiquitination.
Conclusion: FGF19 promoted NPC angiogenesis by inhibiting TRIM21-mediated ANXA2 ubiquitination. It may serve as a noninvasive biomarker for NPC and provides new insights for therapy.
{"title":"FGF19 promotes nasopharyngeal carcinoma progression by inducing angiogenesis via inhibiting TRIM21-mediated ANXA2 ubiquitination.","authors":"Si Shi, Qicheng Zhang, Kaiwen Zhang, Wenhui Chen, Haijing Xie, Si Pan, Ziyi Xue, Bo You, Jianmei Zhao, Yiwen You","doi":"10.1007/s13402-023-00868-9","DOIUrl":"10.1007/s13402-023-00868-9","url":null,"abstract":"<p><strong>Purpose: </strong>Nasopharyngeal carcinoma (NPC) has characteristics of high invasion and early metastasis. Most NPC patients present with locoregionally advanced illness when first diagnosed. Therefore, it is urgent to discover NPC biomarkers. Fibroblast growth Factor 19 (FGF19) plays a role in various physiological or pathological processes, including cancer. In this research, we discovered the importance of FGF19 in NPC, and clarified its role in tumour angiogenesis.</p><p><strong>Methods: </strong>Western blotting, immunohistochemistry and ELISA were used to investigate FGF19 expression in NPC. Then we took CCK8, colony formation, Transwell and wound healing assays to identify the influence of FGF19 on NPC malignant behaviours. The proliferative and metastatic capacity of FGF19 were evaluated in nude mice and zebrafish. The role of FGF19 in angiogenesis was investigated by tube formation and Matrigel plug angiogenesis assays. We then evaluated the variation in Annexin A2(ANXA2) levels with the treatment of FGF19. Lastly, co-immunoprecipitation and ubiquitination assays were performed to identify the mechanisms involved.</p><p><strong>Results: </strong>FGF19 levels were elevated in tissues and serum of NPC patients and were associated with poor clinical stages. High expression of FGF19 promoted NPC malignant behaviours. In particular, FGF19 expression was correlated with microvessel density in tissues and NPC-derived FGF19 could accelerate angiogenesis in vitro and in vivo. Mechanistically, FGF19 influenced ANXA2 expression to promote angiogenesis. Moreover, tripartite motif-containing 21(TRIM21) interacted with ANXA2 and was responsible for ANXA2 ubiquitination.</p><p><strong>Conclusion: </strong>FGF19 promoted NPC angiogenesis by inhibiting TRIM21-mediated ANXA2 ubiquitination. It may serve as a noninvasive biomarker for NPC and provides new insights for therapy.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"283-301"},"PeriodicalIF":6.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10899426/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41150010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose: The bone marrow niche plays an important role in leukemia development. However, the contributions of different niche components to leukemia development and their underlying mechanisms remain largely unclear.
Method: Cre/LoxP-based conditional knockout technology was used to delete VPS33B or ANGPTL2 gene in niche cells. Murine B-ALL model was established by overexpressing the N-Myc oncogene in hematopoietic stem progenitor cells. The frequency of leukemia cells and immunophenotypic B220+ CD43+ LICs was detected by flow cytometry. SEVs was isolated by sequential centrifugation and mass spectrometry was performed to analyze the different components of SEVs. Immunoprecipitation and western blot were used to measure the interaction of VPS33B and ANGPTL2.
Results: Here, we showed that specific knockout of vascular protein sorting 33b (Vps33b) in endothelial cells (ECs), but not megakaryocytes or mesenchymal stem cells, resulted in a significant decrease in the secretion of small extracellular vesicles (SEVs) and a delay in the development of B-cell lymphoblastic leukemia (B-ALL). Vps33b knockdown endothelial cells contained much lower levels of SEVs that contained angiopoietin-like protein 2 (ANGPTL2) than the control cells. Importantly, conditional knockout of Angptl2 in ECs significantly delayed B-ALL progression. Moreover, C-terminal region of ANGPTL2 (aa247-471) could directly interact with Sec1-like domain 1 of VPS33B (aa1-aa146). We further demonstrated that the point mutations R399H and G402S in ANGPTL2 led to a dramatic decrease in the secretion of ANGPTL2-SEVs. We also showed that wild-type ANGPTL2-containing SEVs, but not mutant ANGPTL2-containing SEVs, significantly enhanced B-ALL development.
Conclusion: In summary, our findings indicate that the secretion of ANGPTL2-containing SEVs in ECs sustains the leukemogenic activities of B-ALL cells, which is fine-tuned by the direct interaction of VPS33B and ANGPTL2. These findings reveal that niche-specific SEVs play an important role in B-ALL development.
{"title":"Endothelial-derived small extracellular vesicles support B-cell acute lymphoblastic leukemia development.","authors":"Dan Huang, Yamin Yuan, Liyuan Cao, Difan Zhang, Yu Jiang, Yaping Zhang, Chiqi Chen, Zhuo Yu, Li Xie, Yujuan Wei, Jiangbo Wan, Junke Zheng","doi":"10.1007/s13402-023-00855-0","DOIUrl":"10.1007/s13402-023-00855-0","url":null,"abstract":"<p><strong>Purpose: </strong>The bone marrow niche plays an important role in leukemia development. However, the contributions of different niche components to leukemia development and their underlying mechanisms remain largely unclear.</p><p><strong>Method: </strong>Cre/LoxP-based conditional knockout technology was used to delete VPS33B or ANGPTL2 gene in niche cells. Murine B-ALL model was established by overexpressing the N-Myc oncogene in hematopoietic stem progenitor cells. The frequency of leukemia cells and immunophenotypic B220<sup>+</sup> CD43<sup>+</sup> LICs was detected by flow cytometry. SEVs was isolated by sequential centrifugation and mass spectrometry was performed to analyze the different components of SEVs. Immunoprecipitation and western blot were used to measure the interaction of VPS33B and ANGPTL2.</p><p><strong>Results: </strong>Here, we showed that specific knockout of vascular protein sorting 33b (Vps33b) in endothelial cells (ECs), but not megakaryocytes or mesenchymal stem cells, resulted in a significant decrease in the secretion of small extracellular vesicles (SEVs) and a delay in the development of B-cell lymphoblastic leukemia (B-ALL). Vps33b knockdown endothelial cells contained much lower levels of SEVs that contained angiopoietin-like protein 2 (ANGPTL2) than the control cells. Importantly, conditional knockout of Angptl2 in ECs significantly delayed B-ALL progression. Moreover, C-terminal region of ANGPTL2 (aa247-471) could directly interact with Sec1-like domain 1 of VPS33B (aa1-aa146). We further demonstrated that the point mutations R399H and G402S in ANGPTL2 led to a dramatic decrease in the secretion of ANGPTL2-SEVs. We also showed that wild-type ANGPTL2-containing SEVs, but not mutant ANGPTL2-containing SEVs, significantly enhanced B-ALL development.</p><p><strong>Conclusion: </strong>In summary, our findings indicate that the secretion of ANGPTL2-containing SEVs in ECs sustains the leukemogenic activities of B-ALL cells, which is fine-tuned by the direct interaction of VPS33B and ANGPTL2. These findings reveal that niche-specific SEVs play an important role in B-ALL development.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"129-140"},"PeriodicalIF":6.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10899377/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41162157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose: To explore the predictive merit of MFAP2+ cancer associated fibroblasts (CAFs) infiltration for clinical outcomes and adjuvant chemotherapy or immunotherapy responsiveness in gastric cancer (GC).
Methods: In this study, several independent cohorts were included respectively to dissect the relationship of clinical outcomes, therapeutic responses and tumor microenvironment with different MFAP2+ CAFs infiltration. Drug sensitivity analysis was conducted to predict the relationship between MFAP2+ CAFs infiltration and targeted drug response. Kaplan-Meier curves and the log-rank test were used to compare clinical outcomes of patients with different MFAP2+ CAFs infiltration.
Results: High MFAP2+ CAFs infiltration yielded inferior prognosis in terms of overall survival, progress free survival and recurrence free survival in GC. Patients with low MFAP2+ CAFs infiltration were more likely to gain benefit from adjuvant therapy. Moreover, low MFAP2+ CAFs infiltration could predict a promising response to immunotherapy in GC patients. MFAP2+ CAFs with immunosuppressive features were highly relevant to immune evasive contexture characterized by the dysfunction of CD8+ T cells. We found that MFAP2+ CAFs communicated with T cells, B cells and Macrophages through releasing macrophage migration inhibitor factor (MIF), which further suggested that MFAP2+ CAFs might promote therapeutic resistance through regulating T cells dysfunction and M2 macrophages polarization.
Conclusion: Immunosuppressive MFAP2+ CAFs constructed an immune evasive tumor microenvironment characterized by incapacitated immune effector cells, consequently predicting inferior clinical outcomes and response on adjuvant therapy and immunotherapy in patients with GC. The potential of immunosuppressive MFAP2+ CAFs as a therapeutic target for GC deserved thoroughly exploration.
{"title":"Immunosuppressive MFAP2<sup>+</sup> cancer associated fibroblasts conferred unfavorable prognosis and therapeutic resistance in gastric cancer.","authors":"Rongyuan Wei, Junquan Song, Xuanjun Liu, Shiying Huo, Chenchen Liu, Xiaowen Liu","doi":"10.1007/s13402-023-00849-y","DOIUrl":"10.1007/s13402-023-00849-y","url":null,"abstract":"<p><strong>Purpose: </strong>To explore the predictive merit of MFAP2<sup>+</sup> cancer associated fibroblasts (CAFs) infiltration for clinical outcomes and adjuvant chemotherapy or immunotherapy responsiveness in gastric cancer (GC).</p><p><strong>Methods: </strong>In this study, several independent cohorts were included respectively to dissect the relationship of clinical outcomes, therapeutic responses and tumor microenvironment with different MFAP2<sup>+</sup> CAFs infiltration. Drug sensitivity analysis was conducted to predict the relationship between MFAP2<sup>+</sup> CAFs infiltration and targeted drug response. Kaplan-Meier curves and the log-rank test were used to compare clinical outcomes of patients with different MFAP2<sup>+</sup> CAFs infiltration.</p><p><strong>Results: </strong>High MFAP2<sup>+</sup> CAFs infiltration yielded inferior prognosis in terms of overall survival, progress free survival and recurrence free survival in GC. Patients with low MFAP2<sup>+</sup> CAFs infiltration were more likely to gain benefit from adjuvant therapy. Moreover, low MFAP2<sup>+</sup> CAFs infiltration could predict a promising response to immunotherapy in GC patients. MFAP2<sup>+</sup> CAFs with immunosuppressive features were highly relevant to immune evasive contexture characterized by the dysfunction of CD8<sup>+</sup> T cells. We found that MFAP2<sup>+</sup> CAFs communicated with T cells, B cells and Macrophages through releasing macrophage migration inhibitor factor (MIF), which further suggested that MFAP2<sup>+</sup> CAFs might promote therapeutic resistance through regulating T cells dysfunction and M2 macrophages polarization.</p><p><strong>Conclusion: </strong>Immunosuppressive MFAP2<sup>+</sup> CAFs constructed an immune evasive tumor microenvironment characterized by incapacitated immune effector cells, consequently predicting inferior clinical outcomes and response on adjuvant therapy and immunotherapy in patients with GC. The potential of immunosuppressive MFAP2<sup>+</sup> CAFs as a therapeutic target for GC deserved thoroughly exploration.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"55-68"},"PeriodicalIF":6.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10291578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2023-09-09DOI: 10.1007/s13402-023-00870-1
Wanhui Wei, Yuanyuan Lu, Qian Hu, Jinwen Yin, Youwei Wang, Heng Zhang, Qiu Zhao, Lan Liu
Purpose: The combination of cisplatin and gemcitabine-based chemotherapy has been recommended as a preferred regimen for pancreatic ductal adenocarcinoma (PDAC) patients with germline-based mutations. However, the underlying mechanism remains poorly elucidated. Therefore, our study aimed to explore the mechanistic basis of the cell-killing activity of gemcitabine plus cisplatin and identify potential therapeutic targets.
Methods: First, we explored the synergistic cytotoxic effects of gemcitabine and cisplatin on PDAC through in vitro and in vivo experiments. Then, we investigated ferroptosis-related biomarkers, to assess the impact of the combination therapy on ferroptosis. Using bioinformatics methods, we identified SAT1 as a potential key mediator of ferroptosis induced by gemcitabine and cisplatin. We tested the polyamine levels in PDAC cells by LC-MS after overexpressed or knocked down SAT1, and explored the role of polyamines in ferroptosis using exogenous supplementation. Finally, we explored the regulatory effect of Sp1 on SAT1 through ChIP-qPCR and dual-luciferase reporter assay.
Results: Gemcitabine plus cisplatin enhanced cell death and induced ferroptosis in PDAC. This combination upregulated SAT1 transcription by inhibiting Sp1. SAT1 activation promoted the catabolism of spermine and spermidine, leading to iron accumulation and lipid peroxide generation, ultimately resulting in ferroptosis.
Conclusions: In summary, our findings suggested the gemcitabine and cisplatin combination therapy induced ferroptosis in a GSH-independent manner in PDAC. The combined treatment inhibited Sp1 and upregulated SAT1 transcription, leading to the breakdown of spermine and spermidine. Therefore, targeting SAT1-induced polyamine metabolism may represent a promising therapeutic strategy for PDAC.
{"title":"Synergistic antitumor efficacy of gemcitabine and cisplatin to induce ferroptosis in pancreatic ductal adenocarcinoma via Sp1-SAT1-polyamine metabolism pathway.","authors":"Wanhui Wei, Yuanyuan Lu, Qian Hu, Jinwen Yin, Youwei Wang, Heng Zhang, Qiu Zhao, Lan Liu","doi":"10.1007/s13402-023-00870-1","DOIUrl":"10.1007/s13402-023-00870-1","url":null,"abstract":"<p><strong>Purpose: </strong>The combination of cisplatin and gemcitabine-based chemotherapy has been recommended as a preferred regimen for pancreatic ductal adenocarcinoma (PDAC) patients with germline-based mutations. However, the underlying mechanism remains poorly elucidated. Therefore, our study aimed to explore the mechanistic basis of the cell-killing activity of gemcitabine plus cisplatin and identify potential therapeutic targets.</p><p><strong>Methods: </strong>First, we explored the synergistic cytotoxic effects of gemcitabine and cisplatin on PDAC through in vitro and in vivo experiments. Then, we investigated ferroptosis-related biomarkers, to assess the impact of the combination therapy on ferroptosis. Using bioinformatics methods, we identified SAT1 as a potential key mediator of ferroptosis induced by gemcitabine and cisplatin. We tested the polyamine levels in PDAC cells by LC-MS after overexpressed or knocked down SAT1, and explored the role of polyamines in ferroptosis using exogenous supplementation. Finally, we explored the regulatory effect of Sp1 on SAT1 through ChIP-qPCR and dual-luciferase reporter assay.</p><p><strong>Results: </strong>Gemcitabine plus cisplatin enhanced cell death and induced ferroptosis in PDAC. This combination upregulated SAT1 transcription by inhibiting Sp1. SAT1 activation promoted the catabolism of spermine and spermidine, leading to iron accumulation and lipid peroxide generation, ultimately resulting in ferroptosis.</p><p><strong>Conclusions: </strong>In summary, our findings suggested the gemcitabine and cisplatin combination therapy induced ferroptosis in a GSH-independent manner in PDAC. The combined treatment inhibited Sp1 and upregulated SAT1 transcription, leading to the breakdown of spermine and spermidine. Therefore, targeting SAT1-induced polyamine metabolism may represent a promising therapeutic strategy for PDAC.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"321-341"},"PeriodicalIF":6.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10188886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose: Ovarian cancer (OC) is the leading cause of death from gynecological malignancies, and its etiology and pathogenesis are currently unclear. Recent studies have found that PUF60 overexpressed in various cancers. However, the exact function of PUF60 in global RNA processing and its role in OC has been unclear.
Methods: The expression of PUF60 and its relationship with clinical characteristics were analyzed by multiple database analysis and immunohistochemistry. Phenotypic effects of PUF60 on ovarian cancer cell proliferation and metastasis were examined by in vitro cell proliferation assay, migration assay, and in vivo xenograft models and lung metastasis models. RNA immunoprecipitation, seahorse analyses, RNA stability assay were used to study the effect of PUF60 on the stability of oxidative phosphorylation (OXPHOS)-related genes in OC.
Results: We report PUF60 is highly expressed in OC with frequent amplification of up to 33.9% and its upregulation predicts a poor prognosis. PUF60 promotes the proliferation and migration of OC cells both in vitro and in vivo. Mechanistically, we demonstrated that silencing of PUF60 enhanced the stability of mRNA transcripts involved in OXPHOS and decreased the formation of processing bodies (P-bodies), ultimately elevating the OXPHOS level.
Conclusion: Our study unveils a novel function of PUF60 in OC energy metabolism. Thus, PUF60 may serve as a novel target for the treatment of patients with OC.
{"title":"Targeting PUF60 prevents tumor progression by retarding mRNA decay of oxidative phosphorylation in ovarian cancer.","authors":"Cancan Zhang, Xiaoge Ni, Chunlin Tao, Ziyang Zhou, Fengmian Wang, Fei Gu, Xiaoxiao Cui, Shuheng Jiang, Qing Li, Huan Lu, Dongxue Li, Zhiyong Wu, Rong Zhang","doi":"10.1007/s13402-023-00859-w","DOIUrl":"10.1007/s13402-023-00859-w","url":null,"abstract":"<p><strong>Purpose: </strong>Ovarian cancer (OC) is the leading cause of death from gynecological malignancies, and its etiology and pathogenesis are currently unclear. Recent studies have found that PUF60 overexpressed in various cancers. However, the exact function of PUF60 in global RNA processing and its role in OC has been unclear.</p><p><strong>Methods: </strong>The expression of PUF60 and its relationship with clinical characteristics were analyzed by multiple database analysis and immunohistochemistry. Phenotypic effects of PUF60 on ovarian cancer cell proliferation and metastasis were examined by in vitro cell proliferation assay, migration assay, and in vivo xenograft models and lung metastasis models. RNA immunoprecipitation, seahorse analyses, RNA stability assay were used to study the effect of PUF60 on the stability of oxidative phosphorylation (OXPHOS)-related genes in OC.</p><p><strong>Results: </strong>We report PUF60 is highly expressed in OC with frequent amplification of up to 33.9% and its upregulation predicts a poor prognosis. PUF60 promotes the proliferation and migration of OC cells both in vitro and in vivo. Mechanistically, we demonstrated that silencing of PUF60 enhanced the stability of mRNA transcripts involved in OXPHOS and decreased the formation of processing bodies (P-bodies), ultimately elevating the OXPHOS level.</p><p><strong>Conclusion: </strong>Our study unveils a novel function of PUF60 in OC energy metabolism. Thus, PUF60 may serve as a novel target for the treatment of patients with OC.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"157-174"},"PeriodicalIF":6.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10899302/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10078596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2023-09-06DOI: 10.1007/s13402-023-00871-0
Haiqin Wang, Haohui Wang, Jiajing Chen, Pian Liu, Xiaoxiong Xiao
Background: Chemotherapeutic agents such as cisplatin are commonly used in patients with clinically unresectable or recurrent esophageal cancer (ESCA). However, patients often develop resistance to cisplatin, which in turn leads to a poor prognosis. Studies have shown that FAM111B may be involved in the development of tumors as an oncogene or tumor suppressor gene. However, the pathological role and corresponding mechanism of FAM111B in ESCA are still unclear.
Methods: The GEPIA web tool, ENCORI Pan-Cancer Analysis Platform and UALCAN-TCGA database were used to study the expression of FAM111B in ESCA. CCK-8, angiogenesis, Transwell and xenograft assays were applied to explore the biological function of FAM111B in ESCA. Western blot, RT-qPCR, and RNA-seq analyses were applied to study the FAM111B/GSDMA axis in the progression of ESCA cells. CCK-8 and xenograft assays were used to study the role of the FAM111B/GSDMA axis in determining the sensitivity of ESCA to cisplatin.
Results: Our results demonstrated that FAM111B is highly expressed in ESCA tissues compared to normal tissues. We showed that FAM111B promotes the progression of ESCC cells by binding to GSDMA and that the trypsin protease domain is essential for the activity of FAM111B. Furthermore, we showed that the FAM111B/GSDMA axis regulates cisplatin sensitivity in ESCA.
Conclusions: Overall, we identified a novel FAM111B/GSDMA axis regulating ESCA tumorigenesis and chemosensitivity, at least in ESCC cells.
{"title":"Overexpressed FAM111B degrades GSDMA to promote esophageal cancer tumorigenesis and cisplatin resistance.","authors":"Haiqin Wang, Haohui Wang, Jiajing Chen, Pian Liu, Xiaoxiong Xiao","doi":"10.1007/s13402-023-00871-0","DOIUrl":"10.1007/s13402-023-00871-0","url":null,"abstract":"<p><strong>Background: </strong>Chemotherapeutic agents such as cisplatin are commonly used in patients with clinically unresectable or recurrent esophageal cancer (ESCA). However, patients often develop resistance to cisplatin, which in turn leads to a poor prognosis. Studies have shown that FAM111B may be involved in the development of tumors as an oncogene or tumor suppressor gene. However, the pathological role and corresponding mechanism of FAM111B in ESCA are still unclear.</p><p><strong>Methods: </strong>The GEPIA web tool, ENCORI Pan-Cancer Analysis Platform and UALCAN-TCGA database were used to study the expression of FAM111B in ESCA. CCK-8, angiogenesis, Transwell and xenograft assays were applied to explore the biological function of FAM111B in ESCA. Western blot, RT-qPCR, and RNA-seq analyses were applied to study the FAM111B/GSDMA axis in the progression of ESCA cells. CCK-8 and xenograft assays were used to study the role of the FAM111B/GSDMA axis in determining the sensitivity of ESCA to cisplatin.</p><p><strong>Results: </strong>Our results demonstrated that FAM111B is highly expressed in ESCA tissues compared to normal tissues. We showed that FAM111B promotes the progression of ESCC cells by binding to GSDMA and that the trypsin protease domain is essential for the activity of FAM111B. Furthermore, we showed that the FAM111B/GSDMA axis regulates cisplatin sensitivity in ESCA.</p><p><strong>Conclusions: </strong>Overall, we identified a novel FAM111B/GSDMA axis regulating ESCA tumorigenesis and chemosensitivity, at least in ESCC cells.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"343-359"},"PeriodicalIF":6.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10534802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Ferroptosis, a newly form of regulated cell death (RCD), is characterized by iron dyshomeostasis and unrestricted lipid peroxidation. Emerging evidence depicts a pivotal role for ferroptosis in driving some pathological processes, especially in cancer. Triggering ferroptosis can suppress tumor growth and induce an anti-tumor immune response, denoting the therapeutic promises for targeting ferroptosis in the management of cancer. As an autophagic phenomenon, ferritinophagy is critical to induce ferroptosis by degradation of ferritin to release intracellular free iron. Recently, a great deal of effort has gone into designing and developing anti-cancer strategies based on targeting ferritinophagy to induce ferroptosis.
Conclusion: This review delineates the regulatory mechanism of ferritinophagy firstly and summarizes the role of ferritinophagy-induced ferroptosis in cancer. Moreover, the strategies targeting ferritinophagy to induce ferroptosis are highlighted to unveil the therapeutic value of ferritinophagy as a target to manage cancer. Finally, the future research directions on how to cope with the challenges in developing ferritinophagy promoters into clinical therapeutics are discussed.
{"title":"Ferritinophagy induced ferroptosis in the management of cancer.","authors":"Yi-Chen Liu, Yi-Ting Gong, Qing-Yan Sun, Bei Wang, Yue Yan, Yi-Xu Chen, Li-Jun Zhang, Wei-Dong Zhang, Xin Luan","doi":"10.1007/s13402-023-00858-x","DOIUrl":"10.1007/s13402-023-00858-x","url":null,"abstract":"<p><strong>Background: </strong>Ferroptosis, a newly form of regulated cell death (RCD), is characterized by iron dyshomeostasis and unrestricted lipid peroxidation. Emerging evidence depicts a pivotal role for ferroptosis in driving some pathological processes, especially in cancer. Triggering ferroptosis can suppress tumor growth and induce an anti-tumor immune response, denoting the therapeutic promises for targeting ferroptosis in the management of cancer. As an autophagic phenomenon, ferritinophagy is critical to induce ferroptosis by degradation of ferritin to release intracellular free iron. Recently, a great deal of effort has gone into designing and developing anti-cancer strategies based on targeting ferritinophagy to induce ferroptosis.</p><p><strong>Conclusion: </strong>This review delineates the regulatory mechanism of ferritinophagy firstly and summarizes the role of ferritinophagy-induced ferroptosis in cancer. Moreover, the strategies targeting ferritinophagy to induce ferroptosis are highlighted to unveil the therapeutic value of ferritinophagy as a target to manage cancer. Finally, the future research directions on how to cope with the challenges in developing ferritinophagy promoters into clinical therapeutics are discussed.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"19-35"},"PeriodicalIF":6.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10592229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Reprogramming glucose metabolism, also known as the Warburg effect (aerobic glycolysis), is a hallmark of cancers. Increased tumor glycolysis not only favors rapid cancer cell proliferation but reprograms the immune microenvironment to enable tumor progression. The transcriptional factor ONECUT3 plays key roles in the development of the liver and pancreas, however, limited is known about its oncogenic roles, particularly metabolic reprogramming.
Methods: Immunohistochemistry and Western blotting are applied to determine the expression pattern of ONECUT3 and its clinical relevance in pancreatic ductal adenocarcinoma (PDAC). Knockdown and overexpression strategies are employed to determine the in vitro and in vivo functions of ONECUT3. Chromatin immunoprecipitation, luciferase reporter assay, and gene set enrichment analysis are used to decipher the molecular mechanisms.
Results: The glycolytic metabolism is inversely associated with T-cell infiltration in PDAC. ONECUT3 is identified as a key regulator for PDAC glycolysis and CD8+ T-cell infiltration. Genetic silencing of ONECUT3 inhibits cell proliferation, promotes cell apoptosis, and reduces glycolytic metabolism as evidenced by glucose uptake, lactate production, and extracellular acidification rate. Opposite effects of ONECUT3 are observed in overexpression studies. ONECUT3 enhances aerobic glycolysis via transcriptional regulation of PDK1. Targeting ONECUT3 effectively suppresses tumor growth, increases CD8+ T-cell infiltration, and potentiates anti-PD-1 therapy in PDAC. Pharmacological inhibition of PDK1 also shows a synergistic effect with anti-PD-1 therapy. In clinical setting, ONECUT3 is closely associated with PDK1 expression and T-cell infiltration in PDAC and acts as an independent prognostic factor.
Conclusions: Our study reveals a previous unprecedented regulatory role of ONECUT3 in PDAC glycolysis and provides in vivo evidence that increased glycolysis is linked to an immunosuppressive microenvironment. Moreover, targeting ONECUT3-PDK1 axis may serve as a promising therapeutic approach for the treatment of PDAC.
背景:葡萄糖代谢重编程,也称为沃伯格效应(有氧糖酵解),是癌症的一个特征。肿瘤糖酵解的增加不仅有利于癌细胞的快速增殖,还能重编程免疫微环境,使肿瘤得以进展。转录因子ONECUT3在肝脏和胰腺的发育过程中发挥着关键作用,然而,人们对它的致癌作用,尤其是代谢重编程作用了解有限:方法:应用免疫组化和 Western 印迹技术确定 ONECUT3 的表达模式及其在胰腺导管腺癌(PDAC)中的临床意义。采用基因敲除和过表达策略确定 ONECUT3 的体外和体内功能。染色质免疫共沉淀、荧光素酶报告分析和基因组富集分析被用来破译其分子机制:结果:糖代谢与 PDAC 中的 T 细胞浸润成反比。结果:糖酵解代谢与 PDAC 的 T 细胞浸润成反比,ONECUT3 是 PDAC 糖酵解和 CD8+ T 细胞浸润的关键调节因子。基因沉默ONECUT3可抑制细胞增殖、促进细胞凋亡并降低糖酵解代谢,葡萄糖摄取、乳酸生成和细胞外酸化率都证明了这一点。在过表达研究中观察到 ONECUT3 的相反作用。ONECUT3 通过转录调控 PDK1 增强有氧糖酵解。靶向 ONECUT3 能有效抑制肿瘤生长,增加 CD8+ T 细胞浸润,并增强 PDAC 的抗 PD-1 治疗效果。药理抑制 PDK1 还能与抗 PD-1 疗法产生协同效应。在临床环境中,ONECUT3与PDAC中PDK1的表达和T细胞浸润密切相关,是一个独立的预后因素:我们的研究揭示了 ONECUT3 在 PDAC 糖酵解中前所未有的调控作用,并提供了糖酵解增加与免疫抑制微环境相关的体内证据。此外,靶向 ONECUT3-PDK1 轴可能是治疗 PDAC 的一种有前景的治疗方法。
{"title":"Targeting ONECUT3 blocks glycolytic metabolism and potentiates anti-PD-1 therapy in pancreatic cancer.","authors":"Peng-Cheng Chen, Yong Ning, Hui Li, Jin-Gen Su, Jiang-Bo Shen, Qing-Chun Feng, Shu-Heng Jiang, Pei-Dong Shi, Run-Sheng Guo","doi":"10.1007/s13402-023-00852-3","DOIUrl":"10.1007/s13402-023-00852-3","url":null,"abstract":"<p><strong>Background: </strong>Reprogramming glucose metabolism, also known as the Warburg effect (aerobic glycolysis), is a hallmark of cancers. Increased tumor glycolysis not only favors rapid cancer cell proliferation but reprograms the immune microenvironment to enable tumor progression. The transcriptional factor ONECUT3 plays key roles in the development of the liver and pancreas, however, limited is known about its oncogenic roles, particularly metabolic reprogramming.</p><p><strong>Methods: </strong>Immunohistochemistry and Western blotting are applied to determine the expression pattern of ONECUT3 and its clinical relevance in pancreatic ductal adenocarcinoma (PDAC). Knockdown and overexpression strategies are employed to determine the in vitro and in vivo functions of ONECUT3. Chromatin immunoprecipitation, luciferase reporter assay, and gene set enrichment analysis are used to decipher the molecular mechanisms.</p><p><strong>Results: </strong>The glycolytic metabolism is inversely associated with T-cell infiltration in PDAC. ONECUT3 is identified as a key regulator for PDAC glycolysis and CD8<sup>+</sup> T-cell infiltration. Genetic silencing of ONECUT3 inhibits cell proliferation, promotes cell apoptosis, and reduces glycolytic metabolism as evidenced by glucose uptake, lactate production, and extracellular acidification rate. Opposite effects of ONECUT3 are observed in overexpression studies. ONECUT3 enhances aerobic glycolysis via transcriptional regulation of PDK1. Targeting ONECUT3 effectively suppresses tumor growth, increases CD8<sup>+</sup> T-cell infiltration, and potentiates anti-PD-1 therapy in PDAC. Pharmacological inhibition of PDK1 also shows a synergistic effect with anti-PD-1 therapy. In clinical setting, ONECUT3 is closely associated with PDK1 expression and T-cell infiltration in PDAC and acts as an independent prognostic factor.</p><p><strong>Conclusions: </strong>Our study reveals a previous unprecedented regulatory role of ONECUT3 in PDAC glycolysis and provides in vivo evidence that increased glycolysis is linked to an immunosuppressive microenvironment. Moreover, targeting ONECUT3-PDK1 axis may serve as a promising therapeutic approach for the treatment of PDAC.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"81-96"},"PeriodicalIF":6.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10039754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2023-08-22DOI: 10.1007/s13402-023-00863-0
Hanzhao Zhang, Dardan Konjusha, Nima Rafati, Tatsiana Tararuk, Finn Hallböök
Purpose: Retinoblastoma, a childhood cancer, is most frequently caused by bi-allelic inactivation of RB1 gene. However, other oncogenic mutations such as MYCN amplification can induce retinoblastoma with proficient RB1. Previously, we established RB1-proficient MYCN-overexpressing retinoblastoma models both in human organoids and chicken. Here, we investigate the regulatory events in MYCN-induced retinoblastoma carcinogenesis based on the model in chicken.
Methods: MYCN transformed retinal cells in culture were obtained from in vivo MYCN electroporated chicken embryo retina. The expression profiles were analysed by RNA sequencing. Chemical treatments, qRT-PCR, flow cytometry, immunohisto- and immunocytochemistry and western blot were applied to study the properties and function of these cells.
Results: The expression profile of MYCN-transformed retinal cells in culture showed cone photoreceptor progenitor signature and robustly increased levels of E2Fs. This expression profile was consistently observed in long-term culture. Chemical treatments confirmed RB1 proficiency in these cells. The cells were insensitive to p53 activation but inhibition of E2f efficiently induced cell cycle arrest followed by apoptosis.
Conclusion: In conclusion, with proficient RB1, MYCN-induced high level of E2F expression dysregulates the cell cycle and contributes to retinoblastoma carcinogenesis. The increased level of E2f renders the cells to adopt a similar mechanistic phenotype to a RB1-deficient tumour.
{"title":"Inhibition of high level E2F in a RB1 proficient MYCN overexpressing chicken retinoblastoma model normalizes neoplastic behaviour.","authors":"Hanzhao Zhang, Dardan Konjusha, Nima Rafati, Tatsiana Tararuk, Finn Hallböök","doi":"10.1007/s13402-023-00863-0","DOIUrl":"10.1007/s13402-023-00863-0","url":null,"abstract":"<p><strong>Purpose: </strong>Retinoblastoma, a childhood cancer, is most frequently caused by bi-allelic inactivation of RB1 gene. However, other oncogenic mutations such as MYCN amplification can induce retinoblastoma with proficient RB1. Previously, we established RB1-proficient MYCN-overexpressing retinoblastoma models both in human organoids and chicken. Here, we investigate the regulatory events in MYCN-induced retinoblastoma carcinogenesis based on the model in chicken.</p><p><strong>Methods: </strong>MYCN transformed retinal cells in culture were obtained from in vivo MYCN electroporated chicken embryo retina. The expression profiles were analysed by RNA sequencing. Chemical treatments, qRT-PCR, flow cytometry, immunohisto- and immunocytochemistry and western blot were applied to study the properties and function of these cells.</p><p><strong>Results: </strong>The expression profile of MYCN-transformed retinal cells in culture showed cone photoreceptor progenitor signature and robustly increased levels of E2Fs. This expression profile was consistently observed in long-term culture. Chemical treatments confirmed RB1 proficiency in these cells. The cells were insensitive to p53 activation but inhibition of E2f efficiently induced cell cycle arrest followed by apoptosis.</p><p><strong>Conclusion: </strong>In conclusion, with proficient RB1, MYCN-induced high level of E2F expression dysregulates the cell cycle and contributes to retinoblastoma carcinogenesis. The increased level of E2f renders the cells to adopt a similar mechanistic phenotype to a RB1-deficient tumour.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"209-227"},"PeriodicalIF":6.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10899388/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10039755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2023-08-23DOI: 10.1007/s13402-023-00861-2
Kai Jiang, Lili Zhu, Huizhen Huang, Liu Zheng, Zhuqing Wang, Xiaonan Kang
Purpose: Hepatocellular carcinoma (HCC) responds poorly to immunotherapy, and the durable response rate is 10-20%. Here, we aim to characterize HCC classifications based on lactate genes to identify patients who may benefit from immunotherapy.
Methods: Lactate-related genes were applied for HCC classification in the current study, and lactate Cluster 1 (LC1) and lactate Cluster 2 (LC2) were defined. Differential genes from LC1 and LC2 helped define the following lactate phenotype clusters: lactate phenotype Cluster 1 (LPC1), lactate phenotype Cluster 2 (LPC2) and lactate phenotype Cluster 3 (LPC3). Based on the cluster annotation, the lactate score was defined and analyzed to evaluate the immunotherapy response.
Results: All the classified clusters were analyzed, and they showed different immune signatures. The survival rate of LPC3 was higher than that of LPC2 (LPC3 vs. LPC2, P = 0.027) and LPC1 (LPC3 vs. LPC1, P = 0.027). Then, the lactate score was annotated and confirmed to be effective in predicting responses to immune checkpoint blockade therapy.
Conclusion: In the current study, we developed a classification system for HCC and defined the lactate score, which was validated to be partially effective in estimating responses among tumor patients.
目的:肝细胞癌(HCC)对免疫疗法的反应较差,持久反应率为10%-20%。在此,我们旨在根据乳酸基因对 HCC 进行分类,以识别可能从免疫疗法中获益的患者:方法:本研究将乳酸相关基因用于HCC分类,并定义了乳酸簇1(LC1)和乳酸簇2(LC2)。LC1和LC2的差异基因帮助定义了以下乳酸表型群:乳酸表型群1(LPC1)、乳酸表型群2(LPC2)和乳酸表型群3(LPC3)。根据聚类注释,定义并分析乳酸评分,以评估免疫治疗反应:结果:对所有分类群组进行了分析,它们显示出不同的免疫特征。LPC3的存活率高于LPC2(LPC3 vs. LPC2,P = 0.027)和LPC1(LPC3 vs. LPC1,P = 0.027)。然后,对乳酸评分进行了注释,证实其能有效预测免疫检查点阻断疗法的反应:在当前的研究中,我们开发了一套HCC分类系统,并定义了乳酸评分,该评分被证实对估计肿瘤患者的反应部分有效。
{"title":"Lactate score classification of hepatocellular carcinoma helps identify patients with tumors that respond to immune checkpoint blockade therapy.","authors":"Kai Jiang, Lili Zhu, Huizhen Huang, Liu Zheng, Zhuqing Wang, Xiaonan Kang","doi":"10.1007/s13402-023-00861-2","DOIUrl":"10.1007/s13402-023-00861-2","url":null,"abstract":"<p><strong>Purpose: </strong>Hepatocellular carcinoma (HCC) responds poorly to immunotherapy, and the durable response rate is 10-20%. Here, we aim to characterize HCC classifications based on lactate genes to identify patients who may benefit from immunotherapy.</p><p><strong>Methods: </strong>Lactate-related genes were applied for HCC classification in the current study, and lactate Cluster 1 (LC1) and lactate Cluster 2 (LC2) were defined. Differential genes from LC1 and LC2 helped define the following lactate phenotype clusters: lactate phenotype Cluster 1 (LPC1), lactate phenotype Cluster 2 (LPC2) and lactate phenotype Cluster 3 (LPC3). Based on the cluster annotation, the lactate score was defined and analyzed to evaluate the immunotherapy response.</p><p><strong>Results: </strong>All the classified clusters were analyzed, and they showed different immune signatures. The survival rate of LPC3 was higher than that of LPC2 (LPC3 vs. LPC2, P = 0.027) and LPC1 (LPC3 vs. LPC1, P = 0.027). Then, the lactate score was annotated and confirmed to be effective in predicting responses to immune checkpoint blockade therapy.</p><p><strong>Conclusion: </strong>In the current study, we developed a classification system for HCC and defined the lactate score, which was validated to be partially effective in estimating responses among tumor patients.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"175-188"},"PeriodicalIF":6.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10899304/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10414923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}