首页 > 最新文献

Epigenetics & Chromatin最新文献

英文 中文
Epigenetic control of dental stem cells: progress and prospects in multidirectional differentiation. 牙干细胞的表观遗传调控:多向分化研究进展与展望。
IF 4.2 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-12-03 DOI: 10.1186/s13072-024-00563-5
Yan Li, Xinwei Guo, Hua Yao, Zhimin Zhang, Hongyan Zhao

Dental stem cells, with their exceptional proliferative capacity and multidirectional differentiation potential, hold significant promise for dental and oral tissue regeneration. Epigenetic inheritance, which involves stable and heritable changes in gene expression and function without alterations to the DNA sequence, plays a critical role in numerous biological processes. Environmental factors are particularly influential in epigenetic inheritance, as variations in exposure can lead to changes in epigenetic modifications that subsequently impact gene expression. Epigenetic mechanisms are widely involved in processes such as bone homeostasis, embryogenesis, stem cell fate determination, and disease development. Recently, the epigenetic regulation of dental stem cells has attracted considerable research attention. This paper reviews studies focused on the epigenetic mechanisms governing the multidirectional differentiation of dental stem cells.

牙干细胞以其独特的增殖能力和多向分化潜力,在口腔和口腔组织再生中具有重要的应用前景。表观遗传是指在不改变DNA序列的情况下,基因表达和功能发生稳定和可遗传的变化,在许多生物过程中起着至关重要的作用。环境因素对表观遗传尤其有影响,因为暴露的变化可导致表观遗传修饰的变化,从而影响基因表达。表观遗传机制广泛涉及骨稳态、胚胎发生、干细胞命运决定和疾病发展等过程。近年来,牙干细胞的表观遗传调控引起了广泛的关注。本文就牙干细胞多向分化的表观遗传机制的研究进展进行综述。
{"title":"Epigenetic control of dental stem cells: progress and prospects in multidirectional differentiation.","authors":"Yan Li, Xinwei Guo, Hua Yao, Zhimin Zhang, Hongyan Zhao","doi":"10.1186/s13072-024-00563-5","DOIUrl":"10.1186/s13072-024-00563-5","url":null,"abstract":"<p><p>Dental stem cells, with their exceptional proliferative capacity and multidirectional differentiation potential, hold significant promise for dental and oral tissue regeneration. Epigenetic inheritance, which involves stable and heritable changes in gene expression and function without alterations to the DNA sequence, plays a critical role in numerous biological processes. Environmental factors are particularly influential in epigenetic inheritance, as variations in exposure can lead to changes in epigenetic modifications that subsequently impact gene expression. Epigenetic mechanisms are widely involved in processes such as bone homeostasis, embryogenesis, stem cell fate determination, and disease development. Recently, the epigenetic regulation of dental stem cells has attracted considerable research attention. This paper reviews studies focused on the epigenetic mechanisms governing the multidirectional differentiation of dental stem cells.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"17 1","pages":"37"},"PeriodicalIF":4.2,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613947/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142773737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A polycomb group protein EED epigenetically regulates responses in lipopolysaccharide tolerized macrophages. 多梳蛋白EED通过表观遗传调控脂多糖耐受巨噬细胞的反应。
IF 4.2 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-11-29 DOI: 10.1186/s13072-024-00562-6
Atsadang Boonmee, Salisa Benjaskulluecha, Patipark Kueanjinda, Benjawan Wongprom, Thitiporn Pattarakankul, Kittitach Sri-Ngern-Ngam, Supawadee Umthong, Junichiro Takano, Haruhiko Koseki, Tanapat Palaga

Background: To avoid exaggerated inflammation, innate immune cells adapt to become hypo-responsive or "tolerance" in response to successive exposure to stimuli, which is a part of innate immune memory. Polycomb repressive complex 2 (PRC2) mediates the transcriptional repression by catalyzing histone H3 lysine 27 trimethylation (H3K27me3) but little is known about its role in lipopolysaccharide (LPS)-induced tolerance in macrophages.

Result: We examined the unexplored roles of EED, a component of the PRC2, in LPS tolerant macrophages. In Eed KO macrophages, significant reduction in H3K27me3 and increased active histone mark, H3K27ac, was observed. Eed KO macrophages exhibited dampened pro-inflammatory cytokine productions (TNF-α and IL-6) while increasing non-tolerizable genes upon LPS tolerance. Pharmacological inhibition of EED also reduced TNF-α and IL-6 during LPS tolerance. Mechanistically, LPS tolerized Eed KO macrophages failed to increase glycolytic activity. RNA-Seq analyses revealed that the hallmarks of hypoxia, TGF-β, and Wnt/β-catenin signaling were enriched in LPS tolerized Eed KO macrophages. Among the upregulated genes, the promoter of Runx3 was found to be associated with EED. Silencing Runx3 in Eed KO macrophages partially rescued the dampened pro-inflammatory response during LPS tolerance. Enrichment of H3K27me3 was decreased in a subset of genes that are upregulated in Eed KO LPS tolerized macrophages, indicating the direct regulatory roles of PRC2 on such genes. Motif enrichment analysis identified the ETS family transcription factor binding sites in the absence of EED in LPS tolerized macrophages.

Conclusion: Our results provided mechanistic insight into how the PRC2 via EED regulates LPS tolerance in macrophages by epigenetically silencing genes that play a crucial role during LPS tolerance such as those of the TGF-β/Runx3 axis.

背景:为了避免过度的炎症,先天免疫细胞在连续暴露于刺激时适应为低反应或“耐受”,这是先天免疫记忆的一部分。Polycomb suppression complex 2 (PRC2)通过催化组蛋白H3赖氨酸27三甲基化(H3K27me3)介导转录抑制,但其在巨噬细胞脂多糖(LPS)诱导的耐受中的作用尚不清楚。结果:我们研究了PRC2的一个组成部分EED在LPS耐受巨噬细胞中的作用。在Eed KO巨噬细胞中,观察到H3K27me3显著降低,活性组蛋白标记H3K27ac升高。Eed KO巨噬细胞表现出抑制促炎细胞因子(TNF-α和IL-6)的产生,同时增加LPS耐受的不耐受基因。在LPS耐受期间,EED的药理抑制也降低了TNF-α和IL-6。从机制上讲,LPS耐受的Eed KO巨噬细胞无法增加糖酵解活性。RNA-Seq分析显示,在LPS耐受的Eed KO巨噬细胞中,缺氧、TGF-β和Wnt/β-catenin信号通路的标志丰富。在上调的基因中,Runx3的启动子被发现与EED相关。在LPS耐受期间,在Eed KO巨噬细胞中沉默Runx3部分地恢复了被抑制的促炎反应。在Eed KO LPS耐受巨噬细胞中上调的基因亚群中,H3K27me3的富集减少,表明PRC2对这些基因具有直接调节作用。Motif富集分析在LPS耐受的巨噬细胞中发现了ETS家族转录因子结合位点。结论:我们的研究结果提供了PRC2通过EED调控巨噬细胞LPS耐受的机制,通过表观遗传沉默在LPS耐受过程中起关键作用的基因,如TGF-β/Runx3轴。
{"title":"A polycomb group protein EED epigenetically regulates responses in lipopolysaccharide tolerized macrophages.","authors":"Atsadang Boonmee, Salisa Benjaskulluecha, Patipark Kueanjinda, Benjawan Wongprom, Thitiporn Pattarakankul, Kittitach Sri-Ngern-Ngam, Supawadee Umthong, Junichiro Takano, Haruhiko Koseki, Tanapat Palaga","doi":"10.1186/s13072-024-00562-6","DOIUrl":"10.1186/s13072-024-00562-6","url":null,"abstract":"<p><strong>Background: </strong>To avoid exaggerated inflammation, innate immune cells adapt to become hypo-responsive or \"tolerance\" in response to successive exposure to stimuli, which is a part of innate immune memory. Polycomb repressive complex 2 (PRC2) mediates the transcriptional repression by catalyzing histone H3 lysine 27 trimethylation (H3K27me3) but little is known about its role in lipopolysaccharide (LPS)-induced tolerance in macrophages.</p><p><strong>Result: </strong>We examined the unexplored roles of EED, a component of the PRC2, in LPS tolerant macrophages. In Eed KO macrophages, significant reduction in H3K27me3 and increased active histone mark, H3K27ac, was observed. Eed KO macrophages exhibited dampened pro-inflammatory cytokine productions (TNF-α and IL-6) while increasing non-tolerizable genes upon LPS tolerance. Pharmacological inhibition of EED also reduced TNF-α and IL-6 during LPS tolerance. Mechanistically, LPS tolerized Eed KO macrophages failed to increase glycolytic activity. RNA-Seq analyses revealed that the hallmarks of hypoxia, TGF-β, and Wnt/β-catenin signaling were enriched in LPS tolerized Eed KO macrophages. Among the upregulated genes, the promoter of Runx3 was found to be associated with EED. Silencing Runx3 in Eed KO macrophages partially rescued the dampened pro-inflammatory response during LPS tolerance. Enrichment of H3K27me3 was decreased in a subset of genes that are upregulated in Eed KO LPS tolerized macrophages, indicating the direct regulatory roles of PRC2 on such genes. Motif enrichment analysis identified the ETS family transcription factor binding sites in the absence of EED in LPS tolerized macrophages.</p><p><strong>Conclusion: </strong>Our results provided mechanistic insight into how the PRC2 via EED regulates LPS tolerance in macrophages by epigenetically silencing genes that play a crucial role during LPS tolerance such as those of the TGF-β/Runx3 axis.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"17 1","pages":"36"},"PeriodicalIF":4.2,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11606203/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142755724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
VprBP regulates osteoclast differentiation via an epigenetic mechanism involving histone H2A phosphorylation. VprBP 通过涉及组蛋白 H2A 磷酸化的表观遗传机制调节破骨细胞分化。
IF 4.2 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-11-26 DOI: 10.1186/s13072-024-00561-7
Yonghwan Shin, Sungmin Kim, Tae-Ik Choi, Cheol-Hee Kim, Woojin An

Background: Bone remodeling is a continuous and balanced process which relies on the dynamic equilibrium between osteoclastic bone resorption and osteoblastic bone formation. During osteoclast differentiation, pro-osteoclastogenic and anti-osteoclastogenic genes are selectively targeted by positive and negative transcription regulators, respectively. VprBP, also known as DCAF1, is a recently identified kinase and plays an important role in driving epigenetic gene silencing and oncogenic transformation. However, nothing is currently known about a possible involvement of VprBP in signaling pathways that regulate other cellular processes.

Results: We demonstrate that VprBP stimulates RANKL-induced differentiation of osteoclast precursor cells (OCPs) into mature osteoclasts by suppressing the expression of anti-osteoclastogenic genes through phosphorylation of threonine 120 on histone H2A (H2AT120p). H2AT120p is critical for VprBP function, because abrogating VprBP kinase activity toward H2AT120 transcriptionally reactivates anti-osteoclastogenic genes and significantly attenuates osteoclast differentiation. Consistent with this notion, our in vivo studies established the importance of VprBP-mediated H2AT120p in low bone mass phenotypes and osteoporosis caused by overactive osteoclasts.

Conclusions: Our data reveal a previously unrecognized function of VprBP in supporting RANKL-induced osteoclast differentiation and the molecular mechanism underlying its action as a negative regulator of anti-osteoclastogenic genes.

背景:骨重塑是一个连续而平衡的过程,依赖于破骨细胞骨吸收和成骨细胞骨形成之间的动态平衡。在破骨细胞分化过程中,促破骨细胞生成基因和抗破骨细胞生成基因分别被阳性和阴性转录调节因子选择性地靶向。VprBP 又称 DCAF1,是最近发现的一种激酶,在驱动表观遗传基因沉默和致癌转化方面发挥着重要作用。然而,目前人们对 VprBP 可能参与调节其他细胞过程的信号通路还一无所知:结果:我们证明,VprBP 通过磷酸化组蛋白 H2A 上的苏氨酸 120(H2AT120p),抑制抗破骨细胞基因的表达,从而刺激 RANKL 诱导的破骨细胞前体细胞(OCPs)分化为成熟的破骨细胞。H2AT120p 对 VprBP 的功能至关重要,因为削弱 VprBP 激酶对 H2AT120 的活性会转录性地重新激活抗破骨细胞生成基因,并显著减弱破骨细胞的分化。与这一观点一致,我们的体内研究证实了 VprBP 介导的 H2AT120p 在破骨细胞过度活跃导致的低骨量表型和骨质疏松症中的重要性:我们的数据揭示了 VprBP 在支持 RANKL 诱导的破骨细胞分化过程中的一种之前未被发现的功能,以及其作为抗破骨细胞生成基因的负调控因子的分子机制。
{"title":"VprBP regulates osteoclast differentiation via an epigenetic mechanism involving histone H2A phosphorylation.","authors":"Yonghwan Shin, Sungmin Kim, Tae-Ik Choi, Cheol-Hee Kim, Woojin An","doi":"10.1186/s13072-024-00561-7","DOIUrl":"10.1186/s13072-024-00561-7","url":null,"abstract":"<p><strong>Background: </strong>Bone remodeling is a continuous and balanced process which relies on the dynamic equilibrium between osteoclastic bone resorption and osteoblastic bone formation. During osteoclast differentiation, pro-osteoclastogenic and anti-osteoclastogenic genes are selectively targeted by positive and negative transcription regulators, respectively. VprBP, also known as DCAF1, is a recently identified kinase and plays an important role in driving epigenetic gene silencing and oncogenic transformation. However, nothing is currently known about a possible involvement of VprBP in signaling pathways that regulate other cellular processes.</p><p><strong>Results: </strong>We demonstrate that VprBP stimulates RANKL-induced differentiation of osteoclast precursor cells (OCPs) into mature osteoclasts by suppressing the expression of anti-osteoclastogenic genes through phosphorylation of threonine 120 on histone H2A (H2AT120p). H2AT120p is critical for VprBP function, because abrogating VprBP kinase activity toward H2AT120 transcriptionally reactivates anti-osteoclastogenic genes and significantly attenuates osteoclast differentiation. Consistent with this notion, our in vivo studies established the importance of VprBP-mediated H2AT120p in low bone mass phenotypes and osteoporosis caused by overactive osteoclasts.</p><p><strong>Conclusions: </strong>Our data reveal a previously unrecognized function of VprBP in supporting RANKL-induced osteoclast differentiation and the molecular mechanism underlying its action as a negative regulator of anti-osteoclastogenic genes.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"17 1","pages":"35"},"PeriodicalIF":4.2,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590243/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142717190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FOSL1 is a key regulator of a super-enhancer driving TCOF1 expression in triple-negative breast cancer. FOSL1 是三阴性乳腺癌中驱动 TCOF1 表达的超级增强子的关键调节因子。
IF 4.2 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-11-10 DOI: 10.1186/s13072-024-00559-1
Qingling He, Jianyang Hu, Hao Huang, Tan Wu, Wenxiu Li, Saravanan Ramakrishnan, Yilin Pan, Kui Ming Chan, Liang Zhang, Mengsu Yang, Xin Wang, Y Rebecca Chin

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with an unmet clinical need, but its epigenetic regulation remains largely undefined. By performing multiomic profiling, we recently revealed distinct super-enhancer (SE) patterns in different subtypes of breast cancer and identified a number of TNBC-specific SEs that drive oncogene expression. One of these SEs, TCOF1 SE, was discovered to play an important oncogenic role in TNBC. However, the molecular mechanisms by which TCOF1 SE promotes the expression of the TCOF1 gene remain to be elucidated. Here, by using combinatorial approaches of DNA pull-down assay, bioinformatics analysis and functional studies, we identified FOSL1 as a key transcription factor that binds to TCOF1 SE and drives its overexpression. shRNA-mediated depletion of FOSL1 results in significant downregulation of TCOF1 mRNA and protein levels. Using a dual-luciferase reporter assay and ChIP-qPCR, we showed that binding of FOSL1 to TCOF1 SE promotes the transcription of TCOF1 in TNBC cells. Importantly, our data demonstrated that overexpression of FOSL1 drives the activation of TCOF1 SE. Lastly, depletion of FOSL1 inhibits tumor spheroid growth and stemness properties of TNBC cells. Taken together, these findings uncover the key epigenetic role of FOSL1 and highlight the potential of targeting the FOSL1-TCOF1 axis for TNBC treatment.

三阴性乳腺癌(TNBC)是一种侵袭性乳腺癌亚型,其临床需求尚未得到满足,但其表观遗传调控在很大程度上仍未确定。通过多组学分析,我们最近揭示了不同亚型乳腺癌中不同的超级增强子(SE)模式,并确定了一些能驱动癌基因表达的 TNBC 特异性 SE。其中一个SE,即TCOF1 SE,被发现在TNBC中起着重要的致癌作用。然而,TCOF1 SE 促进 TCOF1 基因表达的分子机制仍有待阐明。在这里,我们通过DNA牵引试验、生物信息学分析和功能研究等组合方法,确定了FOSL1是与TCOF1 SE结合并驱动其过度表达的关键转录因子。利用双荧光素酶报告分析和 ChIP-qPCR 技术,我们发现 FOSL1 与 TCOF1 SE 的结合促进了 TNBC 细胞中 TCOF1 的转录。重要的是,我们的数据表明 FOSL1 的过表达会驱动 TCOF1 SE 的活化。最后,消耗FOSL1可抑制TNBC细胞的肿瘤球状生长和干性特性。综上所述,这些研究结果揭示了FOSL1的关键表观遗传作用,并强调了靶向FOSL1-TCOF1轴治疗TNBC的潜力。
{"title":"FOSL1 is a key regulator of a super-enhancer driving TCOF1 expression in triple-negative breast cancer.","authors":"Qingling He, Jianyang Hu, Hao Huang, Tan Wu, Wenxiu Li, Saravanan Ramakrishnan, Yilin Pan, Kui Ming Chan, Liang Zhang, Mengsu Yang, Xin Wang, Y Rebecca Chin","doi":"10.1186/s13072-024-00559-1","DOIUrl":"10.1186/s13072-024-00559-1","url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with an unmet clinical need, but its epigenetic regulation remains largely undefined. By performing multiomic profiling, we recently revealed distinct super-enhancer (SE) patterns in different subtypes of breast cancer and identified a number of TNBC-specific SEs that drive oncogene expression. One of these SEs, TCOF1 SE, was discovered to play an important oncogenic role in TNBC. However, the molecular mechanisms by which TCOF1 SE promotes the expression of the TCOF1 gene remain to be elucidated. Here, by using combinatorial approaches of DNA pull-down assay, bioinformatics analysis and functional studies, we identified FOSL1 as a key transcription factor that binds to TCOF1 SE and drives its overexpression. shRNA-mediated depletion of FOSL1 results in significant downregulation of TCOF1 mRNA and protein levels. Using a dual-luciferase reporter assay and ChIP-qPCR, we showed that binding of FOSL1 to TCOF1 SE promotes the transcription of TCOF1 in TNBC cells. Importantly, our data demonstrated that overexpression of FOSL1 drives the activation of TCOF1 SE. Lastly, depletion of FOSL1 inhibits tumor spheroid growth and stemness properties of TNBC cells. Taken together, these findings uncover the key epigenetic role of FOSL1 and highlight the potential of targeting the FOSL1-TCOF1 axis for TNBC treatment.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"17 1","pages":"34"},"PeriodicalIF":4.2,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552368/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromatin structure and 3D architecture define the differential functions of PU.1 regulatory elements in blood cell lineages. 染色质结构和三维结构决定了 PU.1 调控元件在血细胞系中的不同功能。
IF 4.2 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-11-01 DOI: 10.1186/s13072-024-00556-4
Kevin Qiu, Duc C Vu, Leran Wang, Nicholas N Nguyen, Anna K Bookstaver, Katia Sol-Church, Hui Li, Thang N Dinh, Adam N Goldfarb, Daniel G Tenen, Bon Q Trinh

The precise spatiotemporal expression of the hematopoietic ETS transcription factor PU.1, a key determinant of hematopoietic cell fates, is tightly regulated at the chromatin level. However, how chromatin signatures are linked to this dynamic expression pattern across different blood cell lineages remains uncharacterized. Here, we performed an in-depth analysis of the relationships between gene expression, chromatin structure, 3D architecture, and trans-acting factors at PU.1 cis-regulatory elements (PCREs). By identifying phylogenetically conserved DNA elements within chromatin-accessible regions in primary human blood lineages, we discovered multiple novel candidate PCREs within the upstream region of the human PU.1 locus. A subset of these elements localizes within an 8-kb-wide cluster exhibiting enhancer features, including open chromatin, demethylated DNA, enriched enhancer histone marks, present enhancer RNAs, and PU.1 occupation, presumably mediating PU.1 autoregulation. Importantly, we revealed the presence of a common 35-kb-wide CTCF-flanked insulated neighborhood that contains the PCRE cluster (PCREC), forming a chromatin territory for lineage-specific and PCRE-mediated chromatin interactions. These include functional PCRE-promoter interactions in myeloid and B cells that are absent in erythroid and T cells. By correlating chromatin structure and 3D architecture with PU.1 expression in various lineages, we were able to attribute enhancer versus silencer functions to individual elements. Our findings provide mechanistic insights into the interplay between dynamic chromatin structure and 3D architecture in the chromatin regulation of PU.1 expression. This study lays crucial groundwork for additional experimental studies that validate and dissect the role of PCREs in epigenetic regulation of normal and malignant hematopoiesis.

造血 ETS 转录因子 PU.1 是决定造血细胞命运的关键因素,其精确的时空表达在染色质水平上受到严格调控。然而,染色质特征是如何与不同血细胞系的这种动态表达模式联系起来的,目前还没有定论。在这里,我们对基因表达、染色质结构、三维结构和 PU.1 顺式调控元件(PCREs)上的反式作用因子之间的关系进行了深入分析。通过鉴定人类主要血缘中染色质可进入区域内系统发育保守的DNA元件,我们在人类PU.1基因座的上游区域发现了多个新的候选PCRE。这些元件的一个子集定位在一个 8 kb 宽的集群内,该集群具有增强子特征,包括开放染色质、去甲基化 DNA、增强子组蛋白标记富集、存在增强子 RNA 和 PU.1 占位,可能介导了 PU.1 的自动调节。重要的是,我们发现了一个共同的 35 kb 宽的 CTCF 侧翼绝缘邻域,该邻域包含 PCRE 簇(PCREC),形成了一个染色质区域,可进行特异性和 PCRE 介导的染色质相互作用。这些相互作用包括骨髓细胞和 B 细胞中 PCRE 与启动子的功能性相互作用,而红细胞和 T 细胞中不存在这种相互作用。通过将染色质结构和三维结构与 PU.1 在不同细胞系中的表达相关联,我们能够将增强子和沉默子功能归因于单个元素。我们的研究结果为染色质动态结构和三维结构在染色质调控 PU.1 表达过程中的相互作用提供了机制性见解。这项研究为更多的实验研究奠定了重要基础,这些研究将验证和剖析 PCRE 在正常和恶性造血的表观遗传调控中的作用。
{"title":"Chromatin structure and 3D architecture define the differential functions of PU.1 regulatory elements in blood cell lineages.","authors":"Kevin Qiu, Duc C Vu, Leran Wang, Nicholas N Nguyen, Anna K Bookstaver, Katia Sol-Church, Hui Li, Thang N Dinh, Adam N Goldfarb, Daniel G Tenen, Bon Q Trinh","doi":"10.1186/s13072-024-00556-4","DOIUrl":"10.1186/s13072-024-00556-4","url":null,"abstract":"<p><p>The precise spatiotemporal expression of the hematopoietic ETS transcription factor PU.1, a key determinant of hematopoietic cell fates, is tightly regulated at the chromatin level. However, how chromatin signatures are linked to this dynamic expression pattern across different blood cell lineages remains uncharacterized. Here, we performed an in-depth analysis of the relationships between gene expression, chromatin structure, 3D architecture, and trans-acting factors at PU.1 cis-regulatory elements (PCREs). By identifying phylogenetically conserved DNA elements within chromatin-accessible regions in primary human blood lineages, we discovered multiple novel candidate PCREs within the upstream region of the human PU.1 locus. A subset of these elements localizes within an 8-kb-wide cluster exhibiting enhancer features, including open chromatin, demethylated DNA, enriched enhancer histone marks, present enhancer RNAs, and PU.1 occupation, presumably mediating PU.1 autoregulation. Importantly, we revealed the presence of a common 35-kb-wide CTCF-flanked insulated neighborhood that contains the PCRE cluster (PCREC), forming a chromatin territory for lineage-specific and PCRE-mediated chromatin interactions. These include functional PCRE-promoter interactions in myeloid and B cells that are absent in erythroid and T cells. By correlating chromatin structure and 3D architecture with PU.1 expression in various lineages, we were able to attribute enhancer versus silencer functions to individual elements. Our findings provide mechanistic insights into the interplay between dynamic chromatin structure and 3D architecture in the chromatin regulation of PU.1 expression. This study lays crucial groundwork for additional experimental studies that validate and dissect the role of PCREs in epigenetic regulation of normal and malignant hematopoiesis.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"17 1","pages":"33"},"PeriodicalIF":4.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531149/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
H3.3K122A results in a neomorphic phenotype in mouse embryonic stem cells. H3.3K122A会导致小鼠胚胎干细胞出现新变态表型。
IF 4.2 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-11-01 DOI: 10.1186/s13072-024-00557-3
Benjamin J Patty, Cailin Jordan, Santana M Lardo, Kris Troy, Sarah J Hainer

Canonical histone H3 and histone variant H3.3 are posttranslationally modified with the genomic distribution of these marks denoting different features and these modifications may influence transcription. While the majority of posttranslational modifications occur on histone tails, there are defined modifications within the globular domain, such as acetylation of H3K122/H3.3K122. To understand the function of the amino acid H3.3K122 in transcriptional regulation, we attempted to generate H3.3K122A mouse embryonic stem (mES) cells but were unsuccessful. Through multi-omic profiling of mutant cell lines harboring two or three of four H3.3 targeted alleles, we have uncovered that H3.3K122A is neomorphic and results in lethality. This is surprising as prior studies demonstrate H3.3-null mES cells are viable and pluripotent but exhibit a reduced differentiation capacity. Together, these studies have uncovered a novel dependence of a globular domain residue within H3.3 for viability and broadened our understanding of how histone variants contribute to transcription regulation and pluripotency in mES cells.

典型组蛋白 H3 和组蛋白变体 H3.3 经过翻译后修饰,这些标记在基因组中的分布显示出不同的特征,这些修饰可能会影响转录。虽然大多数翻译后修饰发生在组蛋白尾部,但在球状结构域内也有明确的修饰,如 H3K122/H3.3K122 的乙酰化。为了了解氨基酸 H3.3K122 在转录调控中的功能,我们尝试生成 H3.3K122A 小鼠胚胎干细胞(mES),但没有成功。通过对携带四种H3.3靶向等位基因中的两种或三种的突变细胞系进行多组学分析,我们发现H3.3K122A是新变态的,会导致致死。这令人惊讶,因为之前的研究表明,H3.3缺失的mES细胞具有活力和多能性,但分化能力下降。这些研究共同揭示了 H3.3 中一个球状结构域残基对活力的新依赖性,并拓宽了我们对组蛋白变体如何促进 mES 细胞转录调控和多能性的认识。
{"title":"H3.3K122A results in a neomorphic phenotype in mouse embryonic stem cells.","authors":"Benjamin J Patty, Cailin Jordan, Santana M Lardo, Kris Troy, Sarah J Hainer","doi":"10.1186/s13072-024-00557-3","DOIUrl":"10.1186/s13072-024-00557-3","url":null,"abstract":"<p><p>Canonical histone H3 and histone variant H3.3 are posttranslationally modified with the genomic distribution of these marks denoting different features and these modifications may influence transcription. While the majority of posttranslational modifications occur on histone tails, there are defined modifications within the globular domain, such as acetylation of H3K122/H3.3K122. To understand the function of the amino acid H3.3K122 in transcriptional regulation, we attempted to generate H3.3K122A mouse embryonic stem (mES) cells but were unsuccessful. Through multi-omic profiling of mutant cell lines harboring two or three of four H3.3 targeted alleles, we have uncovered that H3.3K122A is neomorphic and results in lethality. This is surprising as prior studies demonstrate H3.3-null mES cells are viable and pluripotent but exhibit a reduced differentiation capacity. Together, these studies have uncovered a novel dependence of a globular domain residue within H3.3 for viability and broadened our understanding of how histone variants contribute to transcription regulation and pluripotency in mES cells.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"17 1","pages":"32"},"PeriodicalIF":4.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531108/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenetic frontiers: miRNAs, long non-coding RNAs and nanomaterials are pioneering to cancer therapy. 表观遗传学前沿:miRNA、长非编码 RNA 和纳米材料是癌症治疗的先驱。
IF 4.2 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-10-16 DOI: 10.1186/s13072-024-00554-6
Rajkumar Prabhakaran, Rajkumar Thamarai, Sivabalan Sivasamy, Sivanesan Dhandayuthapani, Jyoti Batra, Chinnaperumal Kamaraj, Krishnasamy Karthik, Mohd Asif Shah, Saurav Mallik

Cancer has arisen from both genetic mutations and epigenetic changes, making epigenetics a crucial area of research for innovative cancer prevention and treatment strategies. This dual perspective has propelled epigenetics into the forefront of cancer research. This review highlights the important roles of DNA methylation, histone modifications and non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long non-coding RNAs, which are key regulators of cancer-related gene expression. It explores the potential of epigenetic-based therapies to revolutionize patient outcomes by selectively modulating specific epigenetic markers involved in tumorigenesis. The review examines promising epigenetic biomarkers for early cancer detection and prognosis. It also highlights recent progress in oligonucleotide-based therapies, including antisense oligonucleotides (ASOs) and antimiRs, to precisely modulate epigenetic processes. Furthermore, the concept of epigenetic editing is discussed, providing insight into the future role of precision medicine for cancer patients. The integration of nanomedicine into cancer therapy has been explored and offers innovative approaches to improve therapeutic efficacy. This comprehensive review of recent advances in epigenetic-based cancer therapy seeks to advance the field of precision oncology, ultimately culminating in improved patient outcomes in the fight against cancer.

癌症既源于基因突变,也源于表观遗传学变化,因此表观遗传学是创新癌症预防和治疗策略的重要研究领域。这种双重视角将表观遗传学推向了癌症研究的前沿。本综述强调了 DNA 甲基化、组蛋白修饰和非编码 RNA(ncRNA),尤其是微 RNA(miRNA)和长非编码 RNA 的重要作用,它们是癌症相关基因表达的关键调控因子。它探讨了基于表观遗传学的疗法通过选择性地调节参与肿瘤发生的特定表观遗传标记物来彻底改变患者预后的潜力。综述探讨了用于早期癌症检测和预后判断的前景看好的表观遗传生物标志物。它还重点介绍了基于寡核苷酸的疗法的最新进展,包括反义寡核苷酸(ASOs)和反转录因子(antimiRs),以精确调节表观遗传过程。此外,还讨论了表观遗传编辑的概念,为精准医疗在癌症患者中的未来作用提供了见解。纳米医学与癌症治疗的结合已得到探索,并为提高疗效提供了创新方法。这篇关于基于表观遗传的癌症疗法最新进展的综述力图推动精准肿瘤学领域的发展,最终改善患者的抗癌效果。
{"title":"Epigenetic frontiers: miRNAs, long non-coding RNAs and nanomaterials are pioneering to cancer therapy.","authors":"Rajkumar Prabhakaran, Rajkumar Thamarai, Sivabalan Sivasamy, Sivanesan Dhandayuthapani, Jyoti Batra, Chinnaperumal Kamaraj, Krishnasamy Karthik, Mohd Asif Shah, Saurav Mallik","doi":"10.1186/s13072-024-00554-6","DOIUrl":"https://doi.org/10.1186/s13072-024-00554-6","url":null,"abstract":"<p><p>Cancer has arisen from both genetic mutations and epigenetic changes, making epigenetics a crucial area of research for innovative cancer prevention and treatment strategies. This dual perspective has propelled epigenetics into the forefront of cancer research. This review highlights the important roles of DNA methylation, histone modifications and non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long non-coding RNAs, which are key regulators of cancer-related gene expression. It explores the potential of epigenetic-based therapies to revolutionize patient outcomes by selectively modulating specific epigenetic markers involved in tumorigenesis. The review examines promising epigenetic biomarkers for early cancer detection and prognosis. It also highlights recent progress in oligonucleotide-based therapies, including antisense oligonucleotides (ASOs) and antimiRs, to precisely modulate epigenetic processes. Furthermore, the concept of epigenetic editing is discussed, providing insight into the future role of precision medicine for cancer patients. The integration of nanomedicine into cancer therapy has been explored and offers innovative approaches to improve therapeutic efficacy. This comprehensive review of recent advances in epigenetic-based cancer therapy seeks to advance the field of precision oncology, ultimately culminating in improved patient outcomes in the fight against cancer.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"17 1","pages":"31"},"PeriodicalIF":4.2,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484394/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142478869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methylation patterns at the adjacent CpG sites within enhancers are a part of cell identity. 增强子内相邻 CpG 位点的甲基化模式是细胞特征的一部分。
IF 4.2 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-10-10 DOI: 10.1186/s13072-024-00555-5
Olga Taryma-Leśniak, Jan Bińkowski, Patrycja Kamila Przybylowicz, Katarzyna Ewa Sokolowska, Konrad Borowski, Tomasz Kazimierz Wojdacz

Background: It is generally accepted that methylation status of CpG sites spaced up to 50 bp apart is correlated, and accumulation of locally disordered methylation at adjacent CpG sites is involved in neoplastic transformation, acting in similar way as stochastic accumulation of mutations.

Results: We used EPIC microarray data from 596 samples, representing 12 healthy tissue and cell types, as well as 572 blood cancer specimens to analyze methylation status of adjacent CpG sites across human genome, and subsequently validated our findings with NGS and Sanger sequencing. Our analysis showed that there is a subset of the adjacent CpG sites in human genome, with cytosine at one CpG site methylated and the other devoid of methyl group. These loci map to enhancers that are targeted by families of transcription factors involved in cell differentiation. Moreover, our results suggest that the methylation at these loci differ between alleles within a cell, what allows for remarkable level of heterogeneity of methylation patterns. However, different types of specialized cells acquire only one specific and stable pattern of methylation at each of these loci and that pattern is to a large extent lost during neoplastic transformation.

Conclusions: We identified a substantial number of adjacent CpG loci in human genome that display remarkably stable and cell type specific methylation pattern. The methylation pattern at these loci appears to reflect different methylation of alleles in cells. Furthermore, we showed that changes of methylation status at those loci are likely to be involved in regulation of the activity of enhancers and contribute to neoplastic transformation.

背景:一般认为,相距不超过 50 bp 的 CpG 位点的甲基化状态是相关的,相邻 CpG 位点局部紊乱甲基化的累积参与了肿瘤的转化,其作用类似于突变的随机累积:我们利用来自 596 个样本(代表 12 种健康组织和细胞类型)和 572 个血癌样本的 EPIC 芯片数据分析了整个人类基因组中相邻 CpG 位点的甲基化状态,随后利用 NGS 和 Sanger 测序验证了我们的发现。我们的分析表明,人类基因组中有一部分相邻的 CpG 位点,其中一个 CpG 位点的胞嘧啶被甲基化,而另一个则没有甲基。这些位点映射到增强子上,而增强子是参与细胞分化的转录因子家族的靶标。此外,我们的研究结果表明,细胞内不同等位基因在这些位点的甲基化程度不同,这使得甲基化模式具有显著的异质性。然而,不同类型的特化细胞在这些位点上只能获得一种特定而稳定的甲基化模式,而且这种模式在肿瘤转化过程中会在很大程度上消失:结论:我们在人类基因组中发现了大量相邻的 CpG 位点,这些位点显示出非常稳定的细胞类型特异性甲基化模式。这些位点的甲基化模式似乎反映了细胞中等位基因的不同甲基化情况。此外,我们还发现这些位点甲基化状态的变化很可能参与了增强子活性的调控,并促成了肿瘤的转化。
{"title":"Methylation patterns at the adjacent CpG sites within enhancers are a part of cell identity.","authors":"Olga Taryma-Leśniak, Jan Bińkowski, Patrycja Kamila Przybylowicz, Katarzyna Ewa Sokolowska, Konrad Borowski, Tomasz Kazimierz Wojdacz","doi":"10.1186/s13072-024-00555-5","DOIUrl":"10.1186/s13072-024-00555-5","url":null,"abstract":"<p><strong>Background: </strong>It is generally accepted that methylation status of CpG sites spaced up to 50 bp apart is correlated, and accumulation of locally disordered methylation at adjacent CpG sites is involved in neoplastic transformation, acting in similar way as stochastic accumulation of mutations.</p><p><strong>Results: </strong>We used EPIC microarray data from 596 samples, representing 12 healthy tissue and cell types, as well as 572 blood cancer specimens to analyze methylation status of adjacent CpG sites across human genome, and subsequently validated our findings with NGS and Sanger sequencing. Our analysis showed that there is a subset of the adjacent CpG sites in human genome, with cytosine at one CpG site methylated and the other devoid of methyl group. These loci map to enhancers that are targeted by families of transcription factors involved in cell differentiation. Moreover, our results suggest that the methylation at these loci differ between alleles within a cell, what allows for remarkable level of heterogeneity of methylation patterns. However, different types of specialized cells acquire only one specific and stable pattern of methylation at each of these loci and that pattern is to a large extent lost during neoplastic transformation.</p><p><strong>Conclusions: </strong>We identified a substantial number of adjacent CpG loci in human genome that display remarkably stable and cell type specific methylation pattern. The methylation pattern at these loci appears to reflect different methylation of alleles in cells. Furthermore, we showed that changes of methylation status at those loci are likely to be involved in regulation of the activity of enhancers and contribute to neoplastic transformation.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"17 1","pages":"30"},"PeriodicalIF":4.2,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465701/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142394698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PRKACB is a novel imprinted gene in marsupials. PRKACB 是有袋类动物的一种新型印迹基因。
IF 4.2 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-28 DOI: 10.1186/s13072-024-00552-8
Trent Newman, Donna M Bond, Teruhito Ishihara, Phoebe Rizzoli, Quentin Gouil, Timothy A Hore, Geoff Shaw, Marilyn B Renfree

Background: Genomic imprinting results in parent-of-origin-specific gene expression and, among vertebrates, is found only in therian mammals: marsupials and eutherians. A differentially methylated region (DMR), in which the methylation status of CpG dinucleotides differs between the two alleles, can mark the parental identity of imprinted genes. We developed a computational pipeline that detected CpG islands (CGIs) marked by both methylated and unmethylated signals in whole genome bisulfite sequencing data. This approach identified candidate marsupial DMRs in a publicly available koala methylome. One of these candidate DMRs was associated with PRKACB, a gene encoding the protein kinase A catalytic subunit beta. Nothing is known about the imprinting status of PRKACB in eutherian mammals although mutations of this gene are associated with endocrine neoplasia and other developmental disorders.

Results: In the tammar wallaby and brushtail possum there was parent-of-origin-specific DNA methylation in the PRKACB DMR in which the maternal allele was methylated and the paternal allele was unmethylated. There were multiple RNAs transcribed from this locus. Allele-specific expression analysis identified paternal expression of a PRKACB lncRNA and an mRNA isoform. Comparison of the PRKACB gene start site between marsupials and eutherians demonstrated that the CGI is longer in marsupials. The PRKACB gene product functions in the same signalling pathway as the guanine nucleotide-binding protein alpha subunit encoded at the GNAS locus, a known eutherian imprinted gene. In a mouse methylome Gnas had three differentially methylated CGIs, while in the koala methylome the GNAS locus had two unmethylated CGIs.

Conclusions: We conclude that PRKACB is a novel, DMR-associated marsupial imprinted gene. Imprinting of PRKACB in marsupials and GNAS in eutherians may indicate a conserved selection pressure for imprinting of the protein kinase A signalling pathway in therians with the two lineages adapting by imprinting different genes.

背景:在脊椎动物中,只有有袋类和无袋类哺乳动物才有基因组印记。两个等位基因的 CpG 二核苷酸甲基化状态不同的差异甲基化区域(DMR)可以标记印记基因的亲本身份。我们开发了一种计算管道,可以检测全基因组亚硫酸氢盐测序数据中以甲基化和非甲基化信号标记的CpG岛(CGI)。这种方法在公开的考拉甲基组中发现了候选有袋类 DMRs。其中一个候选 DMR 与 PRKACB 有关,PRKACB 是一个编码蛋白激酶 A 催化亚基 beta 的基因。尽管PRKACB基因突变与内分泌肿瘤和其他发育障碍有关,但目前尚不清楚该基因在信蹄类哺乳动物中的印记状态:结果:在柽柳袋鼠和刷尾负鼠中,PRKACB DMR存在亲源特异性DNA甲基化,其中母系等位基因甲基化,父系等位基因未甲基化。该基因座转录了多种 RNA。等位基因特异性表达分析确定了父系表达一种 PRKACB lncRNA 和一种 mRNA 同工型。有袋类动物和无齿类动物PRKACB基因起始位点的比较表明,有袋类动物的CGI较长。PRKACB 基因产物与已知的有袋类印记基因 GNAS 基因座编码的鸟嘌呤核苷酸结合蛋白 alpha 亚基具有相同的信号通路功能。在小鼠甲基化组中,Gnas 有三个不同甲基化的 CGI,而在考拉甲基化组中,GNAS 基因座有两个未甲基化的 CGI:我们得出结论:PRKACB是一种新型的、与DMR相关的有袋动物印迹基因。有袋类动物中的 PRKACB 和无尾熊中的 GNAS 的印记可能表明,有尾熊和无尾熊中的蛋白激酶 A 信号通路的印记存在着一致的选择压力,两类动物通过印记不同的基因来适应这种压力。
{"title":"PRKACB is a novel imprinted gene in marsupials.","authors":"Trent Newman, Donna M Bond, Teruhito Ishihara, Phoebe Rizzoli, Quentin Gouil, Timothy A Hore, Geoff Shaw, Marilyn B Renfree","doi":"10.1186/s13072-024-00552-8","DOIUrl":"10.1186/s13072-024-00552-8","url":null,"abstract":"<p><strong>Background: </strong>Genomic imprinting results in parent-of-origin-specific gene expression and, among vertebrates, is found only in therian mammals: marsupials and eutherians. A differentially methylated region (DMR), in which the methylation status of CpG dinucleotides differs between the two alleles, can mark the parental identity of imprinted genes. We developed a computational pipeline that detected CpG islands (CGIs) marked by both methylated and unmethylated signals in whole genome bisulfite sequencing data. This approach identified candidate marsupial DMRs in a publicly available koala methylome. One of these candidate DMRs was associated with PRKACB, a gene encoding the protein kinase A catalytic subunit beta. Nothing is known about the imprinting status of PRKACB in eutherian mammals although mutations of this gene are associated with endocrine neoplasia and other developmental disorders.</p><p><strong>Results: </strong>In the tammar wallaby and brushtail possum there was parent-of-origin-specific DNA methylation in the PRKACB DMR in which the maternal allele was methylated and the paternal allele was unmethylated. There were multiple RNAs transcribed from this locus. Allele-specific expression analysis identified paternal expression of a PRKACB lncRNA and an mRNA isoform. Comparison of the PRKACB gene start site between marsupials and eutherians demonstrated that the CGI is longer in marsupials. The PRKACB gene product functions in the same signalling pathway as the guanine nucleotide-binding protein alpha subunit encoded at the GNAS locus, a known eutherian imprinted gene. In a mouse methylome Gnas had three differentially methylated CGIs, while in the koala methylome the GNAS locus had two unmethylated CGIs.</p><p><strong>Conclusions: </strong>We conclude that PRKACB is a novel, DMR-associated marsupial imprinted gene. Imprinting of PRKACB in marsupials and GNAS in eutherians may indicate a conserved selection pressure for imprinting of the protein kinase A signalling pathway in therians with the two lineages adapting by imprinting different genes.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"17 1","pages":"29"},"PeriodicalIF":4.2,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438212/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142330770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptional silencing in Saccharomyces cerevisiae: known unknowns 酿酒酵母中的转录沉默:已知的未知数
IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-14 DOI: 10.1186/s13072-024-00553-7
Namrita Dhillon, Rohinton T. Kamakaka
Transcriptional silencing in Saccharomyces cerevisiae is a persistent and highly stable form of gene repression. It involves DNA silencers and repressor proteins that bind nucleosomes. The silenced state is influenced by numerous factors including the concentration of repressors, nature of activators, architecture of regulatory elements, modifying enzymes and the dynamics of chromatin.Silencers function to increase the residence time of repressor Sir proteins at silenced domains while clustering of silenced domains enables increased concentrations of repressors and helps facilitate long-range interactions. The presence of an accessible NDR at the regulatory regions of silenced genes, the cycling of chromatin configurations at regulatory sites, the mobility of Sir proteins, and the non-uniform distribution of the Sir proteins across the silenced domain, all result in silenced chromatin that only stably silences weak promoters and enhancers via changes in transcription burst duration and frequency.These data collectively suggest that silencing is probabilistic and the robustness of silencing is achieved through sub-optimization of many different nodes of action such that a stable expression state is generated and maintained even though individual constituents are in constant flux.
酿酒酵母中的转录沉默是一种持久而高度稳定的基因抑制形式。它涉及 DNA 沉默子和与核糖体结合的抑制蛋白。沉默状态受多种因素的影响,包括抑制因子的浓度、激活因子的性质、调控元件的结构、修饰酶和染色质的动态等。沉默因子的作用是增加抑制因子 Sir 蛋白在沉默结构域的停留时间,而沉默结构域的聚类可增加抑制因子的浓度,并有助于促进长程相互作用。在沉默基因的调控区域存在可访问的 NDR、调控位点染色质构型的循环、Sir 蛋白的流动性以及 Sir 蛋白在整个沉默域的非均匀分布,所有这些都导致沉默染色质只能通过改变转录爆发的持续时间和频率来稳定地沉默弱启动子和增强子。这些数据共同表明,沉默是概率性的,沉默的稳健性是通过对许多不同的作用节点进行次优化实现的,这样即使单个成分在不断变化,也能产生并维持稳定的表达状态。
{"title":"Transcriptional silencing in Saccharomyces cerevisiae: known unknowns","authors":"Namrita Dhillon, Rohinton T. Kamakaka","doi":"10.1186/s13072-024-00553-7","DOIUrl":"https://doi.org/10.1186/s13072-024-00553-7","url":null,"abstract":"Transcriptional silencing in Saccharomyces cerevisiae is a persistent and highly stable form of gene repression. It involves DNA silencers and repressor proteins that bind nucleosomes. The silenced state is influenced by numerous factors including the concentration of repressors, nature of activators, architecture of regulatory elements, modifying enzymes and the dynamics of chromatin.Silencers function to increase the residence time of repressor Sir proteins at silenced domains while clustering of silenced domains enables increased concentrations of repressors and helps facilitate long-range interactions. The presence of an accessible NDR at the regulatory regions of silenced genes, the cycling of chromatin configurations at regulatory sites, the mobility of Sir proteins, and the non-uniform distribution of the Sir proteins across the silenced domain, all result in silenced chromatin that only stably silences weak promoters and enhancers via changes in transcription burst duration and frequency.These data collectively suggest that silencing is probabilistic and the robustness of silencing is achieved through sub-optimization of many different nodes of action such that a stable expression state is generated and maintained even though individual constituents are in constant flux.","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"47 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142262071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Epigenetics & Chromatin
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1