Pub Date : 2023-10-21DOI: 10.1186/s13072-023-00515-5
Nivethika Rajaram, Alexandra G Kouroukli, Susanne Bens, Pavel Bashtrykov, Albert Jeltsch
Background: Epigenome editing refers to the targeted reprogramming of genomic loci using an EpiEditor which may consist of an sgRNA/dCas9 complex that recruits DNMT3A/3L to the target locus. Methylation of the locus can lead to a modulation of gene expression. Allele-specific DNA methylation (ASM) refers to the targeted methylation delivery only to one allele of a locus. In the context of diseases caused by a dominant mutation, the selective DNA methylation of the mutant allele could be used to repress its expression but retain the functionality of the normal gene.
Results: To set up allele-specific targeted DNA methylation, target regions were selected from hypomethylated CGIs bearing a heterozygous SNP in their promoters in the HEK293 cell line. We aimed at delivering maximum DNA methylation with highest allelic specificity in the targeted regions. Placing SNPs in the PAM or seed regions of the sgRNA, we designed 24 different sgRNAs targeting single alleles in 14 different gene loci. We achieved efficient ASM in multiple cases, such as ISG15, MSH6, GPD1L, MRPL52, PDE8A, NARF, DAP3, and GSPT1, which in best cases led to five to tenfold stronger average DNA methylation at the on-target allele and absolute differences in the DNA methylation gain at on- and off-target alleles of > 50%. In general, loci with the allele discriminatory SNP positioned in the PAM region showed higher success rate of ASM and better specificity. Highest DNA methylation was observed on day 3 after transfection followed by a gradual decline. In selected cases, ASM was stable up to 11 days in HEK293 cells and it led up to a 3.6-fold change in allelic expression ratios.
Conclusions: We successfully delivered ASM at multiple genomic loci with high specificity, efficiency and stability. This form of super-specific epigenome editing could find applications in the treatment of diseases caused by dominant mutations, because it allows silencing of the mutant allele without repression of the expression of the normal allele thereby minimizing potential side-effects of the treatment.
{"title":"Development of super-specific epigenome editing by targeted allele-specific DNA methylation.","authors":"Nivethika Rajaram, Alexandra G Kouroukli, Susanne Bens, Pavel Bashtrykov, Albert Jeltsch","doi":"10.1186/s13072-023-00515-5","DOIUrl":"10.1186/s13072-023-00515-5","url":null,"abstract":"<p><strong>Background: </strong>Epigenome editing refers to the targeted reprogramming of genomic loci using an EpiEditor which may consist of an sgRNA/dCas9 complex that recruits DNMT3A/3L to the target locus. Methylation of the locus can lead to a modulation of gene expression. Allele-specific DNA methylation (ASM) refers to the targeted methylation delivery only to one allele of a locus. In the context of diseases caused by a dominant mutation, the selective DNA methylation of the mutant allele could be used to repress its expression but retain the functionality of the normal gene.</p><p><strong>Results: </strong>To set up allele-specific targeted DNA methylation, target regions were selected from hypomethylated CGIs bearing a heterozygous SNP in their promoters in the HEK293 cell line. We aimed at delivering maximum DNA methylation with highest allelic specificity in the targeted regions. Placing SNPs in the PAM or seed regions of the sgRNA, we designed 24 different sgRNAs targeting single alleles in 14 different gene loci. We achieved efficient ASM in multiple cases, such as ISG15, MSH6, GPD1L, MRPL52, PDE8A, NARF, DAP3, and GSPT1, which in best cases led to five to tenfold stronger average DNA methylation at the on-target allele and absolute differences in the DNA methylation gain at on- and off-target alleles of > 50%. In general, loci with the allele discriminatory SNP positioned in the PAM region showed higher success rate of ASM and better specificity. Highest DNA methylation was observed on day 3 after transfection followed by a gradual decline. In selected cases, ASM was stable up to 11 days in HEK293 cells and it led up to a 3.6-fold change in allelic expression ratios.</p><p><strong>Conclusions: </strong>We successfully delivered ASM at multiple genomic loci with high specificity, efficiency and stability. This form of super-specific epigenome editing could find applications in the treatment of diseases caused by dominant mutations, because it allows silencing of the mutant allele without repression of the expression of the normal allele thereby minimizing potential side-effects of the treatment.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"16 1","pages":"41"},"PeriodicalIF":3.9,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589950/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49684055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-19DOI: 10.1186/s13072-023-00513-7
Safia Mahabub Sauty, Krassimir Yankulov
Background: Classical studies on position effect variegation in Drosophila have demonstrated the existence of bi-modal Active/Silent state of the genes juxtaposed to heterochromatin. Later studies with irreversible methods for the detection of gene repression have revealed a similar phenomenon at the telomeres of Saccharomyces cerevisiae and other species. In this study, we used dual reporter constructs and a combination of reversible and non-reversible methods to present evidence for the different roles of PCNA and histone chaperones in the stability and the propagation of repressed states at the sub-telomeres of S. cerevisiae.
Results: We show position dependent transient repression or bi-modal expression of reporter genes at the VIIL sub-telomere. We also show that mutations in the replicative clamp POL30 (PCNA) or the deletion of the histone chaperone CAF1 or the RRM3 helicase lead to transient de-repression, while the deletion of the histone chaperone ASF1 causes a shift from transient de-repression to a bi-modal state of repression. We analyze the physical interaction of CAF1 and RRM3 with PCNA and discuss the implications of these findings for our understanding of the stability and transmission of the epigenetic state of the genes.
Conclusions: There are distinct modes of gene silencing, bi-modal and transient, at the sub-telomeres of S. cerevisiae. We characterise the roles of CAF1, RRM3 and ASF1 in these modes of gene repression. We suggest that the interpretations of past and future studies should consider the existence of the dissimilar states of gene silencing.
{"title":"Analyses of POL30 (PCNA) reveal positional effects in transient repression or bi-modal active/silent state at the sub-telomeres of S. cerevisiae.","authors":"Safia Mahabub Sauty, Krassimir Yankulov","doi":"10.1186/s13072-023-00513-7","DOIUrl":"10.1186/s13072-023-00513-7","url":null,"abstract":"<p><strong>Background: </strong>Classical studies on position effect variegation in Drosophila have demonstrated the existence of bi-modal Active/Silent state of the genes juxtaposed to heterochromatin. Later studies with irreversible methods for the detection of gene repression have revealed a similar phenomenon at the telomeres of Saccharomyces cerevisiae and other species. In this study, we used dual reporter constructs and a combination of reversible and non-reversible methods to present evidence for the different roles of PCNA and histone chaperones in the stability and the propagation of repressed states at the sub-telomeres of S. cerevisiae.</p><p><strong>Results: </strong>We show position dependent transient repression or bi-modal expression of reporter genes at the VIIL sub-telomere. We also show that mutations in the replicative clamp POL30 (PCNA) or the deletion of the histone chaperone CAF1 or the RRM3 helicase lead to transient de-repression, while the deletion of the histone chaperone ASF1 causes a shift from transient de-repression to a bi-modal state of repression. We analyze the physical interaction of CAF1 and RRM3 with PCNA and discuss the implications of these findings for our understanding of the stability and transmission of the epigenetic state of the genes.</p><p><strong>Conclusions: </strong>There are distinct modes of gene silencing, bi-modal and transient, at the sub-telomeres of S. cerevisiae. We characterise the roles of CAF1, RRM3 and ASF1 in these modes of gene repression. We suggest that the interpretations of past and future studies should consider the existence of the dissimilar states of gene silencing.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"16 1","pages":"40"},"PeriodicalIF":3.9,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10585736/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49684054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-16DOI: 10.1186/s13072-023-00514-6
Kevin C L Cheng, Jennifer M Frost, Francisco J Sánchez-Luque, Marta García-Canãdas, Darren Taylor, Wan R Yang, Branavy Irayanar, Swetha Sampath, Hemalvi Patani, Karl Agger, Kristian Helin, Gabriella Ficz, Kathleen H Burns, Adam Ewing, José L García-Pérez, Miguel R Branco
Background: Vitamin C (vitC) enhances the activity of 2-oxoglutarate-dependent dioxygenases, including TET enzymes, which catalyse DNA demethylation, and Jumonji-domain histone demethylases. The epigenetic remodelling promoted by vitC improves the efficiency of induced pluripotent stem cell derivation, and is required to attain a ground-state of pluripotency in embryonic stem cells (ESCs) that closely mimics the inner cell mass of the early blastocyst. However, genome-wide DNA and histone demethylation can lead to upregulation of transposable elements (TEs), and it is not known how vitC addition in culture media affects TE expression in pluripotent stem cells.
Results: Here we show that vitC increases the expression of several TE families, including evolutionarily young LINE-1 (L1) elements, in mouse ESCs. We find that TET activity is dispensable for L1 upregulation, and that instead it occurs largely as a result of H3K9me3 loss mediated by KDM4A/C histone demethylases. Despite increased L1 levels, we did not detect increased somatic insertion rates in vitC-treated cells. Notably, treatment of human ESCs with vitC also increases L1 protein levels, albeit through a distinct, post-transcriptional mechanism.
Conclusion: VitC directly modulates the expression of mouse L1s and other TEs through epigenetic mechanisms, with potential for downstream effects related to the multiple emerging roles of L1s in cellular function.
{"title":"Vitamin C activates young LINE-1 elements in mouse embryonic stem cells via H3K9me3 demethylation.","authors":"Kevin C L Cheng, Jennifer M Frost, Francisco J Sánchez-Luque, Marta García-Canãdas, Darren Taylor, Wan R Yang, Branavy Irayanar, Swetha Sampath, Hemalvi Patani, Karl Agger, Kristian Helin, Gabriella Ficz, Kathleen H Burns, Adam Ewing, José L García-Pérez, Miguel R Branco","doi":"10.1186/s13072-023-00514-6","DOIUrl":"10.1186/s13072-023-00514-6","url":null,"abstract":"<p><strong>Background: </strong>Vitamin C (vitC) enhances the activity of 2-oxoglutarate-dependent dioxygenases, including TET enzymes, which catalyse DNA demethylation, and Jumonji-domain histone demethylases. The epigenetic remodelling promoted by vitC improves the efficiency of induced pluripotent stem cell derivation, and is required to attain a ground-state of pluripotency in embryonic stem cells (ESCs) that closely mimics the inner cell mass of the early blastocyst. However, genome-wide DNA and histone demethylation can lead to upregulation of transposable elements (TEs), and it is not known how vitC addition in culture media affects TE expression in pluripotent stem cells.</p><p><strong>Results: </strong>Here we show that vitC increases the expression of several TE families, including evolutionarily young LINE-1 (L1) elements, in mouse ESCs. We find that TET activity is dispensable for L1 upregulation, and that instead it occurs largely as a result of H3K9me3 loss mediated by KDM4A/C histone demethylases. Despite increased L1 levels, we did not detect increased somatic insertion rates in vitC-treated cells. Notably, treatment of human ESCs with vitC also increases L1 protein levels, albeit through a distinct, post-transcriptional mechanism.</p><p><strong>Conclusion: </strong>VitC directly modulates the expression of mouse L1s and other TEs through epigenetic mechanisms, with potential for downstream effects related to the multiple emerging roles of L1s in cellular function.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"16 1","pages":"39"},"PeriodicalIF":3.9,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10578016/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41240257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-10DOI: 10.1186/s13072-023-00512-8
Rachel H Klein, Paul S Knoepfler
Histone variant H3.3 plays novel roles in development as compared to canonical H3 proteins and is the most commonly mutated histone protein of any kind in human disease. Here we discuss how gene targeting studies of the two H3.3-coding genes H3f3a and H3f3b have provided important insights into H3.3 functions including in gametes as well as brain and lung development. Knockouts have also provided insights into the important roles of H3.3 in maintaining genomic stability and chromatin organization, processes that are also affected when H3.3 is mutated in human diseases such as pediatric tumors and neurodevelopmental syndromes. Overall, H3.3 is a unique histone linking development and disease via epigenomic machinery.
{"title":"Knockout tales: the versatile roles of histone H3.3 in development and disease.","authors":"Rachel H Klein, Paul S Knoepfler","doi":"10.1186/s13072-023-00512-8","DOIUrl":"10.1186/s13072-023-00512-8","url":null,"abstract":"<p><p>Histone variant H3.3 plays novel roles in development as compared to canonical H3 proteins and is the most commonly mutated histone protein of any kind in human disease. Here we discuss how gene targeting studies of the two H3.3-coding genes H3f3a and H3f3b have provided important insights into H3.3 functions including in gametes as well as brain and lung development. Knockouts have also provided insights into the important roles of H3.3 in maintaining genomic stability and chromatin organization, processes that are also affected when H3.3 is mutated in human diseases such as pediatric tumors and neurodevelopmental syndromes. Overall, H3.3 is a unique histone linking development and disease via epigenomic machinery.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"16 1","pages":"38"},"PeriodicalIF":3.9,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10563256/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41183987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-04DOI: 10.1186/s13072-023-00507-5
A Khan, A M Inkster, M S Peñaherrera, S King, S Kildea, T F Oberlander, D M Olson, C Vaillancourt, U Brain, E O Beraldo, A G Beristain, V L Clifton, G F Del Gobbo, W L Lam, G A S Metz, J W Y Ng, E M Price, J M Schuetz, V Yuan, É Portales-Casamar, W P Robinson
Background: Genome-wide DNA methylation (DNAme) profiling of the placenta with Illumina Infinium Methylation bead arrays is often used to explore the connections between in utero exposures, placental pathology, and fetal development. However, many technical and biological factors can lead to signals of DNAme variation between samples and between cohorts, and understanding and accounting for these factors is essential to ensure meaningful and replicable data analysis. Recently, "epiphenotyping" approaches have been developed whereby DNAme data can be used to impute information about phenotypic variables such as gestational age, sex, cell composition, and ancestry. These epiphenotypes offer avenues to compare phenotypic data across cohorts, and to understand how phenotypic variables relate to DNAme variability. However, the relationships between placental epiphenotyping variables and other technical and biological variables, and their application to downstream epigenome analyses, have not been well studied.
Results: Using DNAme data from 204 placentas across three cohorts, we applied the PlaNET R package to estimate epiphenotypes gestational age, ancestry, and cell composition in these samples. PlaNET ancestry estimates were highly correlated with independent polymorphic ancestry-informative markers, and epigenetic gestational age, on average, was estimated within 4 days of reported gestational age, underscoring the accuracy of these tools. Cell composition estimates varied both within and between cohorts, as well as over very long placental processing times. Interestingly, the ratio of cytotrophoblast to syncytiotrophoblast proportion decreased with increasing gestational age, and differed slightly by both maternal ethnicity (lower in white vs. non-white) and genetic ancestry (lower in higher probability European ancestry). The cohort of origin and cytotrophoblast proportion were the largest drivers of DNAme variation in this dataset, based on their associations with the first principal component.
Conclusions: This work confirms that cohort, array (technical) batch, cell type proportion, self-reported ethnicity, genetic ancestry, and biological sex are important variables to consider in any analyses of Illumina DNAme data. We further demonstrate the specific utility of epiphenotyping tools developed for use with placental DNAme data, and show that these variables (i) provide an independent check of clinically obtained data and (ii) provide a robust approach to compare variables across different datasets. Finally, we present a general framework for the processing and analysis of placental DNAme data, integrating the epiphenotype variables discussed here.
{"title":"The application of epiphenotyping approaches to DNA methylation array studies of the human placenta.","authors":"A Khan, A M Inkster, M S Peñaherrera, S King, S Kildea, T F Oberlander, D M Olson, C Vaillancourt, U Brain, E O Beraldo, A G Beristain, V L Clifton, G F Del Gobbo, W L Lam, G A S Metz, J W Y Ng, E M Price, J M Schuetz, V Yuan, É Portales-Casamar, W P Robinson","doi":"10.1186/s13072-023-00507-5","DOIUrl":"10.1186/s13072-023-00507-5","url":null,"abstract":"<p><strong>Background: </strong>Genome-wide DNA methylation (DNAme) profiling of the placenta with Illumina Infinium Methylation bead arrays is often used to explore the connections between in utero exposures, placental pathology, and fetal development. However, many technical and biological factors can lead to signals of DNAme variation between samples and between cohorts, and understanding and accounting for these factors is essential to ensure meaningful and replicable data analysis. Recently, \"epiphenotyping\" approaches have been developed whereby DNAme data can be used to impute information about phenotypic variables such as gestational age, sex, cell composition, and ancestry. These epiphenotypes offer avenues to compare phenotypic data across cohorts, and to understand how phenotypic variables relate to DNAme variability. However, the relationships between placental epiphenotyping variables and other technical and biological variables, and their application to downstream epigenome analyses, have not been well studied.</p><p><strong>Results: </strong>Using DNAme data from 204 placentas across three cohorts, we applied the PlaNET R package to estimate epiphenotypes gestational age, ancestry, and cell composition in these samples. PlaNET ancestry estimates were highly correlated with independent polymorphic ancestry-informative markers, and epigenetic gestational age, on average, was estimated within 4 days of reported gestational age, underscoring the accuracy of these tools. Cell composition estimates varied both within and between cohorts, as well as over very long placental processing times. Interestingly, the ratio of cytotrophoblast to syncytiotrophoblast proportion decreased with increasing gestational age, and differed slightly by both maternal ethnicity (lower in white vs. non-white) and genetic ancestry (lower in higher probability European ancestry). The cohort of origin and cytotrophoblast proportion were the largest drivers of DNAme variation in this dataset, based on their associations with the first principal component.</p><p><strong>Conclusions: </strong>This work confirms that cohort, array (technical) batch, cell type proportion, self-reported ethnicity, genetic ancestry, and biological sex are important variables to consider in any analyses of Illumina DNAme data. We further demonstrate the specific utility of epiphenotyping tools developed for use with placental DNAme data, and show that these variables (i) provide an independent check of clinically obtained data and (ii) provide a robust approach to compare variables across different datasets. Finally, we present a general framework for the processing and analysis of placental DNAme data, integrating the epiphenotype variables discussed here.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"16 1","pages":"37"},"PeriodicalIF":3.9,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548571/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41177334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-28DOI: 10.1186/s13072-023-00511-9
Annalisa Izzo, Ipek Akol, Alejandro Villarreal, Shannon Lebel, Marta Garcia-Miralles, Arquimedes Cheffer, Patrick Bovio, Stefanie Heidrich, Tanja Vogel
Background: NPM1 is a phosphoprotein highly abundant in the nucleolus. However, additional nuclear functions have been attributed to NPM1, probably through interaction with other nuclear factors. DOT1L is one interaction partner of NPM1 that catalyzes methylation of histone H3 at lysine 79 (H3K79). DOT1L, playing functional roles in several biological processes, is known for its capability to organize and regulate chromatin. For example, DOT1L modulates DNA repeats expression within peri-nucleolar heterochromatin. NPM1 also affects peri-nucleolar heterochromatin spatial organization. However, it is unclear as of yet whether NPM1 and DOT1L functionally synergize to preserve nucleoli organization and genome stability, and generally, which molecular mechanisms would be involved.
Results: We characterized the nuclear function of NPM1 on peri-nucleolar heterochromatin organization. We show that (i) monomeric NPM1 interacts preferentially with DOT1L in the nucleus; (ii) NPM1 acts in concert with DOT1L to maintain each other's protein homeostasis; (iii) NPM1 depletion results in H3K79me2 upregulation and differential enrichment at chromatin binding genes including Ezh2; (iv) NPM1 and DOT1L modulate DNA repeats expression and peri-nucleolar heterochromatin organization via epigenetic mechanisms dependent on H3K27me3.
Conclusions: Our findings give insights into molecular mechanisms employed by NPM1 and DOT1L to regulate heterochromatin activity and structural organization around the nucleoli and shed light on one aspect of the complex role of both proteins in chromatin dynamics.
{"title":"Nucleophosmin 1 cooperates with the methyltransferase DOT1L to preserve peri-nucleolar heterochromatin organization by regulating H3K27me3 levels and DNA repeats expression.","authors":"Annalisa Izzo, Ipek Akol, Alejandro Villarreal, Shannon Lebel, Marta Garcia-Miralles, Arquimedes Cheffer, Patrick Bovio, Stefanie Heidrich, Tanja Vogel","doi":"10.1186/s13072-023-00511-9","DOIUrl":"10.1186/s13072-023-00511-9","url":null,"abstract":"<p><strong>Background: </strong>NPM1 is a phosphoprotein highly abundant in the nucleolus. However, additional nuclear functions have been attributed to NPM1, probably through interaction with other nuclear factors. DOT1L is one interaction partner of NPM1 that catalyzes methylation of histone H3 at lysine 79 (H3K79). DOT1L, playing functional roles in several biological processes, is known for its capability to organize and regulate chromatin. For example, DOT1L modulates DNA repeats expression within peri-nucleolar heterochromatin. NPM1 also affects peri-nucleolar heterochromatin spatial organization. However, it is unclear as of yet whether NPM1 and DOT1L functionally synergize to preserve nucleoli organization and genome stability, and generally, which molecular mechanisms would be involved.</p><p><strong>Results: </strong>We characterized the nuclear function of NPM1 on peri-nucleolar heterochromatin organization. We show that (i) monomeric NPM1 interacts preferentially with DOT1L in the nucleus; (ii) NPM1 acts in concert with DOT1L to maintain each other's protein homeostasis; (iii) NPM1 depletion results in H3K79me2 upregulation and differential enrichment at chromatin binding genes including Ezh2; (iv) NPM1 and DOT1L modulate DNA repeats expression and peri-nucleolar heterochromatin organization via epigenetic mechanisms dependent on H3K27me3.</p><p><strong>Conclusions: </strong>Our findings give insights into molecular mechanisms employed by NPM1 and DOT1L to regulate heterochromatin activity and structural organization around the nucleoli and shed light on one aspect of the complex role of both proteins in chromatin dynamics.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"16 1","pages":"36"},"PeriodicalIF":3.9,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10537513/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41167413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-26DOI: 10.1186/s13072-023-00509-3
Jia-Yi Hou, Ning Li, Jie Wang, Li-Juan Gao, Jia-Song Chang, Ji-Min Cao
Background: Blood-based tests have public appeal in screening cancers due to their minimally invasive nature, ability to integrate with other routine blood tests, and high compliance. This study aimed to investigate whether certain epigenetic modulation of peripheral blood mononuclear cells (PBMCs) could be a biomarker of colorectal cancer (CRC).
Results: Western blotting of histones in the PBMCs from 40 colorectal cancer patients and 40 healthy controls was performed to identify the crotonylation sites of proteins. The correlation of crotonylation with tumor staging and diagnostic efficacy were analyzed. Crotonylation of H2BK12 (H2BK12cr) was identified significantly upregulated in the PBMCs of CRC patients compared to healthy controls, and were closely related to distant metastasis (P = 0.0478) and late TNM stage (P = 0.0201). Receiver operator characteristic curve (ROC) analysis demonstrated that the area under curve (AUC) of H2BK12cr was 0.8488, the sensitivity was 70%, and the specificity was 92.5%. The H2BK12cr parameter significantly increased the diagnostic effectiveness of CRC compared with the commercial carcinoembryonic antigen assays.
Conclusions: The H2BK12cr level in PBMCs of CRC patients has a potential to be a biomarker for distinguishing CRC patients from healthy controls with the advantages of easy operation and high diagnostic efficacy.
{"title":"Histone crotonylation of peripheral blood mononuclear cells is a potential biomarker for diagnosis of colorectal cancer.","authors":"Jia-Yi Hou, Ning Li, Jie Wang, Li-Juan Gao, Jia-Song Chang, Ji-Min Cao","doi":"10.1186/s13072-023-00509-3","DOIUrl":"10.1186/s13072-023-00509-3","url":null,"abstract":"<p><strong>Background: </strong>Blood-based tests have public appeal in screening cancers due to their minimally invasive nature, ability to integrate with other routine blood tests, and high compliance. This study aimed to investigate whether certain epigenetic modulation of peripheral blood mononuclear cells (PBMCs) could be a biomarker of colorectal cancer (CRC).</p><p><strong>Results: </strong>Western blotting of histones in the PBMCs from 40 colorectal cancer patients and 40 healthy controls was performed to identify the crotonylation sites of proteins. The correlation of crotonylation with tumor staging and diagnostic efficacy were analyzed. Crotonylation of H2BK12 (H2BK12cr) was identified significantly upregulated in the PBMCs of CRC patients compared to healthy controls, and were closely related to distant metastasis (P = 0.0478) and late TNM stage (P = 0.0201). Receiver operator characteristic curve (ROC) analysis demonstrated that the area under curve (AUC) of H2BK12cr was 0.8488, the sensitivity was 70%, and the specificity was 92.5%. The H2BK12cr parameter significantly increased the diagnostic effectiveness of CRC compared with the commercial carcinoembryonic antigen assays.</p><p><strong>Conclusions: </strong>The H2BK12cr level in PBMCs of CRC patients has a potential to be a biomarker for distinguishing CRC patients from healthy controls with the advantages of easy operation and high diagnostic efficacy.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"16 1","pages":"35"},"PeriodicalIF":3.9,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521402/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41152941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Despite well-documented effects on human health, the action modes of environmental pollutants are incompletely understood. Although transcriptome-based approaches are widely used to predict associations between chemicals and disorders, the molecular cues regulating pollutant-derived gene expression changes remain unclear. Therefore, we developed a data-mining approach, termed "DAR-ChIPEA," to identify transcription factors (TFs) playing pivotal roles in the action modes of pollutants.
Methods: Large-scale public ChIP-Seq data (human, n = 15,155; mouse, n = 13,156) were used to predict TFs that are enriched in the pollutant-induced differentially accessible genomic regions (DARs) obtained from epigenome analyses (ATAC-Seq). The resultant pollutant-TF matrices were then cross-referenced to a repository of TF-disorder associations to account for pollutant modes of action. We subsequently evaluated the performance of the proposed method using a chemical perturbation data set to compare the outputs of the DAR-ChIPEA and our previously developed differentially expressed gene (DEG)-ChIPEA methods using pollutant-induced DEGs as input. We then adopted the proposed method to predict disease-associated mechanisms triggered by pollutants.
Results: The proposed approach outperformed other methods using the area under the receiver operating characteristic curve score. The mean score of the proposed DAR-ChIPEA was significantly higher than that of our previously described DEG-ChIPEA (0.7287 vs. 0.7060; Q = 5.278 × 10-42; two-tailed Wilcoxon rank-sum test). The proposed approach further predicted TF-driven modes of action upon pollutant exposure, indicating that (1) TFs regulating Th1/2 cell homeostasis are integral in the pathophysiology of tributyltin-induced allergic disorders; (2) fine particulates (PM2.5) inhibit the binding of C/EBPs, Rela, and Spi1 to the genome, thereby perturbing normal blood cell differentiation and leading to immune dysfunction; and (3) lead induces fatty liver by disrupting the normal regulation of lipid metabolism by altering hepatic circadian rhythms.
Conclusions: Highlighting genome-wide chromatin change upon pollutant exposure to elucidate the epigenetic landscape of pollutant responses outperformed our previously described method that focuses on gene-adjacent domains only. Our approach has the potential to reveal pivotal TFs that mediate deleterious effects of pollutants, thereby facilitating the development of strategies to mitigate damage from environmental pollution.
{"title":"Elucidating disease-associated mechanisms triggered by pollutants via the epigenetic landscape using large-scale ChIP-Seq data.","authors":"Zhaonan Zou, Yuka Yoshimura, Yoshihiro Yamanishi, Shinya Oki","doi":"10.1186/s13072-023-00510-w","DOIUrl":"10.1186/s13072-023-00510-w","url":null,"abstract":"<p><strong>Background: </strong>Despite well-documented effects on human health, the action modes of environmental pollutants are incompletely understood. Although transcriptome-based approaches are widely used to predict associations between chemicals and disorders, the molecular cues regulating pollutant-derived gene expression changes remain unclear. Therefore, we developed a data-mining approach, termed \"DAR-ChIPEA,\" to identify transcription factors (TFs) playing pivotal roles in the action modes of pollutants.</p><p><strong>Methods: </strong>Large-scale public ChIP-Seq data (human, n = 15,155; mouse, n = 13,156) were used to predict TFs that are enriched in the pollutant-induced differentially accessible genomic regions (DARs) obtained from epigenome analyses (ATAC-Seq). The resultant pollutant-TF matrices were then cross-referenced to a repository of TF-disorder associations to account for pollutant modes of action. We subsequently evaluated the performance of the proposed method using a chemical perturbation data set to compare the outputs of the DAR-ChIPEA and our previously developed differentially expressed gene (DEG)-ChIPEA methods using pollutant-induced DEGs as input. We then adopted the proposed method to predict disease-associated mechanisms triggered by pollutants.</p><p><strong>Results: </strong>The proposed approach outperformed other methods using the area under the receiver operating characteristic curve score. The mean score of the proposed DAR-ChIPEA was significantly higher than that of our previously described DEG-ChIPEA (0.7287 vs. 0.7060; Q = 5.278 × 10<sup>-42</sup>; two-tailed Wilcoxon rank-sum test). The proposed approach further predicted TF-driven modes of action upon pollutant exposure, indicating that (1) TFs regulating Th1/2 cell homeostasis are integral in the pathophysiology of tributyltin-induced allergic disorders; (2) fine particulates (PM<sub>2.5</sub>) inhibit the binding of C/EBPs, Rela, and Spi1 to the genome, thereby perturbing normal blood cell differentiation and leading to immune dysfunction; and (3) lead induces fatty liver by disrupting the normal regulation of lipid metabolism by altering hepatic circadian rhythms.</p><p><strong>Conclusions: </strong>Highlighting genome-wide chromatin change upon pollutant exposure to elucidate the epigenetic landscape of pollutant responses outperformed our previously described method that focuses on gene-adjacent domains only. Our approach has the potential to reveal pivotal TFs that mediate deleterious effects of pollutants, thereby facilitating the development of strategies to mitigate damage from environmental pollution.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"16 1","pages":"34"},"PeriodicalIF":3.9,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518938/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41155539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-23DOI: 10.1186/s13072-023-00508-4
Jun Wang, Yanqin Niu, Ming Yang, Lirong Shu, Hongxian Wang, Xiaoqian Wu, Yaqin He, Peng Chen, Guocheng Zhong, Zhixiong Tang, Shasha Zhang, Qianwen Guo, Yun Wang, Li Yu, Deming Gou
Background: Breast cancer, the most common malignancy in women worldwide, has been proven to have both altered plasma cell-free DNA (cfDNA) methylation and fragmentation profiles. Nevertheless, simultaneously detecting both of them for breast cancer diagnosis has never been reported. Moreover, although fragmentation pattern of cfDNA is determined by nuclease digestion of chromatin, structure of which may be affected by DNA methylation, whether cfDNA methylation and fragmentation are biologically related or not still remains unclear.
Methods: Improved cfMeDIP-seq were utilized to characterize both cfDNA methylation and fragmentation profiles in 49 plasma samples from both healthy individuals and patients with breast cancer. The feasibility of using cfDNA fragmentation profile in hypo- and hypermethylated regions as diagnostic markers for breast cancer was evaluated.
Results: Mean size of cfDNA fragments (100-220 bp) mapped to hypomethylated regions decreased more in patients with breast cancer (4.60 bp, 172.33 to 167.73 bp) than in healthy individuals (2.87 bp, 174.54 to 171.67 bp). Furthermore, proportion of short cfDNA fragments (100-150 bp) in hypomethylated regions when compared with it in hypermethylated regions was found to increase more in patients with breast cancer in two independent discovery cohort. The feasibility of using abnormality of short cfDNA fragments ratio in hypomethylated genomic regions for breast cancer diagnosis in validation cohort was evaluated. 7 out of 11 patients were detected as having breast cancer (63.6% sensitivity), whereas no healthy individuals were mis-detected (100% specificity).
Conclusion: We identified enriched short cfDNA fragments after 5mC-immunoprecipitation (IP) in patients with breast cancer, and demonstrated the enriched short cfDNA fragments might originated from hypomethylated genomic regions. Furthermore, we proved the feasibility of using differentially methylated regions (DMRs)-dependent cfDNA fragmentation profile for breast cancer diagnosis.
{"title":"Altered cfDNA fragmentation profile in hypomethylated regions as diagnostic markers in breast cancer.","authors":"Jun Wang, Yanqin Niu, Ming Yang, Lirong Shu, Hongxian Wang, Xiaoqian Wu, Yaqin He, Peng Chen, Guocheng Zhong, Zhixiong Tang, Shasha Zhang, Qianwen Guo, Yun Wang, Li Yu, Deming Gou","doi":"10.1186/s13072-023-00508-4","DOIUrl":"10.1186/s13072-023-00508-4","url":null,"abstract":"<p><strong>Background: </strong>Breast cancer, the most common malignancy in women worldwide, has been proven to have both altered plasma cell-free DNA (cfDNA) methylation and fragmentation profiles. Nevertheless, simultaneously detecting both of them for breast cancer diagnosis has never been reported. Moreover, although fragmentation pattern of cfDNA is determined by nuclease digestion of chromatin, structure of which may be affected by DNA methylation, whether cfDNA methylation and fragmentation are biologically related or not still remains unclear.</p><p><strong>Methods: </strong>Improved cfMeDIP-seq were utilized to characterize both cfDNA methylation and fragmentation profiles in 49 plasma samples from both healthy individuals and patients with breast cancer. The feasibility of using cfDNA fragmentation profile in hypo- and hypermethylated regions as diagnostic markers for breast cancer was evaluated.</p><p><strong>Results: </strong>Mean size of cfDNA fragments (100-220 bp) mapped to hypomethylated regions decreased more in patients with breast cancer (4.60 bp, 172.33 to 167.73 bp) than in healthy individuals (2.87 bp, 174.54 to 171.67 bp). Furthermore, proportion of short cfDNA fragments (100-150 bp) in hypomethylated regions when compared with it in hypermethylated regions was found to increase more in patients with breast cancer in two independent discovery cohort. The feasibility of using abnormality of short cfDNA fragments ratio in hypomethylated genomic regions for breast cancer diagnosis in validation cohort was evaluated. 7 out of 11 patients were detected as having breast cancer (63.6% sensitivity), whereas no healthy individuals were mis-detected (100% specificity).</p><p><strong>Conclusion: </strong>We identified enriched short cfDNA fragments after 5mC-immunoprecipitation (IP) in patients with breast cancer, and demonstrated the enriched short cfDNA fragments might originated from hypomethylated genomic regions. Furthermore, we proved the feasibility of using differentially methylated regions (DMRs)-dependent cfDNA fragmentation profile for breast cancer diagnosis.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"16 1","pages":"33"},"PeriodicalIF":3.9,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10517480/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41162102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-11DOI: 10.1186/s13072-023-00506-6
Xue-Hong Liu, Zhun Liu, Ze-Hui Ren, Hong-Xuan Chen, Ying Zhang, Zhang Zhang, Nan Cao, Guan-Zheng Luo
Background: Cardiomyocyte growth and differentiation rely on precise gene expression regulation, with epigenetic modifications emerging as key players in this intricate process. Among these modifications, N6-methyladenosine (m6A) stands out as one of the most prevalent modifications on mRNA, exerting influence over mRNA metabolism and gene expression. However, the specific function of m6A in cardiomyocyte differentiation remains poorly understood.
Results: We investigated the relationship between m6A modification and cardiomyocyte differentiation by conducting a comprehensive profiling of m6A dynamics during the transition from pluripotent stem cells to cardiomyocytes. Our findings reveal that while the overall m6A modification level remains relatively stable, the m6A levels of individual genes undergo significant changes throughout cardiomyocyte differentiation. We discovered the correlation between alterations in chromatin accessibility and the binding capabilities of m6A writers, erasers, and readers. The changes in chromatin accessibility influence the recruitment and activity of m6A regulatory proteins, thereby impacting the levels of m6A modification on specific mRNA transcripts.
Conclusion: Our data demonstrate that the coordinated dynamics of m6A modification and chromatin accessibility are prominent during the cardiomyocyte differentiation.
{"title":"Co-effects of m6A and chromatin accessibility dynamics in the regulation of cardiomyocyte differentiation.","authors":"Xue-Hong Liu, Zhun Liu, Ze-Hui Ren, Hong-Xuan Chen, Ying Zhang, Zhang Zhang, Nan Cao, Guan-Zheng Luo","doi":"10.1186/s13072-023-00506-6","DOIUrl":"10.1186/s13072-023-00506-6","url":null,"abstract":"<p><strong>Background: </strong>Cardiomyocyte growth and differentiation rely on precise gene expression regulation, with epigenetic modifications emerging as key players in this intricate process. Among these modifications, N6-methyladenosine (m6A) stands out as one of the most prevalent modifications on mRNA, exerting influence over mRNA metabolism and gene expression. However, the specific function of m6A in cardiomyocyte differentiation remains poorly understood.</p><p><strong>Results: </strong>We investigated the relationship between m6A modification and cardiomyocyte differentiation by conducting a comprehensive profiling of m6A dynamics during the transition from pluripotent stem cells to cardiomyocytes. Our findings reveal that while the overall m6A modification level remains relatively stable, the m6A levels of individual genes undergo significant changes throughout cardiomyocyte differentiation. We discovered the correlation between alterations in chromatin accessibility and the binding capabilities of m6A writers, erasers, and readers. The changes in chromatin accessibility influence the recruitment and activity of m6A regulatory proteins, thereby impacting the levels of m6A modification on specific mRNA transcripts.</p><p><strong>Conclusion: </strong>Our data demonstrate that the coordinated dynamics of m6A modification and chromatin accessibility are prominent during the cardiomyocyte differentiation.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"16 1","pages":"32"},"PeriodicalIF":3.9,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10416456/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10051205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}