Pub Date : 2024-06-01Epub Date: 2023-10-30DOI: 10.1007/s13402-023-00894-7
Yang Wang, Yu Zhang, Jing Ouyang, Hanying Yi, Shiyu Wang, Dongbo Liu, Yingying Dai, Kun Song, Wenwu Pei, Ziyang Hong, Ling Chen, Wei Zhang, Zhaoqian Liu, Howard L Mcleod, Yijing He
Purpose: TRPV1 is a nonselective Ca2+ channel protein that is widely expressed and plays an important role during the occurrence and development of many cancers. Activation of TRPV1 channels can affect tumour progression by regulating proliferation, apoptosis and migration. Some studies have also shown that activating TRPV1 can affect tumour progression by modulating tumour immunity. However, the effects of TRPV1 on the development of non-small cell lung cancer (NSCLC) have not been explored clearly.
Method: The Cancer Genome Atlas (TCGA) database and spatial transcriptomics datasets from 10 × Genomics were used to analyze TRPV1 expression in various tumour tissues. Cell proliferation and apoptosis were examined by cell counting kit 8 (CCK8), colony formation, and flow cytometry. Immunohistochemistry, qPCR, and western blotting were used to determine the mRNA and protein expression levels of TRPV1 and other related molecules. Tumour xenografts in BALB/C and C57BL/6J mice were used to determine the effects of TRPV1 on NSCLC development in vivo. Neurotransmitter content was examined by LC-MS/MS, ELISA and Immunohistochemistry. Immune cell infiltration was assessed by flow cytometry.
Results: In this study, we found that TRPV1 expression was significantly upregulated in NSCLC and that patients with high TRPV1 expression had a poor prognosis. TRPV1 knockdown can significantly inhibit NSCLC proliferation and induce cell apoptosis through Ca2+-IGF1R signaling. In addition, TRPV1 knockdown resulted in increased infiltration of CD4+ T cells, CD8+ T cells, GZMB+CD8+ T cells and DCs and decreased infiltration of immunosuppressive MDSCs in NSCLC. In addition, TRPV1 knockout effectively decreased the expression of M2 macrophage markers CD163 and increased the expression of M1-associated, costimulatory markers CD86. Knockdown or knockout of TRPV1 significantly inhibit tumour growth and promoted an antitumour immune response through supressing γ-aminobutyric acid (GABA) secretion in NSCLC.
Conclusion: Our study suggests that TRPV1 acts as a tumour promoter in NSCLC, mediating pro-proliferative and anti-apoptotic effects on NSCLC through IGF1R signaling and regulating GABA release to affect the tumour immune response.
{"title":"TRPV1 inhibition suppresses non-small cell lung cancer progression by inhibiting tumour growth and enhancing the immune response.","authors":"Yang Wang, Yu Zhang, Jing Ouyang, Hanying Yi, Shiyu Wang, Dongbo Liu, Yingying Dai, Kun Song, Wenwu Pei, Ziyang Hong, Ling Chen, Wei Zhang, Zhaoqian Liu, Howard L Mcleod, Yijing He","doi":"10.1007/s13402-023-00894-7","DOIUrl":"10.1007/s13402-023-00894-7","url":null,"abstract":"<p><strong>Purpose: </strong>TRPV1 is a nonselective Ca<sup>2+</sup> channel protein that is widely expressed and plays an important role during the occurrence and development of many cancers. Activation of TRPV1 channels can affect tumour progression by regulating proliferation, apoptosis and migration. Some studies have also shown that activating TRPV1 can affect tumour progression by modulating tumour immunity. However, the effects of TRPV1 on the development of non-small cell lung cancer (NSCLC) have not been explored clearly.</p><p><strong>Method: </strong>The Cancer Genome Atlas (TCGA) database and spatial transcriptomics datasets from 10 × Genomics were used to analyze TRPV1 expression in various tumour tissues. Cell proliferation and apoptosis were examined by cell counting kit 8 (CCK8), colony formation, and flow cytometry. Immunohistochemistry, qPCR, and western blotting were used to determine the mRNA and protein expression levels of TRPV1 and other related molecules. Tumour xenografts in BALB/C and C57BL/6J mice were used to determine the effects of TRPV1 on NSCLC development in vivo. Neurotransmitter content was examined by LC-MS/MS, ELISA and Immunohistochemistry. Immune cell infiltration was assessed by flow cytometry.</p><p><strong>Results: </strong>In this study, we found that TRPV1 expression was significantly upregulated in NSCLC and that patients with high TRPV1 expression had a poor prognosis. TRPV1 knockdown can significantly inhibit NSCLC proliferation and induce cell apoptosis through Ca<sup>2+</sup>-IGF1R signaling. In addition, TRPV1 knockdown resulted in increased infiltration of CD4<sup>+</sup> T cells, CD8<sup>+</sup> T cells, GZMB<sup>+</sup>CD8<sup>+</sup> T cells and DCs and decreased infiltration of immunosuppressive MDSCs in NSCLC. In addition, TRPV1 knockout effectively decreased the expression of M2 macrophage markers CD163 and increased the expression of M1-associated, costimulatory markers CD86. Knockdown or knockout of TRPV1 significantly inhibit tumour growth and promoted an antitumour immune response through supressing γ-aminobutyric acid (GABA) secretion in NSCLC.</p><p><strong>Conclusion: </strong>Our study suggests that TRPV1 acts as a tumour promoter in NSCLC, mediating pro-proliferative and anti-apoptotic effects on NSCLC through IGF1R signaling and regulating GABA release to affect the tumour immune response.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71414929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2023-12-27DOI: 10.1007/s13402-023-00911-9
Mickael Diallo, Constança Pimenta, Fernanda Murtinheira, Daniela Martins-Alves, Francisco R Pinto, André Abrantes da Costa, Ricardo Letra-Vilela, Vanesa Martin, Carmen Rodriguez, Mário S Rodrigues, Federico Herrera
STAT3 is a pleiotropic transcription factor overactivated in 70% of solid tumours. We have recently reported that inactivating mutations on residues susceptible to post-translational modifications (PTMs) in only one of the monomers (i.e. asymmetric) caused changes in the cellular distribution of STAT3 homodimers. Here, we used more controlled experimental conditions, i.e. without the interference of endogenous STAT3 (STAT3-/- HeLa cells) and in the presence of a defined cytokine stimulus (Leukemia Inhibitory Factor, LIF), to provide further evidence that asymmetric PTMs affect the nuclear translocation of STAT3 homodimers. Time-lapse microscopy for 20 min after LIF stimulation showed that S727 dephosphorylation (S727A) and K685 inactivation (K685R) slightly enhanced the nuclear translocation of STAT3 homodimers, while K49 inactivation (K49R) delayed STAT3 nuclear translocation. Our findings suggest that asymmetrically modified STAT3 homodimers could be a new level of STAT3 regulation and, therefore, a potential target for cancer therapy.
{"title":"Asymmetric post-translational modifications regulate the nuclear translocation of STAT3 homodimers in response to leukemia inhibitory factor.","authors":"Mickael Diallo, Constança Pimenta, Fernanda Murtinheira, Daniela Martins-Alves, Francisco R Pinto, André Abrantes da Costa, Ricardo Letra-Vilela, Vanesa Martin, Carmen Rodriguez, Mário S Rodrigues, Federico Herrera","doi":"10.1007/s13402-023-00911-9","DOIUrl":"10.1007/s13402-023-00911-9","url":null,"abstract":"<p><p>STAT3 is a pleiotropic transcription factor overactivated in 70% of solid tumours. We have recently reported that inactivating mutations on residues susceptible to post-translational modifications (PTMs) in only one of the monomers (i.e. asymmetric) caused changes in the cellular distribution of STAT3 homodimers. Here, we used more controlled experimental conditions, i.e. without the interference of endogenous STAT3 (STAT3-/- HeLa cells) and in the presence of a defined cytokine stimulus (Leukemia Inhibitory Factor, LIF), to provide further evidence that asymmetric PTMs affect the nuclear translocation of STAT3 homodimers. Time-lapse microscopy for 20 min after LIF stimulation showed that S727 dephosphorylation (S727A) and K685 inactivation (K685R) slightly enhanced the nuclear translocation of STAT3 homodimers, while K49 inactivation (K49R) delayed STAT3 nuclear translocation. Our findings suggest that asymmetrically modified STAT3 homodimers could be a new level of STAT3 regulation and, therefore, a potential target for cancer therapy.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219437/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139040779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose: Uveal melanoma (UM) with BAP1 inactivating mutations has a high risk of metastasis, but the mechanism behind BAP1 deficiency driving UM metastasis is unknown.
Methods: We analyzed the single-cell RNA sequencing (scRNA-Seq) data comprised primary and metastatic UM with or without BAP1 mutations (MUTs) to reveal inter- and intra-tumor heterogeneity among different groups. Then, an immune-competent mouse liver metastatic model was used to explore the role of ITGB2-ICAM1 in BAP1-associated UM metastasis.
Results: Cluster 1 tumor cells expressed high levels of genes linked to tumor metastasis, such as GDF15, ATF3, and CDKN1A, all of which are associated with poor prognosis. The strength of communication between terminally exhausted CD8+ T cells and GDF15hiATF3hiCDKN1Ahi tumor cells was enhanced in BAP1-mutated UM, with CellChat analysis predicting strong ITGB2-ICAM1 signaling between them. High expression of either ITGB2 or ICAM1 was a worse prognostic indicator. Using an immune-competent mouse liver metastatic model, we indicated that inhibiting either ICAM1 or ITGB2 prevented liver metastasis in the BAP1-mutated group in vivo. The inhibitors primarily inhibited hypoxia- and ECM-related pathways indicated by changes in the expression of genes such as ADAM8, CAV2, ENO1, PGK1, LOXL2, ITGA5, and VCAN. etc. CONCLUSION: This study suggested that the ITGB2-ICAM1 axis may play a crucial role for BAP1-associated UM metastasis by preserving hypoxia- and ECM- related signatures, which provide a potential strategy for preventing UM metastasis in patients with BAP1 mutation.
目的:存在BAP1失活突变的葡萄膜黑色素瘤(UM)具有很高的转移风险,但BAP1缺失导致UM转移的机制尚不清楚:我们分析了单细胞RNA测序(scRNA-Seq)数据,包括有或没有BAP1突变(MUTs)的原发性和转移性UM,以揭示不同组间和肿瘤内部的异质性。然后,利用免疫功能正常的小鼠肝转移模型来探讨ITGB2-ICAM1在BAP1相关UM转移中的作用:结果:第1组肿瘤细胞表达了高水平的与肿瘤转移相关的基因,如GDF15、ATF3和CDKN1A,所有这些基因都与不良预后相关。在BAP1突变的UM中,终末衰竭的CD8+ T细胞与GDF15hiATF3hiCDKN1Ahi肿瘤细胞之间的通讯强度增强,CellChat分析预测它们之间有很强的ITGB2-ICAM1信号传导。ITGB2或ICAM1的高表达是一个较差的预后指标。我们利用免疫功能健全的小鼠肝转移模型表明,抑制ICAM1或ITGB2可阻止BAP1突变组的体内肝转移。抑制剂主要抑制缺氧和 ECM 相关通路,表现为 ADAM8、CAV2、ENO1、PGK1、LOXL2、ITGA5 和 VCAN 等基因表达的变化。结论:该研究表明,ITGB2-ICAM1 轴可能通过保留缺氧和 ECM 相关特征在 BAP1 相关 UM 转移中发挥关键作用,这为预防 BAP1 突变患者的 UM 转移提供了潜在策略。
{"title":"ITGB2-ICAM1 axis promotes liver metastasis in BAP1-mutated uveal melanoma with retained hypoxia and ECM signatures.","authors":"Jiaoduan Li, Dongyan Cao, Lixin Jiang, Yiwen Zheng, Siyuan Shao, Ai Zhuang, Dongxi Xiang","doi":"10.1007/s13402-023-00908-4","DOIUrl":"10.1007/s13402-023-00908-4","url":null,"abstract":"<p><strong>Purpose: </strong>Uveal melanoma (UM) with BAP1 inactivating mutations has a high risk of metastasis, but the mechanism behind BAP1 deficiency driving UM metastasis is unknown.</p><p><strong>Methods: </strong>We analyzed the single-cell RNA sequencing (scRNA-Seq) data comprised primary and metastatic UM with or without BAP1 mutations (MUTs) to reveal inter- and intra-tumor heterogeneity among different groups. Then, an immune-competent mouse liver metastatic model was used to explore the role of ITGB2-ICAM1 in BAP1-associated UM metastasis.</p><p><strong>Results: </strong>Cluster 1 tumor cells expressed high levels of genes linked to tumor metastasis, such as GDF15, ATF3, and CDKN1A, all of which are associated with poor prognosis. The strength of communication between terminally exhausted CD8<sup>+</sup> T cells and GDF15<sup>hi</sup>ATF3<sup>hi</sup>CDKN1A<sup>hi</sup> tumor cells was enhanced in BAP1-mutated UM, with CellChat analysis predicting strong ITGB2-ICAM1 signaling between them. High expression of either ITGB2 or ICAM1 was a worse prognostic indicator. Using an immune-competent mouse liver metastatic model, we indicated that inhibiting either ICAM1 or ITGB2 prevented liver metastasis in the BAP1-mutated group in vivo. The inhibitors primarily inhibited hypoxia- and ECM-related pathways indicated by changes in the expression of genes such as ADAM8, CAV2, ENO1, PGK1, LOXL2, ITGA5, and VCAN. etc. CONCLUSION: This study suggested that the ITGB2-ICAM1 axis may play a crucial role for BAP1-associated UM metastasis by preserving hypoxia- and ECM- related signatures, which provide a potential strategy for preventing UM metastasis in patients with BAP1 mutation.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139040780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2023-11-28DOI: 10.1007/s13402-023-00901-x
Bing Han, Xin Guan, Mingyue Ma, Baoling Liang, Linglie Ren, Yutong Liu, Ye Du, Shu-Heng Jiang, Dong Song
Background: Accumulating studies have shown that tumors are regulated by nerves, and there is abundant nerve infiltration in the tumor microenvironment. Many solid tumors including breast cancer (BRCA) have different degrees of perineural invasion (PNI), which is closely related to the tumor occurrence and progression. However, the regulatory mechanism of PNI in BRCA remains largely unexplored.
Methods: PNI-related molecular events are analyzed by the RNAseq data of BRCA samples deposited in The Cancer Genome Atlas (TCGA) database. Extracellular matrix (ECM) components within the tumor microenvironment are analyzed by immunohistochemical staining of α-SMA, Sirius red staining, and Masson trichrome staining. Soft and stiff matrix gels, living cell imaging, and dorsal root ganglion (DRG) coculture assay are used to monitor cancer cell invasiveness towards nerves. Western blotting, qRT-PCR, enzyme-linked immunosorbent assay combined with neutralizing antibody and small molecular inhibitors are employed to decode molecular mechanisms.
Results: Comparative analysis that the ECM was significantly associated with PNI status in the TCGA cohort. BRCA samples with higher α-SMA activity, fibrillar collagen, and collagen content had higher frequency of PNI. Compared with soft matrix, BRCA cells cultured in stiff matrix not only displayed higher cell invasiveness to DRG neurons but also had significant neurotrophic effects. Mechanistically, integrin β1 was identified as a functional receptor to the influence of stiff matrix on BRCA cells. Moreover, stiffened matrix-induced activation of integrin β1 transduces FAK-YAP signal cascade, which enhances cancer invasiveness and the neurotrophic effects. In clinical setting, PNI-positive BRCA samples had higher expression of ITGB1, phosphorylated FAK, YAP, and NGF compared with PNI-negative BRCA samples.
Conclusions: Our findings suggest that stiff matrix induces expression of pro-metastatic and neurotrophic genes through integrin β1-FAK-YAP signals, which finally facilitates PNI in BRCA. Thus, our study provides a new mechanism for PNI in BRCA and highlights nerve-based tumor treatment strategies.
背景:越来越多的研究表明,肿瘤受神经调控,肿瘤微环境中存在丰富的神经浸润。包括乳腺癌(BRCA)在内的许多实体肿瘤都存在不同程度的神经周围浸润(PNI),这与肿瘤的发生和发展密切相关。然而,PNI在BRCA中的调控机制在很大程度上仍未被探索。方法:通过保存在the Cancer Genome Atlas (TCGA)数据库中的BRCA样本RNAseq数据,分析pni相关分子事件。采用免疫组化α-SMA染色、Sirius红染色和Masson三色染色分析肿瘤微环境中细胞外基质(Extracellular matrix, ECM)成分。采用软硬基质凝胶、活细胞成像和背根神经节(DRG)共培养法监测癌细胞对神经的侵袭。采用Western blotting、qRT-PCR、酶联免疫吸附法联合中和抗体和小分子抑制剂解码分子机制。结果:比较分析显示,TCGA队列中ECM与PNI状态显著相关。α-SMA活性高、纤维性胶原蛋白含量高、胶原蛋白含量高的BRCA样品PNI发生率较高。与软基质相比,硬基质中培养的BRCA细胞不仅对DRG神经元具有更高的细胞侵袭性,而且具有显著的神经营养作用。从机制上说,整合素β1被认为是一种功能受体,可以应对硬基质对BRCA细胞的影响。此外,强化基质诱导的整合素β1激活可转导FAK-YAP信号级联,从而增强肿瘤侵袭性和神经营养效应。在临床环境中,与pni阴性的BRCA样本相比,pni阳性的BRCA样本中ITGB1、磷酸化FAK、YAP和NGF的表达更高。结论:我们的研究结果表明,硬基质通过整合素β1-FAK-YAP信号诱导促转移基因和神经营养基因的表达,最终促进BRCA的PNI。因此,我们的研究提供了PNI在BRCA中的新机制,并强调了基于神经的肿瘤治疗策略。
{"title":"Stiffened tumor microenvironment enhances perineural invasion in breast cancer via integrin signaling.","authors":"Bing Han, Xin Guan, Mingyue Ma, Baoling Liang, Linglie Ren, Yutong Liu, Ye Du, Shu-Heng Jiang, Dong Song","doi":"10.1007/s13402-023-00901-x","DOIUrl":"10.1007/s13402-023-00901-x","url":null,"abstract":"<p><strong>Background: </strong>Accumulating studies have shown that tumors are regulated by nerves, and there is abundant nerve infiltration in the tumor microenvironment. Many solid tumors including breast cancer (BRCA) have different degrees of perineural invasion (PNI), which is closely related to the tumor occurrence and progression. However, the regulatory mechanism of PNI in BRCA remains largely unexplored.</p><p><strong>Methods: </strong>PNI-related molecular events are analyzed by the RNAseq data of BRCA samples deposited in The Cancer Genome Atlas (TCGA) database. Extracellular matrix (ECM) components within the tumor microenvironment are analyzed by immunohistochemical staining of α-SMA, Sirius red staining, and Masson trichrome staining. Soft and stiff matrix gels, living cell imaging, and dorsal root ganglion (DRG) coculture assay are used to monitor cancer cell invasiveness towards nerves. Western blotting, qRT-PCR, enzyme-linked immunosorbent assay combined with neutralizing antibody and small molecular inhibitors are employed to decode molecular mechanisms.</p><p><strong>Results: </strong>Comparative analysis that the ECM was significantly associated with PNI status in the TCGA cohort. BRCA samples with higher α-SMA activity, fibrillar collagen, and collagen content had higher frequency of PNI. Compared with soft matrix, BRCA cells cultured in stiff matrix not only displayed higher cell invasiveness to DRG neurons but also had significant neurotrophic effects. Mechanistically, integrin β1 was identified as a functional receptor to the influence of stiff matrix on BRCA cells. Moreover, stiffened matrix-induced activation of integrin β1 transduces FAK-YAP signal cascade, which enhances cancer invasiveness and the neurotrophic effects. In clinical setting, PNI-positive BRCA samples had higher expression of ITGB1, phosphorylated FAK, YAP, and NGF compared with PNI-negative BRCA samples.</p><p><strong>Conclusions: </strong>Our findings suggest that stiff matrix induces expression of pro-metastatic and neurotrophic genes through integrin β1-FAK-YAP signals, which finally facilitates PNI in BRCA. Thus, our study provides a new mechanism for PNI in BRCA and highlights nerve-based tumor treatment strategies.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138446721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Dysregulated ubiquitination modification occupies a pivotal role in hepatocellular carcinoma (HCC) tumorigenesis and progression. The ubiquitin aldehyde binding 1 (OTUB1) was aberrantly upregulated and exhibited the pro-tumorigenic function in HCC. However, the underlying mechanisms and responsible targets of OTUB1 remain unclear.
Methods: First, bioinformatics analysis, western blot and immunohistochemistry staining were applied to analyze OTUB1 expression in HCC specimens. Then, immunoprecipitation assay-tandem mass spectrometry (MS) combined with the gene set enrichment analysis (GSEA) was used to explore the downstream target of OTUB1. Co-immunoprecipitation and ubiquitination assays were used to identify the mechanisms involved. Finally, we explored the regulatory effect of MAZ on OTUB1 through ChIP-qPCR and dual-luciferase reporter assay.
Results: OTUB1 was broadly elevated in HCC tissues and promoted the proliferation and metastasis of HCC in vitro and in vivo. The receptor for activated C kinase 1 (RACK1) performed as a functional partner of OTUB1 and its hyperactivation was associated with aggressive development and other malignant features in HCC by activating oncogenes transcription. Mechanistically, OTUB1 directly bound to RACK1 at its C-terminal domain and decreased the K48-linked ubiquitination of RACK1 through its non-canonical suppression of ubiquitination activity, which stabilized RACK1 protein levels in HCC cells. Therefore, OTUB1 significantly increased multiple oncogenes expression and activated PI3K/AKT and FAK/ERK signaling in a RACK1-dependent manner in HCC. Moreover, the transcription factor MAZ upregulated OTUB1 expression through identifying a putative response element of OTUB1 promoter area.
Conclusions: Our findings might provide a new therapeutic strategy for HCC by modifying the MAZ-OTUB1-RACK1 axis.
{"title":"OTUB1 accelerates hepatocellular carcinoma by stabilizing RACK1 via its non-canonical ubiquitination.","authors":"Liqun Peng, Tiangen Wu, Yingyi Liu, Dongli Zhao, Wenzhi He, Yufeng Yuan","doi":"10.1007/s13402-023-00913-7","DOIUrl":"10.1007/s13402-023-00913-7","url":null,"abstract":"<p><strong>Background: </strong>Dysregulated ubiquitination modification occupies a pivotal role in hepatocellular carcinoma (HCC) tumorigenesis and progression. The ubiquitin aldehyde binding 1 (OTUB1) was aberrantly upregulated and exhibited the pro-tumorigenic function in HCC. However, the underlying mechanisms and responsible targets of OTUB1 remain unclear.</p><p><strong>Methods: </strong>First, bioinformatics analysis, western blot and immunohistochemistry staining were applied to analyze OTUB1 expression in HCC specimens. Then, immunoprecipitation assay-tandem mass spectrometry (MS) combined with the gene set enrichment analysis (GSEA) was used to explore the downstream target of OTUB1. Co-immunoprecipitation and ubiquitination assays were used to identify the mechanisms involved. Finally, we explored the regulatory effect of MAZ on OTUB1 through ChIP-qPCR and dual-luciferase reporter assay.</p><p><strong>Results: </strong>OTUB1 was broadly elevated in HCC tissues and promoted the proliferation and metastasis of HCC in vitro and in vivo. The receptor for activated C kinase 1 (RACK1) performed as a functional partner of OTUB1 and its hyperactivation was associated with aggressive development and other malignant features in HCC by activating oncogenes transcription. Mechanistically, OTUB1 directly bound to RACK1 at its C-terminal domain and decreased the K48-linked ubiquitination of RACK1 through its non-canonical suppression of ubiquitination activity, which stabilized RACK1 protein levels in HCC cells. Therefore, OTUB1 significantly increased multiple oncogenes expression and activated PI3K/AKT and FAK/ERK signaling in a RACK1-dependent manner in HCC. Moreover, the transcription factor MAZ upregulated OTUB1 expression through identifying a putative response element of OTUB1 promoter area.</p><p><strong>Conclusions: </strong>Our findings might provide a new therapeutic strategy for HCC by modifying the MAZ-OTUB1-RACK1 axis.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219430/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139693350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Natural killer (NK) cells have gained considerable attention and hold great potential for their application in tumor immunotherapy. This is mainly due to their MHC-unrestricted and pan-specific recognition capabilities, as well as their ability to rapidly respond to and eliminate target cells. To artificially generate therapeutic NK cells, various materials can be utilized, such as peripheral blood mononuclear cells (PBMCs), umbilical cord blood (UCB), induced pluripotent stem cells (iPSCs), and NK cell lines. Exploiting the therapeutic potential of NK cells to treat tumors through in vivo and in vitro therapeutic modalities has yielded positive therapeutic results.
Conclusion: This review provides a comprehensive description of NK cell therapeutic approaches for tumors and discusses the current problems associated with these therapeutic approaches and the prospects of NK cell therapy for tumors.
背景:自然杀伤(NK)细胞在肿瘤免疫疗法中的应用受到了广泛关注,并具有巨大潜力。这主要归功于它们不受 MHC 限制的泛特异性识别能力,以及对靶细胞做出快速反应并将其消灭的能力。要人工生成治疗性 NK 细胞,可以利用多种材料,如外周血单核细胞(PBMC)、脐带血(UCB)、诱导多能干细胞(iPSC)和 NK 细胞系。通过体内和体外治疗模式挖掘 NK 细胞治疗肿瘤的潜力已取得了积极的治疗效果:本综述全面介绍了 NK 细胞治疗肿瘤的方法,并讨论了目前与这些治疗方法相关的问题以及 NK 细胞治疗肿瘤的前景。
{"title":"NK cells as powerful therapeutic tool in cancer immunotherapy.","authors":"Mao Huang, Yixuan Liu, Qijia Yan, Miao Peng, Junshang Ge, Yongzhen Mo, Yumin Wang, Fuyan Wang, Zhaoyang Zeng, Yong Li, Chunmei Fan, Wei Xiong","doi":"10.1007/s13402-023-00909-3","DOIUrl":"10.1007/s13402-023-00909-3","url":null,"abstract":"<p><strong>Background: </strong>Natural killer (NK) cells have gained considerable attention and hold great potential for their application in tumor immunotherapy. This is mainly due to their MHC-unrestricted and pan-specific recognition capabilities, as well as their ability to rapidly respond to and eliminate target cells. To artificially generate therapeutic NK cells, various materials can be utilized, such as peripheral blood mononuclear cells (PBMCs), umbilical cord blood (UCB), induced pluripotent stem cells (iPSCs), and NK cell lines. Exploiting the therapeutic potential of NK cells to treat tumors through in vivo and in vitro therapeutic modalities has yielded positive therapeutic results.</p><p><strong>Conclusion: </strong>This review provides a comprehensive description of NK cell therapeutic approaches for tumors and discusses the current problems associated with these therapeutic approaches and the prospects of NK cell therapy for tumors.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139089076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose: PIK3CA mutation or overexpression is associated with immunotherapy resistance in multiple cancer types, but is also paradoxically associated with benefit of COX-2 inhibition on patient survival of colorectal cancer (CRC) with mismatch repair deficiency (dMMR). This study examined whether and how PIK3CA status affected COX-2-mediated tumor inflammation and immunotherapy response of dMMR CRC.
Methods: Murine colon cancer cells MC38, CT26, and CT26-Mlh1-KO were used to construct PIK3CA knockdown and overexpression models to mimic dMMR CRC with PIK3CA dysregulation, and xenograft models were used to evaluate how PIK3CA regulate COX-2 expression, CD8+ T cells infiltration, tumor growth, and therapy response to anti-PD-L1 treatment using immunocompetent mice. Western blot was carried out to delineate the signaling pathways in human and mouse cancer cells, and immunohistochemical analysis together with bioinformatics analysis using human patient samples.
Results: PIK3CA upregulates COX-2 expression through MEK/ERK signaling pathway independent of AKT signaling to promote tumor inflammation and immunosuppression. PIK3CA knockdown profoundly reduced CT26 tumor growth in a CD8+ T cell-dependent manner, while PIK3CA overexpression significantly inhibited CD8+ T cells infiltration and promoted tumor growth. Furthermore, MEK or COX-2 inhibition augmented the anti-tumor activity of anti-PD-L1 immunotherapy on dMMR CRC mouse models, accompanied with increased CD8+ T cells infiltration and activated tumor microenvironment.
Conclusion: Our results identified that the PIK3CA hyperactivation in dMMR CRC upregulated COX-2 through MEK signaling, which inhibited CD8+ T cells infiltration and promoted tumor growth, together led to immunotherapy resistance. COX-2 or MEK inhibition may relieve therapy resistance and promote therapy efficacy of anti-PD-1/PD-L1 immunotherapy for treating dMMR CRC with PIK3CA overexpression or activating mutation.
{"title":"Targeting MEK/COX-2 axis improve immunotherapy efficacy in dMMR colorectal cancer with PIK3CA overexpression.","authors":"Kunwei Peng, Yongxiang Liu, Shousheng Liu, Zining Wang, Huanling Zhang, Wenzhuo He, Yanan Jin, Lei Wang, Xiaojun Xia, Liangping Xia","doi":"10.1007/s13402-024-00916-y","DOIUrl":"10.1007/s13402-024-00916-y","url":null,"abstract":"<p><strong>Purpose: </strong>PIK3CA mutation or overexpression is associated with immunotherapy resistance in multiple cancer types, but is also paradoxically associated with benefit of COX-2 inhibition on patient survival of colorectal cancer (CRC) with mismatch repair deficiency (dMMR). This study examined whether and how PIK3CA status affected COX-2-mediated tumor inflammation and immunotherapy response of dMMR CRC.</p><p><strong>Methods: </strong>Murine colon cancer cells MC38, CT26, and CT26-Mlh1-KO were used to construct PIK3CA knockdown and overexpression models to mimic dMMR CRC with PIK3CA dysregulation, and xenograft models were used to evaluate how PIK3CA regulate COX-2 expression, CD8<sup>+</sup> T cells infiltration, tumor growth, and therapy response to anti-PD-L1 treatment using immunocompetent mice. Western blot was carried out to delineate the signaling pathways in human and mouse cancer cells, and immunohistochemical analysis together with bioinformatics analysis using human patient samples.</p><p><strong>Results: </strong>PIK3CA upregulates COX-2 expression through MEK/ERK signaling pathway independent of AKT signaling to promote tumor inflammation and immunosuppression. PIK3CA knockdown profoundly reduced CT26 tumor growth in a CD8<sup>+</sup> T cell-dependent manner, while PIK3CA overexpression significantly inhibited CD8<sup>+</sup> T cells infiltration and promoted tumor growth. Furthermore, MEK or COX-2 inhibition augmented the anti-tumor activity of anti-PD-L1 immunotherapy on dMMR CRC mouse models, accompanied with increased CD8<sup>+</sup> T cells infiltration and activated tumor microenvironment.</p><p><strong>Conclusion: </strong>Our results identified that the PIK3CA hyperactivation in dMMR CRC upregulated COX-2 through MEK signaling, which inhibited CD8<sup>+</sup> T cells infiltration and promoted tumor growth, together led to immunotherapy resistance. COX-2 or MEK inhibition may relieve therapy resistance and promote therapy efficacy of anti-PD-1/PD-L1 immunotherapy for treating dMMR CRC with PIK3CA overexpression or activating mutation.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139693352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2023-11-14DOI: 10.1007/s13402-023-00898-3
Xingxing Lu, Yan Mei, Chunmei Fan, Pan Chen, Xiayu Li, Zhaoyang Zeng, Guiyuan Li, Wei Xiong, Bo Xiang, Mei Yi
Purpose: Nasopharyngeal carcinoma (NPC) is an aggressive head and neck disease with a high incidence of distant metastases. Enlargeosomes are cytoplasmic organelles marked by, desmoyokin/AHNAK. This study aimed to evaluate the expression of AHNAK in NPC and its effect on enlargeosomes and to investigate the correlation between AHNAK expression levels and clinical NPC patient characteristics.
Methods: Primary nasopharyngeal carcinoma (NPC) and NPC specimens were evaluated by analyzing public data, and immunohistochemistry. Systematic in vitro and in vivo experiments were performed using different NPC-derived cell lines and mouse models.
Results: In this study, we detected AHNAK and Annexin A2(ANXA2), a protein coating the surface of enlargeosomes, in NPC samples. We found that AHNAK was down-regulated. Down-regulation of AHNAK was associated with poor overall survival in NPC patients. Moreover, transcription factor FOSL1-mediated transcriptional repression was responsible for the low expression of AHNAK by recruiting EZH2. Whereas Annexin A2 was upregulated in human NPC tissues. Upregulation of Annexin A2 was associated with lymph node metastasis and distant metastasis in NPC patients. Functional studies confirmed that silencing of AHNAK enhanced the growth, invasion, and metastatic properties of NPC cells both in vitro and in vivo. In terms of mechanism, loss of AHNAK led to an increase of annexin A2 protein level in NPC cells. Silencing ANXA2 restored NPC cells' migrative and invasive ability upon loss of AHNAK.
Conclusion: Here, we report AHNAK as a tumor suppressor in NPC, which may act through annexin A2 oncogenic signaling in enlargeosome, with potential implications for novel approaches to NPC treatment.
{"title":"Silencing AHNAK promotes nasopharyngeal carcinoma progression by upregulating the ANXA2 protein.","authors":"Xingxing Lu, Yan Mei, Chunmei Fan, Pan Chen, Xiayu Li, Zhaoyang Zeng, Guiyuan Li, Wei Xiong, Bo Xiang, Mei Yi","doi":"10.1007/s13402-023-00898-3","DOIUrl":"10.1007/s13402-023-00898-3","url":null,"abstract":"<p><strong>Purpose: </strong>Nasopharyngeal carcinoma (NPC) is an aggressive head and neck disease with a high incidence of distant metastases. Enlargeosomes are cytoplasmic organelles marked by, desmoyokin/AHNAK. This study aimed to evaluate the expression of AHNAK in NPC and its effect on enlargeosomes and to investigate the correlation between AHNAK expression levels and clinical NPC patient characteristics.</p><p><strong>Methods: </strong>Primary nasopharyngeal carcinoma (NPC) and NPC specimens were evaluated by analyzing public data, and immunohistochemistry. Systematic in vitro and in vivo experiments were performed using different NPC-derived cell lines and mouse models.</p><p><strong>Results: </strong>In this study, we detected AHNAK and Annexin A2(ANXA2), a protein coating the surface of enlargeosomes, in NPC samples. We found that AHNAK was down-regulated. Down-regulation of AHNAK was associated with poor overall survival in NPC patients. Moreover, transcription factor FOSL1-mediated transcriptional repression was responsible for the low expression of AHNAK by recruiting EZH2. Whereas Annexin A2 was upregulated in human NPC tissues. Upregulation of Annexin A2 was associated with lymph node metastasis and distant metastasis in NPC patients. Functional studies confirmed that silencing of AHNAK enhanced the growth, invasion, and metastatic properties of NPC cells both in vitro and in vivo. In terms of mechanism, loss of AHNAK led to an increase of annexin A2 protein level in NPC cells. Silencing ANXA2 restored NPC cells' migrative and invasive ability upon loss of AHNAK.</p><p><strong>Conclusion: </strong>Here, we report AHNAK as a tumor suppressor in NPC, which may act through annexin A2 oncogenic signaling in enlargeosome, with potential implications for novel approaches to NPC treatment.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92157167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-02-12DOI: 10.1007/s13402-023-00915-5
Fu-Ying Zhao, Xue Chen, Jia-Mei Wang, Ye Yuan, Chao Li, Jia Sun, Hua-Qin Wang
Purpose: Glucose not only provides energy for tumor cells, but also provides various biomolecules that are essential for their survival, proliferation and invasion. Therefore, it is of great clinical significance to understand the mechanism of how tumor cells adapt to metabolic stress and maintain their survival. The aim of this research was to study the critical role of OGT and TRIM29 O-GlcNAc modification driven adaptability of PDAC cells to low glucose stress, which might have important medical implications for PDAC therapy.
Methods: Western blotting, mass spectrometry and WGA-immunoprecipitation were used to examined the levels of OGT and O-GlcNAc glycosylated proteins in BxPC3 and SW1990 cells in normal culture and under glucose deprivation conditions. Crystal violet assay, flow cytometry, RIP, RT-qPCR, protein stability assay, biotin pull down were used to investigate the mechanism of OGT and TRIM29-mediated adaptive response to glucose deficiency in PDAC cells.
Results: The current study found that under the condition of low glucose culture, the levels of OGT and O-GlcNAc glycosylation in PDAC cells were significantly higher than those in normal culture. Moreover, the high expression of OGT has a protective effect on PDAC cells under low glucose stress. This study confirmed that there was no significant change in mRNA level and protein degradation of OGT under low glucose stress, which was mainly reflected in the increase of protein synthesis. In addition, O-GlcNAc modification at T120 site plays a critical role in the metabolic adaptive responses mediated by TRIM29.
Conclusions: Taken together, our study indicated that O-GlcNAcylation of TRIM29 at T120 site and OGT translation forms a loop feedback to facilitate survival of PDAC under glucose deficiency.
{"title":"O-GlcNAcylation of TRIM29 and OGT translation forms a feedback loop to promote adaptive response of PDAC cells to glucose deficiency.","authors":"Fu-Ying Zhao, Xue Chen, Jia-Mei Wang, Ye Yuan, Chao Li, Jia Sun, Hua-Qin Wang","doi":"10.1007/s13402-023-00915-5","DOIUrl":"10.1007/s13402-023-00915-5","url":null,"abstract":"<p><strong>Purpose: </strong>Glucose not only provides energy for tumor cells, but also provides various biomolecules that are essential for their survival, proliferation and invasion. Therefore, it is of great clinical significance to understand the mechanism of how tumor cells adapt to metabolic stress and maintain their survival. The aim of this research was to study the critical role of OGT and TRIM29 O-GlcNAc modification driven adaptability of PDAC cells to low glucose stress, which might have important medical implications for PDAC therapy.</p><p><strong>Methods: </strong>Western blotting, mass spectrometry and WGA-immunoprecipitation were used to examined the levels of OGT and O-GlcNAc glycosylated proteins in BxPC3 and SW1990 cells in normal culture and under glucose deprivation conditions. Crystal violet assay, flow cytometry, RIP, RT-qPCR, protein stability assay, biotin pull down were used to investigate the mechanism of OGT and TRIM29-mediated adaptive response to glucose deficiency in PDAC cells.</p><p><strong>Results: </strong>The current study found that under the condition of low glucose culture, the levels of OGT and O-GlcNAc glycosylation in PDAC cells were significantly higher than those in normal culture. Moreover, the high expression of OGT has a protective effect on PDAC cells under low glucose stress. This study confirmed that there was no significant change in mRNA level and protein degradation of OGT under low glucose stress, which was mainly reflected in the increase of protein synthesis. In addition, O-GlcNAc modification at T120 site plays a critical role in the metabolic adaptive responses mediated by TRIM29.</p><p><strong>Conclusions: </strong>Taken together, our study indicated that O-GlcNAcylation of TRIM29 at T120 site and OGT translation forms a loop feedback to facilitate survival of PDAC under glucose deficiency.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139724617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-31DOI: 10.1007/s13402-024-00957-3
Irene Zamora, Mirian Gutiérrez, Alex Pascual, María J Pajares, Miguel Barajas, Lillian M Perez, Sungyong You, Beatrice S Knudsen, Michael R Freeman, Ignacio J Encío, Mirja Rotinen
Purpose: Tumor heterogeneity complicates patient treatment and can be due to transitioning of cancer cells across phenotypic cell states. This process is associated with the acquisition of independence from an oncogenic driver, such as the estrogen receptor (ER) in breast cancer (BC), resulting in tumor progression, therapeutic failure and metastatic spread. The transcription factor ONECUT2 (OC2) has been shown to be a master regulator protein of metastatic castration-resistant prostate cancer (mCRPC) tumors that promotes lineage plasticity to a drug-resistant neuroendocrine (NEPC) phenotype. Here, we investigate the role of OC2 in the dynamic conversion between different molecular subtypes in BC.
Methods: We analyze OC2 expression and clinical significance in BC using public databases and immunohistochemical staining. In vitro, we perform RNA-Seq, RT-qPCR and western-blot after OC2 enforced expression. We also assess cellular effects of OC2 silencing and inhibition with a drug-like small molecule in vitro and in vivo.
Results: OC2 is highly expressed in a substantial subset of hormone receptor negative human BC tumors and tamoxifen-resistant models, and is associated with poor clinical outcome, lymph node metastasis and heightened clinical stage. OC2 inhibits ER expression and activity, suppresses a gene expression program associated with luminal differentiation and activates a basal-like state at the gene expression level. We also show that OC2 is required for cell growth and survival in metastatic BC models and that it can be targeted with a small molecule inhibitor providing a novel therapeutic strategy for patients with OC2 active tumors.
Conclusions: The transcription factor OC2 is a driver of BC heterogeneity and a potential drug target in distinct cell states within the breast tumors.
目的:肿瘤的异质性使患者的治疗变得复杂,这可能是由于癌细胞在不同表型细胞状态之间的转换。这一过程与从致癌驱动因子(如乳腺癌(BC)中的雌激素受体(ER))中获得独立性有关,从而导致肿瘤进展、治疗失败和转移扩散。转录因子ONECUT2(OC2)已被证明是转移性耐阉割前列腺癌(mCRPC)肿瘤的主调节蛋白,它能促进肿瘤细胞系的可塑性,形成耐药的神经内分泌(NEPC)表型。在此,我们研究了 OC2 在 BC 不同分子亚型之间动态转换中的作用:方法:我们利用公共数据库和免疫组化染色分析了OC2在BC中的表达和临床意义。在体外,我们在 OC2 强化表达后进行 RNA-Seq、RT-qPCR 和 Western-blot 分析。我们还在体外和体内评估了沉默 OC2 和使用类药物小分子抑制 OC2 对细胞的影响:结果:OC2在大量激素受体阴性的人类BC肿瘤亚群和他莫昔芬耐药模型中高表达,并与临床预后差、淋巴结转移和临床分期增高有关。OC2 可抑制 ER 的表达和活性,抑制与管腔分化相关的基因表达程序,并在基因表达水平上激活基底样状态。我们还发现,OC2 是转移性 BC 模型中细胞生长和存活所必需的,它可以用小分子抑制剂作为靶点,为 OC2 活跃的肿瘤患者提供一种新的治疗策略:结论:转录因子OC2是乳腺癌异质性的驱动因素,也是乳腺肿瘤内不同细胞状态的潜在药物靶点。
{"title":"ONECUT2 is a druggable driver of luminal to basal breast cancer plasticity.","authors":"Irene Zamora, Mirian Gutiérrez, Alex Pascual, María J Pajares, Miguel Barajas, Lillian M Perez, Sungyong You, Beatrice S Knudsen, Michael R Freeman, Ignacio J Encío, Mirja Rotinen","doi":"10.1007/s13402-024-00957-3","DOIUrl":"https://doi.org/10.1007/s13402-024-00957-3","url":null,"abstract":"<p><strong>Purpose: </strong>Tumor heterogeneity complicates patient treatment and can be due to transitioning of cancer cells across phenotypic cell states. This process is associated with the acquisition of independence from an oncogenic driver, such as the estrogen receptor (ER) in breast cancer (BC), resulting in tumor progression, therapeutic failure and metastatic spread. The transcription factor ONECUT2 (OC2) has been shown to be a master regulator protein of metastatic castration-resistant prostate cancer (mCRPC) tumors that promotes lineage plasticity to a drug-resistant neuroendocrine (NEPC) phenotype. Here, we investigate the role of OC2 in the dynamic conversion between different molecular subtypes in BC.</p><p><strong>Methods: </strong>We analyze OC2 expression and clinical significance in BC using public databases and immunohistochemical staining. In vitro, we perform RNA-Seq, RT-qPCR and western-blot after OC2 enforced expression. We also assess cellular effects of OC2 silencing and inhibition with a drug-like small molecule in vitro and in vivo.</p><p><strong>Results: </strong>OC2 is highly expressed in a substantial subset of hormone receptor negative human BC tumors and tamoxifen-resistant models, and is associated with poor clinical outcome, lymph node metastasis and heightened clinical stage. OC2 inhibits ER expression and activity, suppresses a gene expression program associated with luminal differentiation and activates a basal-like state at the gene expression level. We also show that OC2 is required for cell growth and survival in metastatic BC models and that it can be targeted with a small molecule inhibitor providing a novel therapeutic strategy for patients with OC2 active tumors.</p><p><strong>Conclusions: </strong>The transcription factor OC2 is a driver of BC heterogeneity and a potential drug target in distinct cell states within the breast tumors.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141181411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}