首页 > 最新文献

Cellular Oncology最新文献

英文 中文
A systematic review on the culture methods and applications of 3D tumoroids for cancer research and personalized medicine. 三维肿瘤细胞培养方法及在癌症研究和个性化医疗中的应用系统综述。
IF 4.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-02-01 Epub Date: 2024-05-28 DOI: 10.1007/s13402-024-00960-8
Jessica Kalla, Janette Pfneissl, Theresia Mair, Loan Tran, Gerda Egger

Cancer is a highly heterogeneous disease, and thus treatment responses vary greatly between patients. To improve therapy efficacy and outcome for cancer patients, more representative and patient-specific preclinical models are needed. Organoids and tumoroids are 3D cell culture models that typically retain the genetic and epigenetic characteristics, as well as the morphology, of their tissue of origin. Thus, they can be used to understand the underlying mechanisms of cancer initiation, progression, and metastasis in a more physiological setting. Additionally, co-culture methods of tumoroids and cancer-associated cells can help to understand the interplay between a tumor and its tumor microenvironment. In recent years, tumoroids have already helped to refine treatments and to identify new targets for cancer therapy. Advanced culturing systems such as chip-based fluidic devices and bioprinting methods in combination with tumoroids have been used for high-throughput applications for personalized medicine. Even though organoid and tumoroid models are complex in vitro systems, validation of results in vivo is still the common practice. Here, we describe how both animal- and human-derived tumoroids have helped to identify novel vulnerabilities for cancer treatment in recent years, and how they are currently used for precision medicine.

癌症是一种高度异质性疾病,因此不同患者的治疗反应差异很大。为了提高癌症患者的治疗效果和预后,需要更具代表性和针对患者的临床前模型。器官组织和肿瘤组织是三维细胞培养模型,通常保留了其原发组织的遗传和表观遗传特征以及形态。因此,它们可用于在更生理学的环境中了解癌症发生、发展和转移的潜在机制。此外,肿瘤细胞和癌症相关细胞的共培养方法有助于了解肿瘤和肿瘤微环境之间的相互作用。近年来,肿瘤细胞已经帮助完善了治疗方法,并确定了癌症治疗的新靶点。先进的培养系统,如基于芯片的流体设备和生物打印方法与类瘤细胞相结合,已被用于个性化医疗的高通量应用。尽管类器官和类肿瘤模型是复杂的体外系统,但在体内验证结果仍是常见的做法。在此,我们将介绍近年来动物和人类来源的类肿瘤如何帮助确定癌症治疗的新漏洞,以及目前如何将其用于精准医疗。
{"title":"A systematic review on the culture methods and applications of 3D tumoroids for cancer research and personalized medicine.","authors":"Jessica Kalla, Janette Pfneissl, Theresia Mair, Loan Tran, Gerda Egger","doi":"10.1007/s13402-024-00960-8","DOIUrl":"10.1007/s13402-024-00960-8","url":null,"abstract":"<p><p>Cancer is a highly heterogeneous disease, and thus treatment responses vary greatly between patients. To improve therapy efficacy and outcome for cancer patients, more representative and patient-specific preclinical models are needed. Organoids and tumoroids are 3D cell culture models that typically retain the genetic and epigenetic characteristics, as well as the morphology, of their tissue of origin. Thus, they can be used to understand the underlying mechanisms of cancer initiation, progression, and metastasis in a more physiological setting. Additionally, co-culture methods of tumoroids and cancer-associated cells can help to understand the interplay between a tumor and its tumor microenvironment. In recent years, tumoroids have already helped to refine treatments and to identify new targets for cancer therapy. Advanced culturing systems such as chip-based fluidic devices and bioprinting methods in combination with tumoroids have been used for high-throughput applications for personalized medicine. Even though organoid and tumoroid models are complex in vitro systems, validation of results in vivo is still the common practice. Here, we describe how both animal- and human-derived tumoroids have helped to identify novel vulnerabilities for cancer treatment in recent years, and how they are currently used for precision medicine.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"1-26"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850459/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141161474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Telomere transcripts act as tumor suppressor and are associated with favorable prognosis in colorectal cancer with low proliferating cell nuclear antigen expression. 端粒转录物是肿瘤抑制因子,与增殖细胞核抗原低表达的结直肠癌的良好预后有关。
IF 4.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-02-01 Epub Date: 2024-09-02 DOI: 10.1007/s13402-024-00986-y
Philip Kienzl, Abigail J Deloria, Monika Hunjadi, Juliane M Hadolt, Max-Felix Haering, Angrit Bothien, Doris Mejri, Medina Korkut-Demirbaş, Sandra Sampl, Gerhard Weber, Christine Pirker, Severin Laengle, Tamara Braunschmid, Eleni Dragona, Brigitte Marian, Sarantis Gagos, Lingeng Lu, Jeremy D Henson, Loretta M S Lau, Roger R Reddel, Wolfgang Mikulits, Stefan Stättner, Klaus Holzmann

Telomeric repeat-containing RNAs (TERRA) and telomerase RNA component (TERC) regulate telomerase activity (TA) and thereby contribute to telomere homeostasis by influencing telomere length (TL) and the cell immortality hallmark of cancer cells. Additionally, the non-canonical functions of telomerase reverse transcriptase (TERT) and TERRA appear to be involved in the epithelial-mesenchymal transition (EMT), which is important for cancer progression. However, the relationship between TERRA and patient prognosis has not been fully characterized. In this small-scale study, 68 patients with colorectal cancer (CRC) were evaluated for correlations between telomere biology, proliferation, and EMT gene transcripts and disease outcome. The proliferating cell nuclear antigen (PCNA) and the epithelial splicing regulatory proteins 1 and 2 (ESRP1 and ESRP2) showed a positive correlation with TERRA, while TA and TERRA exhibited an inverse correlation. Consistent with previous findings, the present study revealed higher expression levels of TERT and TERC, and increased TA and TL in CRC tumor tissue compared to adjacent non-tumor tissue. In contrast, lower expression levels of TERRA were observed in tumor tissue. Patients with high TERRA expression and low PCNA levels exhibited favorable overall survival rates compared to individuals with the inverse pattern. Furthermore, TERRA suppressed CRC tumor growth in severe combined immunodeficiency disease (SCID) mice. In conclusion, our study extends previously published research on TERRA suggesting its potential therapeutic role in telomerase-positive CRC.

含端粒重复序列的RNA(TERRA)和端粒酶RNA成分(TERC)调节端粒酶活性(TA),从而通过影响端粒长度(TL)和癌细胞的细胞永生标志来促进端粒平衡。此外,端粒酶逆转录酶(TERT)和TERRA的非规范功能似乎参与了上皮-间充质转化(EMT),而EMT对癌症进展非常重要。然而,TERRA与患者预后之间的关系尚未完全定性。在这项小规模研究中,研究人员评估了68名结直肠癌(CRC)患者的端粒生物学、增殖和EMT基因转录物与疾病预后之间的相关性。增殖细胞核抗原(PCNA)和上皮剪接调节蛋白 1 和 2(ESRP1 和 ESRP2)与 TERRA 呈正相关,而 TA 与 TERRA 呈反相关。与之前的研究结果一致,本研究发现,与邻近的非肿瘤组织相比,CRC 肿瘤组织中 TERT 和 TERC 的表达水平较高,TA 和 TL 的表达水平也有所增加。相比之下,肿瘤组织中 TERRA 的表达水平较低。与反向模式的患者相比,TERRA表达量高而PCNA水平低的患者总体生存率较高。此外,TERRA 还能抑制重症联合免疫缺陷病(SCID)小鼠的 CRC 肿瘤生长。总之,我们的研究扩展了以前发表的有关 TERRA 的研究,表明它在端粒酶阳性的 CRC 中具有潜在的治疗作用。
{"title":"Telomere transcripts act as tumor suppressor and are associated with favorable prognosis in colorectal cancer with low proliferating cell nuclear antigen expression.","authors":"Philip Kienzl, Abigail J Deloria, Monika Hunjadi, Juliane M Hadolt, Max-Felix Haering, Angrit Bothien, Doris Mejri, Medina Korkut-Demirbaş, Sandra Sampl, Gerhard Weber, Christine Pirker, Severin Laengle, Tamara Braunschmid, Eleni Dragona, Brigitte Marian, Sarantis Gagos, Lingeng Lu, Jeremy D Henson, Loretta M S Lau, Roger R Reddel, Wolfgang Mikulits, Stefan Stättner, Klaus Holzmann","doi":"10.1007/s13402-024-00986-y","DOIUrl":"10.1007/s13402-024-00986-y","url":null,"abstract":"<p><p>Telomeric repeat-containing RNAs (TERRA) and telomerase RNA component (TERC) regulate telomerase activity (TA) and thereby contribute to telomere homeostasis by influencing telomere length (TL) and the cell immortality hallmark of cancer cells. Additionally, the non-canonical functions of telomerase reverse transcriptase (TERT) and TERRA appear to be involved in the epithelial-mesenchymal transition (EMT), which is important for cancer progression. However, the relationship between TERRA and patient prognosis has not been fully characterized. In this small-scale study, 68 patients with colorectal cancer (CRC) were evaluated for correlations between telomere biology, proliferation, and EMT gene transcripts and disease outcome. The proliferating cell nuclear antigen (PCNA) and the epithelial splicing regulatory proteins 1 and 2 (ESRP1 and ESRP2) showed a positive correlation with TERRA, while TA and TERRA exhibited an inverse correlation. Consistent with previous findings, the present study revealed higher expression levels of TERT and TERC, and increased TA and TL in CRC tumor tissue compared to adjacent non-tumor tissue. In contrast, lower expression levels of TERRA were observed in tumor tissue. Patients with high TERRA expression and low PCNA levels exhibited favorable overall survival rates compared to individuals with the inverse pattern. Furthermore, TERRA suppressed CRC tumor growth in severe combined immunodeficiency disease (SCID) mice. In conclusion, our study extends previously published research on TERRA suggesting its potential therapeutic role in telomerase-positive CRC.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"239-247"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850466/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142113993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ONECUT2 is a druggable driver of luminal to basal breast cancer plasticity. ONECUT2是乳腺癌从管腔型向基底型转变的可药驱动因素。
IF 4.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-02-01 Epub Date: 2024-05-31 DOI: 10.1007/s13402-024-00957-3
Irene Zamora, Mirian Gutiérrez, Alex Pascual, María J Pajares, Miguel Barajas, Lillian M Perez, Sungyong You, Beatrice S Knudsen, Michael R Freeman, Ignacio J Encío, Mirja Rotinen

Purpose: Tumor heterogeneity complicates patient treatment and can be due to transitioning of cancer cells across phenotypic cell states. This process is associated with the acquisition of independence from an oncogenic driver, such as the estrogen receptor (ER) in breast cancer (BC), resulting in tumor progression, therapeutic failure and metastatic spread. The transcription factor ONECUT2 (OC2) has been shown to be a master regulator protein of metastatic castration-resistant prostate cancer (mCRPC) tumors that promotes lineage plasticity to a drug-resistant neuroendocrine (NEPC) phenotype. Here, we investigate the role of OC2 in the dynamic conversion between different molecular subtypes in BC.

Methods: We analyze OC2 expression and clinical significance in BC using public databases and immunohistochemical staining. In vitro, we perform RNA-Seq, RT-qPCR and western-blot after OC2 enforced expression. We also assess cellular effects of OC2 silencing and inhibition with a drug-like small molecule in vitro and in vivo.

Results: OC2 is highly expressed in a substantial subset of hormone receptor negative human BC tumors and tamoxifen-resistant models, and is associated with poor clinical outcome, lymph node metastasis and heightened clinical stage. OC2 inhibits ER expression and activity, suppresses a gene expression program associated with luminal differentiation and activates a basal-like state at the gene expression level. We also show that OC2 is required for cell growth and survival in metastatic BC models and that it can be targeted with a small molecule inhibitor providing a novel therapeutic strategy for patients with OC2 active tumors.

Conclusions: The transcription factor OC2 is a driver of BC heterogeneity and a potential drug target in distinct cell states within the breast tumors.

目的:肿瘤的异质性使患者的治疗变得复杂,这可能是由于癌细胞在不同表型细胞状态之间的转换。这一过程与从致癌驱动因子(如乳腺癌(BC)中的雌激素受体(ER))中获得独立性有关,从而导致肿瘤进展、治疗失败和转移扩散。转录因子ONECUT2(OC2)已被证明是转移性耐阉割前列腺癌(mCRPC)肿瘤的主调节蛋白,它能促进肿瘤细胞系的可塑性,形成耐药的神经内分泌(NEPC)表型。在此,我们研究了 OC2 在 BC 不同分子亚型之间动态转换中的作用:方法:我们利用公共数据库和免疫组化染色分析了OC2在BC中的表达和临床意义。在体外,我们在 OC2 强化表达后进行 RNA-Seq、RT-qPCR 和 Western-blot 分析。我们还在体外和体内评估了沉默 OC2 和使用类药物小分子抑制 OC2 对细胞的影响:结果:OC2在大量激素受体阴性的人类BC肿瘤亚群和他莫昔芬耐药模型中高表达,并与临床预后差、淋巴结转移和临床分期增高有关。OC2 可抑制 ER 的表达和活性,抑制与管腔分化相关的基因表达程序,并在基因表达水平上激活基底样状态。我们还发现,OC2 是转移性 BC 模型中细胞生长和存活所必需的,它可以用小分子抑制剂作为靶点,为 OC2 活跃的肿瘤患者提供一种新的治疗策略:结论:转录因子OC2是乳腺癌异质性的驱动因素,也是乳腺肿瘤内不同细胞状态的潜在药物靶点。
{"title":"ONECUT2 is a druggable driver of luminal to basal breast cancer plasticity.","authors":"Irene Zamora, Mirian Gutiérrez, Alex Pascual, María J Pajares, Miguel Barajas, Lillian M Perez, Sungyong You, Beatrice S Knudsen, Michael R Freeman, Ignacio J Encío, Mirja Rotinen","doi":"10.1007/s13402-024-00957-3","DOIUrl":"10.1007/s13402-024-00957-3","url":null,"abstract":"<p><strong>Purpose: </strong>Tumor heterogeneity complicates patient treatment and can be due to transitioning of cancer cells across phenotypic cell states. This process is associated with the acquisition of independence from an oncogenic driver, such as the estrogen receptor (ER) in breast cancer (BC), resulting in tumor progression, therapeutic failure and metastatic spread. The transcription factor ONECUT2 (OC2) has been shown to be a master regulator protein of metastatic castration-resistant prostate cancer (mCRPC) tumors that promotes lineage plasticity to a drug-resistant neuroendocrine (NEPC) phenotype. Here, we investigate the role of OC2 in the dynamic conversion between different molecular subtypes in BC.</p><p><strong>Methods: </strong>We analyze OC2 expression and clinical significance in BC using public databases and immunohistochemical staining. In vitro, we perform RNA-Seq, RT-qPCR and western-blot after OC2 enforced expression. We also assess cellular effects of OC2 silencing and inhibition with a drug-like small molecule in vitro and in vivo.</p><p><strong>Results: </strong>OC2 is highly expressed in a substantial subset of hormone receptor negative human BC tumors and tamoxifen-resistant models, and is associated with poor clinical outcome, lymph node metastasis and heightened clinical stage. OC2 inhibits ER expression and activity, suppresses a gene expression program associated with luminal differentiation and activates a basal-like state at the gene expression level. We also show that OC2 is required for cell growth and survival in metastatic BC models and that it can be targeted with a small molecule inhibitor providing a novel therapeutic strategy for patients with OC2 active tumors.</p><p><strong>Conclusions: </strong>The transcription factor OC2 is a driver of BC heterogeneity and a potential drug target in distinct cell states within the breast tumors.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"83-99"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850477/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141181411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OrganoIDNet: a deep learning tool for identification of therapeutic effects in PDAC organoid-PBMC co-cultures from time-resolved imaging data. OrganoIDNet:从时间分辨成像数据中识别PDAC类器官-PBMC共培养物治疗效果的深度学习工具。
IF 4.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-02-01 Epub Date: 2024-05-28 DOI: 10.1007/s13402-024-00958-2
Nathalia Ferreira, Ajinkya Kulkarni, David Agorku, Teona Midelashvili, Olaf Hardt, Tobias J Legler, Philipp Ströbel, Lena-Christin Conradi, Frauke Alves, Fernanda Ramos-Gomes, M Andrea Markus

Purpose: Pancreatic Ductal Adenocarcinoma (PDAC) remains a challenging disease due to its complex biology and aggressive behavior with an urgent need for efficient therapeutic strategies. To assess therapy response, pre-clinical PDAC organoid-based models in combination with accurate real-time monitoring are required.

Methods: We established stable live-imaging organoid/peripheral blood mononuclear cells (PBMCs) co-cultures and introduced OrganoIDNet, a deep-learning-based algorithm, capable of analyzing bright-field images of murine and human patient-derived PDAC organoids acquired with live-cell imaging. We investigated the response to the chemotherapy gemcitabine in PDAC organoids and the PD-L1 inhibitor Atezolizumab, cultured with or without HLA-matched PBMCs over time. Results obtained with OrganoIDNet were validated with the endpoint proliferation assay CellTiter-Glo.

Results: Live cell imaging in combination with OrganoIDNet accurately detected size-specific drug responses of organoids to gemcitabine over time, showing that large organoids were more prone to cytotoxic effects. This approach also allowed distinguishing between healthy and unhealthy status and measuring eccentricity as organoids' reaction to therapy. Furthermore, imaging of a new organoids/PBMCs sandwich-based co-culture enabled longitudinal analysis of organoid responses to Atezolizumab, showing an increased potency of PBMCs tumor-killing in an organoid-individual manner when Atezolizumab was added.

Conclusion: Optimized PDAC organoid imaging analyzed by OrganoIDNet represents a platform capable of accurately detecting organoid responses to standard PDAC chemotherapy over time. Moreover, organoid/immune cell co-cultures allow monitoring of organoid responses to immunotherapy, offering dynamic insights into treatment behavior within a co-culture setting with PBMCs. This setup holds promise for real-time assessment of immunotherapeutic effects in individual patient-derived PDAC organoids.

目的:胰腺导管腺癌(PDAC)由于其复杂的生物学特性和侵袭性,仍然是一种具有挑战性的疾病,迫切需要高效的治疗策略。为了评估治疗反应,需要临床前基于 PDAC 器官的模型,并结合精确的实时监测:我们建立了稳定的活细胞成像类器官/外周血单核细胞(PBMCs)共培养物,并引入了基于深度学习的算法 OrganoIDNet,该算法能够分析通过活细胞成像获得的小鼠和人类患者来源的 PDAC 类器官的明视野图像。我们研究了PDAC器官组织对吉西他滨化疗和PD-L1抑制剂Atezolizumab的反应。用终点增殖测定 CellTiter-Glo 验证了 OrganoIDNet 获得的结果:结果:活细胞成像结合 OrganoIDNet 可准确检测器官组织对吉西他滨随时间变化的大小特异性药物反应,显示大器官组织更容易受到细胞毒性作用的影响。这种方法还能区分健康和不健康状态,并测量有机体对治疗反应的偏心率。此外,新的类器官/PBMCs夹心共培养成像技术可纵向分析类器官对阿特珠单抗的反应,显示加入阿特珠单抗后,PBMCs以类器官个体化的方式提高了杀伤肿瘤的效力:结论:OrganoIDNet分析的优化PDAC类器官成像是一个能够准确检测类器官对标准PDAC化疗反应的平台。此外,类器官/免疫细胞共培养可以监测类器官对免疫疗法的反应,从而动态了解与 PBMCs 共培养环境中的治疗行为。这种装置有望实时评估单个患者衍生的PDAC类器官的免疫治疗效果。
{"title":"OrganoIDNet: a deep learning tool for identification of therapeutic effects in PDAC organoid-PBMC co-cultures from time-resolved imaging data.","authors":"Nathalia Ferreira, Ajinkya Kulkarni, David Agorku, Teona Midelashvili, Olaf Hardt, Tobias J Legler, Philipp Ströbel, Lena-Christin Conradi, Frauke Alves, Fernanda Ramos-Gomes, M Andrea Markus","doi":"10.1007/s13402-024-00958-2","DOIUrl":"10.1007/s13402-024-00958-2","url":null,"abstract":"<p><strong>Purpose: </strong>Pancreatic Ductal Adenocarcinoma (PDAC) remains a challenging disease due to its complex biology and aggressive behavior with an urgent need for efficient therapeutic strategies. To assess therapy response, pre-clinical PDAC organoid-based models in combination with accurate real-time monitoring are required.</p><p><strong>Methods: </strong>We established stable live-imaging organoid/peripheral blood mononuclear cells (PBMCs) co-cultures and introduced OrganoIDNet, a deep-learning-based algorithm, capable of analyzing bright-field images of murine and human patient-derived PDAC organoids acquired with live-cell imaging. We investigated the response to the chemotherapy gemcitabine in PDAC organoids and the PD-L1 inhibitor Atezolizumab, cultured with or without HLA-matched PBMCs over time. Results obtained with OrganoIDNet were validated with the endpoint proliferation assay CellTiter-Glo.</p><p><strong>Results: </strong>Live cell imaging in combination with OrganoIDNet accurately detected size-specific drug responses of organoids to gemcitabine over time, showing that large organoids were more prone to cytotoxic effects. This approach also allowed distinguishing between healthy and unhealthy status and measuring eccentricity as organoids' reaction to therapy. Furthermore, imaging of a new organoids/PBMCs sandwich-based co-culture enabled longitudinal analysis of organoid responses to Atezolizumab, showing an increased potency of PBMCs tumor-killing in an organoid-individual manner when Atezolizumab was added.</p><p><strong>Conclusion: </strong>Optimized PDAC organoid imaging analyzed by OrganoIDNet represents a platform capable of accurately detecting organoid responses to standard PDAC chemotherapy over time. Moreover, organoid/immune cell co-cultures allow monitoring of organoid responses to immunotherapy, offering dynamic insights into treatment behavior within a co-culture setting with PBMCs. This setup holds promise for real-time assessment of immunotherapeutic effects in individual patient-derived PDAC organoids.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"101-122"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850476/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141158077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GALNT6 drives lenvatinib resistance in hepatocellular carcinoma through autophagy and cancer-associated fibroblast activation. GALNT6通过自噬和癌症相关成纤维细胞激活驱动肝细胞癌对lenvatinib的耐药性。
IF 4.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-12-24 DOI: 10.1007/s13402-024-01032-7
Peiling Zhang, Shiping Chen, Jialiang Cai, Lina Song, Bing Quan, Jinglei Wan, Guiqi Zhu, Biao Wang, Yi Yang, Zhengjun Zhou, Tao Li, Zhi Dai

Background: Hepatocellular carcinoma (HCC) remains a significant global health challenge with limited treatment options. Lenvatinib, a tyrosine kinase inhibitor, has shown promise but is often undermined by the development of drug resistance.

Methods: Utilizing high-throughput sequencing, we investigated the molecular mechanisms underlying lenvatinib resistance in HCC cells, with a focus on metabolic pathways. Key genes, including GALNT6, were validated through quantitative real-time PCR. The effects of GALNT6 knockdown on lenvatinib sensitivity were examined in vitro and in vivo. O-GalNAc glycosylation was assessed using Vicia Villosa Lectin. Immune cell infiltration and interactions were analyzed in the TCGA-LIHC cohort, with further validation by Western blotting and immunohistochemistry.

Results: Our findings indicate that lenvatinib resistance in HCC is driven by the mucin-type O-glycosylation pathway, with GALNT6 playing a critical role. Knockdown of GALNT6 led to reduced O-GalNAc glycosylation, including the modification of LAPTM5, resulting in decreased LAPTM5 activity and autophagy inhibition. Additionally, GALNT6 silencing disrupted the PDGFA-PDGFRB axis, impairing the activation of cancer-associated fibroblasts (CAFs) and reducing their secretion of SPP1, which collectively diminished lenvatinib resistance.

Conclusions: GALNT6 is integral to the resistance mechanisms against lenvatinib in HCC by modulating autophagy and CAF activation. Targeting GALNT6 offers a promising strategy to enhance lenvatinib efficacy and improve therapeutic outcomes in HCC.

背景:肝细胞癌(HCC)仍然是一个重大的全球健康挑战,治疗方案有限。Lenvatinib是一种酪氨酸激酶抑制剂,已经显示出前景,但经常因耐药性的发展而受到损害。方法:利用高通量测序技术,研究肝癌细胞lenvatinib耐药的分子机制,重点研究代谢途径。通过实时荧光定量PCR对GALNT6等关键基因进行验证。在体外和体内研究GALNT6敲低对lenvatinib敏感性的影响。O-GalNAc糖基化评价采用紫薇凝集素。在TCGA-LIHC队列中分析免疫细胞浸润和相互作用,并通过免疫印迹和免疫组织化学进一步验证。结果:我们的研究结果表明,HCC中的lenvatinib耐药是由粘蛋白型o糖基化途径驱动的,GALNT6在其中发挥了关键作用。GALNT6的敲低导致O-GalNAc糖基化减少,包括LAPTM5的修饰,导致LAPTM5活性降低和自噬抑制。此外,GALNT6沉默破坏了PDGFA-PDGFRB轴,损害了癌症相关成纤维细胞(CAFs)的激活并减少了它们的SPP1分泌,这共同降低了lenvatinib耐药性。结论:GALNT6通过调节细胞自噬和CAF激活,在HCC中对lenvatinib的耐药机制中是不可或缺的。靶向GALNT6提供了一种有希望的策略来提高lenvatinib在HCC中的疗效和改善治疗结果。
{"title":"GALNT6 drives lenvatinib resistance in hepatocellular carcinoma through autophagy and cancer-associated fibroblast activation.","authors":"Peiling Zhang, Shiping Chen, Jialiang Cai, Lina Song, Bing Quan, Jinglei Wan, Guiqi Zhu, Biao Wang, Yi Yang, Zhengjun Zhou, Tao Li, Zhi Dai","doi":"10.1007/s13402-024-01032-7","DOIUrl":"10.1007/s13402-024-01032-7","url":null,"abstract":"<p><strong>Background: </strong>Hepatocellular carcinoma (HCC) remains a significant global health challenge with limited treatment options. Lenvatinib, a tyrosine kinase inhibitor, has shown promise but is often undermined by the development of drug resistance.</p><p><strong>Methods: </strong>Utilizing high-throughput sequencing, we investigated the molecular mechanisms underlying lenvatinib resistance in HCC cells, with a focus on metabolic pathways. Key genes, including GALNT6, were validated through quantitative real-time PCR. The effects of GALNT6 knockdown on lenvatinib sensitivity were examined in vitro and in vivo. O-GalNAc glycosylation was assessed using Vicia Villosa Lectin. Immune cell infiltration and interactions were analyzed in the TCGA-LIHC cohort, with further validation by Western blotting and immunohistochemistry.</p><p><strong>Results: </strong>Our findings indicate that lenvatinib resistance in HCC is driven by the mucin-type O-glycosylation pathway, with GALNT6 playing a critical role. Knockdown of GALNT6 led to reduced O-GalNAc glycosylation, including the modification of LAPTM5, resulting in decreased LAPTM5 activity and autophagy inhibition. Additionally, GALNT6 silencing disrupted the PDGFA-PDGFRB axis, impairing the activation of cancer-associated fibroblasts (CAFs) and reducing their secretion of SPP1, which collectively diminished lenvatinib resistance.</p><p><strong>Conclusions: </strong>GALNT6 is integral to the resistance mechanisms against lenvatinib in HCC by modulating autophagy and CAF activation. Targeting GALNT6 offers a promising strategy to enhance lenvatinib efficacy and improve therapeutic outcomes in HCC.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"2439-2460"},"PeriodicalIF":4.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142883509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of AUF1 alternative splicing by hnRNPA1 and SRSF2 modulate the sensitivity of ovarian cancer cells to cisplatin. hnRNPA1和SRSF2调控AUF1选择性剪接可调节卵巢癌细胞对顺铂的敏感性。
IF 4.8 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-12-09 DOI: 10.1007/s13402-024-01023-8
Jia-Mei Wang, Ning Liu, Xue-Jing Wei, Fu-Ying Zhao, Chao Li, Hua-Qin Wang, Chuan Liu

Purpose: Clarification of cisplatin resistance may provide new targets for therapy in cisplatin resistant ovarian cancer. The current study aims to explore involvement of isoforms of AU-rich element RNA-binding protein 1 (AUF1) in cisplatin resistance in ovarian cancer.

Methods: The cancer stem cell-like features were analyzed using colony formation assay, tumor sphere formation assay and nude mouse xenograft experiments. AUF1 isoforms expression was analyzed using immunoblotting, qRT-PCR, and immunohistochemistry. RIP and Biotin pulldown was used to analyze the interaction of SRSF2 and hnRNPA1 with AUF1 transcript. Transcriptome regulated by AUF1 isoforms was analyzed by RNA-seq.

Results: The current study demonstrated differential expression of AUF1 isoforms in cisplatin sensitive and resistant ovarian cancer tissues and cells. P37 isoform promoted proliferation, while p45 isoform enhanced responsiveness of ovarian cancer cells to cisplatin. the clonal formation capacity of the cells, and the restoration of p45 expression reduced the capacity with cisplatin treatment. The competitive binding of phosphorylated hnRNPA1 and O-GlcNAc-modified SRSF2 on AUF1 exon 2 and exon 7 regulated the alternative splicing of AUF1.

Conclusion: The competitive binding of phosphorylated hnRNPA1 and O-GlcNAc modified SRSF2 on exon 2 and exon 7 regulated the alternative splicing of AUF1 and subsequent isoform expression. P37 isoform played a "cancer promoter" role, p42 and p45, especially p45 played a "cancer suppressor" role in ovarian cancer. This study provides a new target for exploring the drug resistance mechanism of ovarian cancer.

目的:明确顺铂耐药情况,为顺铂耐药卵巢癌的治疗提供新的靶点。本研究旨在探讨富au元素rna结合蛋白1 (AUF1)亚型在卵巢癌顺铂耐药中的作用。方法:采用集落形成实验、肿瘤球形成实验和裸鼠异种移植实验分析肿瘤干细胞样特征。使用免疫印迹、qRT-PCR和免疫组织化学分析AUF1亚型的表达。利用RIP和Biotin pulldown分析SRSF2和hnRNPA1与AUF1转录物的相互作用。通过RNA-seq分析AUF1亚型调控的转录组。结果:目前的研究表明,AUF1亚型在顺铂敏感和耐药的卵巢癌组织和细胞中存在差异表达。P37异构体促进卵巢癌细胞增殖,而p45异构体增强卵巢癌细胞对顺铂的反应性。顺铂治疗降低了细胞的克隆形成能力和p45表达的恢复。磷酸化hnRNPA1和o - glcnac修饰的SRSF2在AUF1外显子2和外显子7上的竞争性结合调节了AUF1的选择性剪接。结论:磷酸化hnRNPA1和O-GlcNAc修饰的SRSF2在外显子2和外显子7上的竞争性结合调节了AUF1的选择性剪接和随后的异构体表达。P37异构体在卵巢癌中起“癌启动子”作用,p42和p45,尤其是p45起“癌抑制子”作用。本研究为探索卵巢癌耐药机制提供了新的靶点。
{"title":"Regulation of AUF1 alternative splicing by hnRNPA1 and SRSF2 modulate the sensitivity of ovarian cancer cells to cisplatin.","authors":"Jia-Mei Wang, Ning Liu, Xue-Jing Wei, Fu-Ying Zhao, Chao Li, Hua-Qin Wang, Chuan Liu","doi":"10.1007/s13402-024-01023-8","DOIUrl":"10.1007/s13402-024-01023-8","url":null,"abstract":"<p><strong>Purpose: </strong>Clarification of cisplatin resistance may provide new targets for therapy in cisplatin resistant ovarian cancer. The current study aims to explore involvement of isoforms of AU-rich element RNA-binding protein 1 (AUF1) in cisplatin resistance in ovarian cancer.</p><p><strong>Methods: </strong>The cancer stem cell-like features were analyzed using colony formation assay, tumor sphere formation assay and nude mouse xenograft experiments. AUF1 isoforms expression was analyzed using immunoblotting, qRT-PCR, and immunohistochemistry. RIP and Biotin pulldown was used to analyze the interaction of SRSF2 and hnRNPA1 with AUF1 transcript. Transcriptome regulated by AUF1 isoforms was analyzed by RNA-seq.</p><p><strong>Results: </strong>The current study demonstrated differential expression of AUF1 isoforms in cisplatin sensitive and resistant ovarian cancer tissues and cells. P37 isoform promoted proliferation, while p45 isoform enhanced responsiveness of ovarian cancer cells to cisplatin. the clonal formation capacity of the cells, and the restoration of p45 expression reduced the capacity with cisplatin treatment. The competitive binding of phosphorylated hnRNPA1 and O-GlcNAc-modified SRSF2 on AUF1 exon 2 and exon 7 regulated the alternative splicing of AUF1.</p><p><strong>Conclusion: </strong>The competitive binding of phosphorylated hnRNPA1 and O-GlcNAc modified SRSF2 on exon 2 and exon 7 regulated the alternative splicing of AUF1 and subsequent isoform expression. P37 isoform played a \"cancer promoter\" role, p42 and p45, especially p45 played a \"cancer suppressor\" role in ovarian cancer. This study provides a new target for exploring the drug resistance mechanism of ovarian cancer.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"2349-2366"},"PeriodicalIF":4.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142802466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring tumor microenvironment interactions and apoptosis pathways in NSCLC through spatial transcriptomics and machine learning. 通过空间转录组学和机器学习探索非小细胞肺癌的肿瘤微环境相互作用和凋亡途径。
IF 4.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-12-19 DOI: 10.1007/s13402-024-01025-6
Huimin Li, Yuheng Jiao, Yi Zhang, Junzhi Liu, Shuixian Huang

Background: The most common type of lung cancer is non-small cell lung cancer (NSCLC), accounting for 85% of all cases. Programmed cell death (PCD), an important regulatory mechanism for cell survival and homeostasis, has become increasingly prominent in cancer research in recent years. As such, exploring the role of PCD in NSCLC may help uncover new mechanisms for therapeutic targets.

Methods: We utilized the GEO database and TCGA NSCLC gene data to screen for co-expressed genes. To delve deeper, single-cell sequencing combined with spatial transcriptomics was employed to study the intrinsic mechanisms of programmed cell death in cells and their interaction with the tumor microenvironment. Furthermore, Mendelian randomization was applied to screen for causally related genes. Prognostic models were constructed using various machine learning algorithms, and multi-cohort multi-omics analyses were conducted to screen for genes. In vitro experiments were then carried out to reveal the biological functions of the genes and their relationship with apoptosis.

Results: Cells with high programmed cell death activity primarily activate pathways related to apoptosis, cell migration, and hypoxia, while also exhibiting strong interactions with smooth muscle cells in the tumor microenvironment. Based on a set of programmed cell death genes, the prognostic model NSCLCPCD demonstrates strong predictive capabilities. Moreover, laboratory experiments confirm that SLC7A5 promotes the proliferation of NSCLC cells, and the knockout of SLC7A5 significantly increases tumor cell apoptosis.

Conclusions: Our data indicate that programmed cell death is predominantly associated with pathways related to apoptosis, tumor metastasis, and hypoxia. Additionally, it suggests that SLC7A5 is a significant risk indicator for the prognosis of non-small cell lung cancer (NSCLC) and may serve as an effective target for enhancing apoptosis in NSCLC tumor cells.

背景:最常见的肺癌类型是非小细胞肺癌(NSCLC),占所有病例的85%。细胞程序性死亡(Programmed cell death, PCD)作为细胞存活和稳态的重要调控机制,近年来在肿瘤研究中得到越来越多的关注。因此,探索PCD在非小细胞肺癌中的作用可能有助于揭示治疗靶点的新机制。方法:利用GEO数据库和TCGA NSCLC基因数据筛选共表达基因。为了深入研究,我们采用单细胞测序结合空间转录组学来研究细胞程序性死亡的内在机制及其与肿瘤微环境的相互作用。此外,孟德尔随机化应用筛选因果相关基因。使用各种机器学习算法构建预后模型,并进行多队列多组学分析以筛选基因。然后进行体外实验,揭示基因的生物学功能及其与细胞凋亡的关系。结果:具有高程序性细胞死亡活性的细胞主要激活与凋亡、细胞迁移和缺氧相关的途径,同时也与肿瘤微环境中的平滑肌细胞表现出强烈的相互作用。基于一组程序性细胞死亡基因,预后模型NSCLCPCD显示出强大的预测能力。此外,实验室实验证实SLC7A5促进了NSCLC细胞的增殖,敲除SLC7A5可显著增加肿瘤细胞的凋亡。结论:我们的数据表明程序性细胞死亡主要与凋亡、肿瘤转移和缺氧相关的途径相关。提示SLC7A5是非小细胞肺癌(non-small cell lung cancer, NSCLC)预后的重要危险指标,可能是促进NSCLC肿瘤细胞凋亡的有效靶点。
{"title":"Exploring tumor microenvironment interactions and apoptosis pathways in NSCLC through spatial transcriptomics and machine learning.","authors":"Huimin Li, Yuheng Jiao, Yi Zhang, Junzhi Liu, Shuixian Huang","doi":"10.1007/s13402-024-01025-6","DOIUrl":"10.1007/s13402-024-01025-6","url":null,"abstract":"<p><strong>Background: </strong>The most common type of lung cancer is non-small cell lung cancer (NSCLC), accounting for 85% of all cases. Programmed cell death (PCD), an important regulatory mechanism for cell survival and homeostasis, has become increasingly prominent in cancer research in recent years. As such, exploring the role of PCD in NSCLC may help uncover new mechanisms for therapeutic targets.</p><p><strong>Methods: </strong>We utilized the GEO database and TCGA NSCLC gene data to screen for co-expressed genes. To delve deeper, single-cell sequencing combined with spatial transcriptomics was employed to study the intrinsic mechanisms of programmed cell death in cells and their interaction with the tumor microenvironment. Furthermore, Mendelian randomization was applied to screen for causally related genes. Prognostic models were constructed using various machine learning algorithms, and multi-cohort multi-omics analyses were conducted to screen for genes. In vitro experiments were then carried out to reveal the biological functions of the genes and their relationship with apoptosis.</p><p><strong>Results: </strong>Cells with high programmed cell death activity primarily activate pathways related to apoptosis, cell migration, and hypoxia, while also exhibiting strong interactions with smooth muscle cells in the tumor microenvironment. Based on a set of programmed cell death genes, the prognostic model NSCLCPCD demonstrates strong predictive capabilities. Moreover, laboratory experiments confirm that SLC7A5 promotes the proliferation of NSCLC cells, and the knockout of SLC7A5 significantly increases tumor cell apoptosis.</p><p><strong>Conclusions: </strong>Our data indicate that programmed cell death is predominantly associated with pathways related to apoptosis, tumor metastasis, and hypoxia. Additionally, it suggests that SLC7A5 is a significant risk indicator for the prognosis of non-small cell lung cancer (NSCLC) and may serve as an effective target for enhancing apoptosis in NSCLC tumor cells.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"2383-2405"},"PeriodicalIF":4.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142856122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of BRCA1 in glioblastoma etiology. BRCA1在胶质母细胞瘤发病中的作用。
IF 4.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-12-10 DOI: 10.1007/s13402-024-01024-7
Emirhan Harbi, Michael Aschner

BRCA1 (Breast Cancer 1) is a tumor suppressor gene with a role in DNA repair by Homologous Recombination (HR), and maintenance of genomic stability that is frequently investigated in breast, prostate, and ovarian cancers. BRCA1 mutations or dysregulation in glioblastoma can lead to impaired DNA repair mechanisms, resulting in tumor progression and resistance to standard therapies. Several studies have shown that BRCA1 expression is altered, albeit rarely, in glioblastoma, leading to poor prognosis and increased tumor aggressiveness. In addition, the communication of BRCA1 with other molecular pathways such as p53 and PTEN further complicates its role in glioblastoma pathogenesis. Targeting BRCA1-related pathways in these cases has shown the potential to improve the efficacy of standard treatments, including radiotherapy and chemotherapy. The development of (Poly (ADP-ribose) Polymerase) PARP inhibitors that exploit the lack of HR also offers a therapeutic approach to glioblastoma patients with BRCA1 mutations. Despite these advances, the heterogeneity of glioblastoma and its complex tumor microenvironment make the translation of such approaches into clinical practice still challenging, and there is an "unmet need". This review discusses the current mechanisms of etiology and potential treatment of BRCA1-related glioblastoma.

BRCA1 (Breast Cancer 1)是一种肿瘤抑制基因,在通过同源重组(Homologous Recombination, HR)修复DNA和维持基因组稳定性中发挥作用,在乳腺癌、前列腺癌和卵巢癌中经常被研究。胶质母细胞瘤中的BRCA1突变或失调可导致DNA修复机制受损,导致肿瘤进展和对标准治疗的耐药性。几项研究表明,BRCA1表达在胶质母细胞瘤中发生改变(尽管很少),导致预后不良和肿瘤侵袭性增加。此外,BRCA1与p53、PTEN等其他分子通路的通讯使其在胶质母细胞瘤发病中的作用进一步复杂化。在这些病例中,靶向brca1相关通路已显示出提高标准治疗(包括放疗和化疗)疗效的潜力。利用HR缺乏的聚(adp核糖)聚合酶PARP抑制剂的开发也为BRCA1突变的胶质母细胞瘤患者提供了一种治疗方法。尽管取得了这些进展,但胶质母细胞瘤的异质性及其复杂的肿瘤微环境使得这些方法转化为临床实践仍然具有挑战性,并且存在“未满足的需求”。本文综述了brca1相关胶质母细胞瘤的病因机制和潜在治疗方法。
{"title":"Role of BRCA1 in glioblastoma etiology.","authors":"Emirhan Harbi, Michael Aschner","doi":"10.1007/s13402-024-01024-7","DOIUrl":"10.1007/s13402-024-01024-7","url":null,"abstract":"<p><p>BRCA1 (Breast Cancer 1) is a tumor suppressor gene with a role in DNA repair by Homologous Recombination (HR), and maintenance of genomic stability that is frequently investigated in breast, prostate, and ovarian cancers. BRCA1 mutations or dysregulation in glioblastoma can lead to impaired DNA repair mechanisms, resulting in tumor progression and resistance to standard therapies. Several studies have shown that BRCA1 expression is altered, albeit rarely, in glioblastoma, leading to poor prognosis and increased tumor aggressiveness. In addition, the communication of BRCA1 with other molecular pathways such as p53 and PTEN further complicates its role in glioblastoma pathogenesis. Targeting BRCA1-related pathways in these cases has shown the potential to improve the efficacy of standard treatments, including radiotherapy and chemotherapy. The development of (Poly (ADP-ribose) Polymerase) PARP inhibitors that exploit the lack of HR also offers a therapeutic approach to glioblastoma patients with BRCA1 mutations. Despite these advances, the heterogeneity of glioblastoma and its complex tumor microenvironment make the translation of such approaches into clinical practice still challenging, and there is an \"unmet need\". This review discusses the current mechanisms of etiology and potential treatment of BRCA1-related glioblastoma.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"2091-2098"},"PeriodicalIF":4.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142802777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RAB37 suppresses the EMT, migration and invasion of gastric cancer cells by mediating autophagic degradation of β-catenin. RAB37通过介导β-catenin的自噬降解,抑制胃癌细胞的EMT、迁移和侵袭。
IF 4.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-12-19 DOI: 10.1007/s13402-024-01028-3
Jiangling Duan, Xiuyin Guan, Jiaxin Xue, Jiayu Wang, Zhiwei Wang, Xuan Chen, Wen Jiang, Wannian Sui, Yongfang Song, Tianshu Li, Dewang Rao, Xueyan Wu, Ming Lu

Background: Gastric cancer, characterized by its high morbidity and mortality rates, exhibits low levels of RAB37. The role and molecular mechanisms of RAB37, a small GTPase, in the pathogenesis of gastric cancer are still unclear.

Methods: We assessed RAB37 expression in gastric cancer cells using quantitative Polymerase Chain Reaction (qPCR), Western blot, and immunohistochemical staining (IHC), and analyzed EMT marker proteins and autophagy changes via Western blot, immunofluorescence (IF), and transmission electron microscopy (TEM). Co-immunoprecipitation (co-IP) was used to identify protein-protein interactions. We studied the migration and invasion of gastric cancer cells using wound healing and transwell assays in vitro and a mouse pulmonary metastasis model in vivo.

Results: Overexpression of RAB37 suppressed EMT, invasion, and migration while enhancing autophagy in gastric cancer cells, which was dependent on its GTPase activity. However, all these effects could be reversed by the autophagy inhibitor chloroquine. Regarding the molecular mechanism, RAB37 strengthened the interaction between p62 and β-catenin, which consequently enhanced the p62-mediated autophagic degradation of β-catenin. Furthermore, RAB37 curbed the pulmonary metastasis of both general and cisplatin-resistant gastric cancer cells.

Conclusion: The low level of RAB37 reduces interaction between p62 and β-catenin and then the autophagic degradation of β-catenin, thereby promoting the EMT, invasion, and migration in gastric cancer cells. The low expression of RAB37 in gastric cancer suggests a potential therapeutic target, especially for cisplatin-resistant gastric cancer.

背景:胃癌具有高发病率和高死亡率的特点,RAB37水平较低。RAB37是一种小的GTPase,其在胃癌发病中的作用和分子机制尚不清楚。方法:采用定量聚合酶链式反应(qPCR)、免疫印迹(Western blot)和免疫组化染色(IHC)检测RAB37在胃癌细胞中的表达,并通过免疫印迹(Western blot)、免疫荧光(IF)和透射电镜(TEM)分析EMT标记蛋白和自噬的变化。共免疫沉淀(co-IP)用于鉴定蛋白质之间的相互作用。我们在体外通过伤口愈合和transwell实验以及小鼠肺转移模型研究了胃癌细胞的迁移和侵袭。结果:RAB37过表达抑制胃癌细胞的EMT、侵袭和迁移,同时增强胃癌细胞的自噬,其作用机制依赖于RAB37的GTPase活性。然而,所有这些作用都可以被自噬抑制剂氯喹逆转。在分子机制上,RAB37增强了p62与β-catenin的相互作用,从而增强了p62介导的β-catenin的自噬降解。此外,RAB37抑制了一般和顺铂耐药胃癌细胞的肺转移。结论:低水平的RAB37降低了p62与β-catenin的相互作用,进而降低了β-catenin的自噬降解,从而促进了胃癌细胞的EMT、侵袭和迁移。RAB37在胃癌中的低表达提示了一个潜在的治疗靶点,特别是对顺铂耐药的胃癌。
{"title":"RAB37 suppresses the EMT, migration and invasion of gastric cancer cells by mediating autophagic degradation of β-catenin.","authors":"Jiangling Duan, Xiuyin Guan, Jiaxin Xue, Jiayu Wang, Zhiwei Wang, Xuan Chen, Wen Jiang, Wannian Sui, Yongfang Song, Tianshu Li, Dewang Rao, Xueyan Wu, Ming Lu","doi":"10.1007/s13402-024-01028-3","DOIUrl":"10.1007/s13402-024-01028-3","url":null,"abstract":"<p><strong>Background: </strong>Gastric cancer, characterized by its high morbidity and mortality rates, exhibits low levels of RAB37. The role and molecular mechanisms of RAB37, a small GTPase, in the pathogenesis of gastric cancer are still unclear.</p><p><strong>Methods: </strong>We assessed RAB37 expression in gastric cancer cells using quantitative Polymerase Chain Reaction (qPCR), Western blot, and immunohistochemical staining (IHC), and analyzed EMT marker proteins and autophagy changes via Western blot, immunofluorescence (IF), and transmission electron microscopy (TEM). Co-immunoprecipitation (co-IP) was used to identify protein-protein interactions. We studied the migration and invasion of gastric cancer cells using wound healing and transwell assays in vitro and a mouse pulmonary metastasis model in vivo.</p><p><strong>Results: </strong>Overexpression of RAB37 suppressed EMT, invasion, and migration while enhancing autophagy in gastric cancer cells, which was dependent on its GTPase activity. However, all these effects could be reversed by the autophagy inhibitor chloroquine. Regarding the molecular mechanism, RAB37 strengthened the interaction between p62 and β-catenin, which consequently enhanced the p62-mediated autophagic degradation of β-catenin. Furthermore, RAB37 curbed the pulmonary metastasis of both general and cisplatin-resistant gastric cancer cells.</p><p><strong>Conclusion: </strong>The low level of RAB37 reduces interaction between p62 and β-catenin and then the autophagic degradation of β-catenin, thereby promoting the EMT, invasion, and migration in gastric cancer cells. The low expression of RAB37 in gastric cancer suggests a potential therapeutic target, especially for cisplatin-resistant gastric cancer.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"2407-2421"},"PeriodicalIF":4.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142856227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hepatic arterial infusion chemotherapy (HAIC) combined with Tislelizumab and Lenvatinib for unresectable hepatocellular carcinoma: a retrospective single-arm study. 肝动脉灌注化疗(HAIC)联合替赛珠单抗和仑伐替尼治疗不可切除肝细胞癌:一项回顾性单臂研究。
IF 4.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-11-25 DOI: 10.1007/s13402-024-01015-8
Ruirui Sun, Yang Gou, Long Pan, Qiang He, Yin Zhou, Yi Luo, Chenrui Wu, Yaowu Zhao, Zixuan Fu, Ping Huang

Purpose: We aimed to explore the curative effects of hepatic arterial infusion chemotherapy (HAIC) combined with Tislelizumab and Lenvatinib on unresectable hepatocellular carcinoma (HCC).

Patients and methods: From September 2021 to September 2023, 42 patients with unresectable HCC who were treated in the First Affiliated Hospital of Chongqing Medical University were enrolled in this retrospective single-arm study. They received HAIC combined with Tislelizumab and lenvatinib. Baseline characteristics, laboratory indicators before and after treatment, and imaging findings were collected from medical records. The primary endpoint was objective response rate (ORR), and the secondary endpoints included disease control rate (DCR), overall survival (OS), progression-free survival (PFS), and safety indicators.

Results: A total of 199 HAIC treatments were performed, with a median of 5.5 times (3.75-6.0 times). Based on the mRECIST and RECIST1.1 criterion, the ORR was 71.4% and 57.1%, the DCR was 92.9% and 92.9%. Up to the follow-up date of October 1, 2024, the median PFS was 14.0 months (95% CI, 11.6-16.4 months), and the median OS was 26.0 months.The incidence of any grade of adverse events was 97.6%. The most commonly reported treatment-related grade 3-4 adverse events included thrombocytopenia (28.6%), elevated total bilirubin (19%), and abdominal pain (16.7%). There was no treatment-related death.

Conclusion: For unresectable HCC, HAIC combined with tirelizumab and lenvatinib has good anti-tumor efficacy and acceptable adverse reactions.

目的:探讨肝动脉灌注化疗(HAIC)联合替赛珠单抗和仑伐替尼对不可切除性肝细胞癌(HCC)的疗效:从2021年9月至2023年9月,42名在重庆医科大学附属第一医院接受治疗的不可切除肝细胞癌患者被纳入这项回顾性单臂研究。他们接受了HAIC联合替赛珠单抗和来伐替尼治疗。研究人员从病历中收集了患者的基线特征、治疗前后的实验室指标以及影像学检查结果。主要终点是客观反应率(ORR),次要终点包括疾病控制率(DCR)、总生存期(OS)、无进展生存期(PFS)和安全性指标:共进行了199次HAIC治疗,中位数为5.5次(3.75-6.0次)。根据mRECIST和RECIST1.1标准,ORR分别为71.4%和57.1%,DCR分别为92.9%和92.9%。截至2024年10月1日的随访,中位PFS为14.0个月(95% CI,11.6-16.4个月),中位OS为26.0个月。最常报告的与治疗相关的3-4级不良事件包括血小板减少(28.6%)、总胆红素升高(19%)和腹痛(16.7%)。无治疗相关死亡病例:结论:对于不可切除的HCC,HAIC联合替利珠单抗和来伐替尼具有良好的抗肿瘤疗效和可接受的不良反应。
{"title":"Hepatic arterial infusion chemotherapy (HAIC) combined with Tislelizumab and Lenvatinib for unresectable hepatocellular carcinoma: a retrospective single-arm study.","authors":"Ruirui Sun, Yang Gou, Long Pan, Qiang He, Yin Zhou, Yi Luo, Chenrui Wu, Yaowu Zhao, Zixuan Fu, Ping Huang","doi":"10.1007/s13402-024-01015-8","DOIUrl":"10.1007/s13402-024-01015-8","url":null,"abstract":"<p><strong>Purpose: </strong>We aimed to explore the curative effects of hepatic arterial infusion chemotherapy (HAIC) combined with Tislelizumab and Lenvatinib on unresectable hepatocellular carcinoma (HCC).</p><p><strong>Patients and methods: </strong>From September 2021 to September 2023, 42 patients with unresectable HCC who were treated in the First Affiliated Hospital of Chongqing Medical University were enrolled in this retrospective single-arm study. They received HAIC combined with Tislelizumab and lenvatinib. Baseline characteristics, laboratory indicators before and after treatment, and imaging findings were collected from medical records. The primary endpoint was objective response rate (ORR), and the secondary endpoints included disease control rate (DCR), overall survival (OS), progression-free survival (PFS), and safety indicators.</p><p><strong>Results: </strong>A total of 199 HAIC treatments were performed, with a median of 5.5 times (3.75-6.0 times). Based on the mRECIST and RECIST1.1 criterion, the ORR was 71.4% and 57.1%, the DCR was 92.9% and 92.9%. Up to the follow-up date of October 1, 2024, the median PFS was 14.0 months (95% CI, 11.6-16.4 months), and the median OS was 26.0 months.The incidence of any grade of adverse events was 97.6%. The most commonly reported treatment-related grade 3-4 adverse events included thrombocytopenia (28.6%), elevated total bilirubin (19%), and abdominal pain (16.7%). There was no treatment-related death.</p><p><strong>Conclusion: </strong>For unresectable HCC, HAIC combined with tirelizumab and lenvatinib has good anti-tumor efficacy and acceptable adverse reactions.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"2265-2276"},"PeriodicalIF":4.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142711550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cellular Oncology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1