首页 > 最新文献

Epigenetics & Chromatin最新文献

英文 中文
The role of hexokinases in epigenetic regulation: altered hexokinase expression and chromatin stability in yeast. 己糖激酶在表观遗传调控中的作用:酵母中己糖激酶表达和染色质稳定性的改变。
IF 4.2 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-08-27 DOI: 10.1186/s13072-024-00551-9
Srinivasu Karri, Quinn Dickinson, Jing Jia, Yi Yang, Haiyun Gan, Zhiquan Wang, Yibin Deng, Chuanhe Yu

Background: Human hexokinase 2 (HK2) plays an important role in regulating Warburg effect, which metabolizes glucose to lactate acid even in the presence of ample oxygen and provides intermediate metabolites to support cancer cell proliferation and tumor growth. HK2 overexpression has been observed in various types of cancers and targeting HK2-driven Warburg effect has been suggested as a potential cancer therapeutic strategy. Given that epigenetic enzymes utilize metabolic intermediates as substrates or co-factors to carry out post-translational modification of histones and nucleic acids modifications in cells, we hypothesized that altering HK2 expression could impact the epigenome and, consequently, chromatin stability in yeast. To test this hypothesis, we established genetic models with different yeast hexokinase 2 (HXK2) expression in Saccharomyces cerevisiae yeast cells and investigated the effect of HXK2-dependent metabolism on parental nucleosome transfer, a key DNA replication-coupled epigenetic inheritance process, and chromatin stability.

Results: By comparing the growth of mutant yeast cells carrying single deletion of hxk1Δ, hxk2Δ, or double-loss of hxk1Δ hxk2Δ to wild-type cells, we firstly confirmed that HXK2 is the dominant HXK in yeast cell growth. Surprisingly, manipulating HXK2 expression in yeast, whether through overexpression or deletion, had only a marginal impact on parental nucleosome assembly, but a noticeable trend with decrease chromatin instability. However, targeting yeast cells with 2-deoxy-D-glucose (2-DG), a clinical glycolysis inhibitor that has been proposed as an anti-cancer treatment, significantly increased chromatin instability.

Conclusion: Our findings suggest that in yeast cells lacking HXK2, alternative HXKs such as HXK1 or glucokinase 1 (GLK1) play a role in supporting glycolysis at a level that adequately maintains epigenomic stability. While our study demonstrated an increase in epigenetic instability with 2-DG treatment, the observed effect seemed to occur dependent on non-glycolytic function of Hxk2. Thus, additional research is needed to identify the molecular mechanism through which 2-DG influences chromatin stability.

背景:人类己糖激酶 2(HK2)在调节沃伯格效应方面发挥着重要作用,即使在氧气充足的情况下,沃伯格效应也会将葡萄糖代谢为乳酸,并提供中间代谢产物以支持癌细胞增殖和肿瘤生长。在各种癌症中都观察到 HK2 的过表达,针对 HK2 驱动的沃伯格效应被认为是一种潜在的癌症治疗策略。鉴于表观遗传酶利用代谢中间产物作为底物或辅助因子对细胞中的组蛋白和核酸修饰进行翻译后修饰,我们假设改变 HK2 的表达可能会影响表观遗传组,进而影响酵母中染色质的稳定性。为了验证这一假设,我们在酿酒酵母细胞中建立了不同酵母己糖激酶2(HXK2)表达的遗传模型,并研究了HXK2依赖性代谢对亲代核小体转移(一个关键的DNA复制偶联表观遗传过程)和染色质稳定性的影响:通过比较单缺失hxk1Δ、hxk2Δ或双缺失hxk1Δ hxk2Δ的突变酵母细胞与野生型细胞的生长情况,我们首次证实了HXK2是酵母细胞生长中的优势HXK。令人惊讶的是,无论是通过过表达还是缺失,操纵 HXK2 在酵母中的表达对亲本核小体组装的影响微乎其微,但却有明显的染色质不稳定性下降趋势。然而,用2-脱氧-D-葡萄糖(2-DG)靶向酵母细胞会显著增加染色质的不稳定性:我们的研究结果表明,在缺乏 HXK2 的酵母细胞中,替代 HXKs(如 HXK1 或葡萄糖激酶 1 (GLK1))在支持糖酵解过程中发挥作用,从而充分维持表观基因组的稳定性。我们的研究表明,2-DG 处理会增加表观遗传的不稳定性,但观察到的效果似乎取决于 Hxk2 的非糖酵解功能。因此,还需要进行更多的研究,以确定 2-DG 影响染色质稳定性的分子机制。
{"title":"The role of hexokinases in epigenetic regulation: altered hexokinase expression and chromatin stability in yeast.","authors":"Srinivasu Karri, Quinn Dickinson, Jing Jia, Yi Yang, Haiyun Gan, Zhiquan Wang, Yibin Deng, Chuanhe Yu","doi":"10.1186/s13072-024-00551-9","DOIUrl":"10.1186/s13072-024-00551-9","url":null,"abstract":"<p><strong>Background: </strong>Human hexokinase 2 (HK2) plays an important role in regulating Warburg effect, which metabolizes glucose to lactate acid even in the presence of ample oxygen and provides intermediate metabolites to support cancer cell proliferation and tumor growth. HK2 overexpression has been observed in various types of cancers and targeting HK2-driven Warburg effect has been suggested as a potential cancer therapeutic strategy. Given that epigenetic enzymes utilize metabolic intermediates as substrates or co-factors to carry out post-translational modification of histones and nucleic acids modifications in cells, we hypothesized that altering HK2 expression could impact the epigenome and, consequently, chromatin stability in yeast. To test this hypothesis, we established genetic models with different yeast hexokinase 2 (HXK2) expression in Saccharomyces cerevisiae yeast cells and investigated the effect of HXK2-dependent metabolism on parental nucleosome transfer, a key DNA replication-coupled epigenetic inheritance process, and chromatin stability.</p><p><strong>Results: </strong>By comparing the growth of mutant yeast cells carrying single deletion of hxk1Δ, hxk2Δ, or double-loss of hxk1Δ hxk2Δ to wild-type cells, we firstly confirmed that HXK2 is the dominant HXK in yeast cell growth. Surprisingly, manipulating HXK2 expression in yeast, whether through overexpression or deletion, had only a marginal impact on parental nucleosome assembly, but a noticeable trend with decrease chromatin instability. However, targeting yeast cells with 2-deoxy-D-glucose (2-DG), a clinical glycolysis inhibitor that has been proposed as an anti-cancer treatment, significantly increased chromatin instability.</p><p><strong>Conclusion: </strong>Our findings suggest that in yeast cells lacking HXK2, alternative HXKs such as HXK1 or glucokinase 1 (GLK1) play a role in supporting glycolysis at a level that adequately maintains epigenomic stability. While our study demonstrated an increase in epigenetic instability with 2-DG treatment, the observed effect seemed to occur dependent on non-glycolytic function of Hxk2. Thus, additional research is needed to identify the molecular mechanism through which 2-DG influences chromatin stability.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"17 1","pages":"27"},"PeriodicalIF":4.2,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348520/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNA methylation correlates of chronological age in diverse human tissue types. 不同人体组织类型中与计时年龄相关的 DNA 甲基化。
IF 4.2 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-08-08 DOI: 10.1186/s13072-024-00546-6
Niyati Jain, James L Li, Lin Tong, Farzana Jasmine, Muhammad G Kibriya, Kathryn Demanelis, Meritxell Oliva, Lin S Chen, Brandon L Pierce

Background: While the association of chronological age with DNA methylation (DNAm) in whole blood has been extensively studied, the tissue-specificity of age-related DNAm changes remains an active area of research. Studies investigating the association of age with DNAm in tissues such as brain, skin, immune cells, fat, and liver have identified tissue-specific and non-specific effects, thus, motivating additional studies of diverse human tissue and cell types.

Results: Here, we performed an epigenome-wide association study, leveraging DNAm data (Illumina EPIC array) from 961 tissue samples representing 9 tissue types (breast, lung, colon, ovary, prostate, skeletal muscle, testis, whole blood, and kidney) from the Genotype-Tissue Expression (GTEx) project. We identified age-associated CpG sites (false discovery rate < 0.05) in 8 tissues (all except skeletal muscle, n = 47). This included 162,002 unique hypermethylated and 90,626 hypomethylated CpG sites across all tissue types, with 130,137 (80%) hypermethylated CpGs and 74,703 (82%) hypomethylated CpG sites observed in a single tissue type. While the majority of age-associated CpG sites appeared tissue-specific, the patterns of enrichment among genomic features, such as chromatin states and CpG islands, were similar across most tissues, suggesting common mechanisms underlying cellular aging. Consistent with previous findings, we observed that hypermethylated CpG sites are enriched in regions with repressed polycomb signatures and CpG islands, while hypomethylated CpG sites preferentially occurred in non-CpG islands and enhancers. To gain insights into the functional effects of age-related DNAm changes, we assessed the correlation between DNAm and local gene expression changes to identify age-related expression quantitative trait methylation (age-eQTMs). We identified several age-eQTMs present in multiple tissue-types, including in the CDKN2A, HENMT1, and VCWE regions.

Conclusion: Overall, our findings will aid future efforts to develop biomarkers of aging and understand mechanisms of aging in diverse human tissue types.

背景:虽然人们已经广泛研究了计时年龄与全血中 DNA 甲基化(DNAm)的关系,但与年龄相关的 DNAm 变化的组织特异性仍是一个活跃的研究领域。在大脑、皮肤、免疫细胞、脂肪和肝脏等组织中调查年龄与 DNAm 关联性的研究发现了组织特异性和非特异性效应,从而激发了对不同人体组织和细胞类型的更多研究:在这里,我们利用基因型-组织表达(GTEx)项目中代表 9 种组织类型(乳腺、肺、结肠、卵巢、前列腺、骨骼肌、睾丸、全血和肾脏)的 961 个组织样本的 DNAm 数据(Illumina EPIC 阵列)进行了一项全表观基因组关联研究。我们发现了与年龄相关的 CpG 位点(假发现率 结论:我们发现了与年龄相关的 CpG 位点:总之,我们的研究结果将有助于未来开发衰老生物标记物和了解不同人体组织类型的衰老机制。
{"title":"DNA methylation correlates of chronological age in diverse human tissue types.","authors":"Niyati Jain, James L Li, Lin Tong, Farzana Jasmine, Muhammad G Kibriya, Kathryn Demanelis, Meritxell Oliva, Lin S Chen, Brandon L Pierce","doi":"10.1186/s13072-024-00546-6","DOIUrl":"10.1186/s13072-024-00546-6","url":null,"abstract":"<p><strong>Background: </strong>While the association of chronological age with DNA methylation (DNAm) in whole blood has been extensively studied, the tissue-specificity of age-related DNAm changes remains an active area of research. Studies investigating the association of age with DNAm in tissues such as brain, skin, immune cells, fat, and liver have identified tissue-specific and non-specific effects, thus, motivating additional studies of diverse human tissue and cell types.</p><p><strong>Results: </strong>Here, we performed an epigenome-wide association study, leveraging DNAm data (Illumina EPIC array) from 961 tissue samples representing 9 tissue types (breast, lung, colon, ovary, prostate, skeletal muscle, testis, whole blood, and kidney) from the Genotype-Tissue Expression (GTEx) project. We identified age-associated CpG sites (false discovery rate < 0.05) in 8 tissues (all except skeletal muscle, n = 47). This included 162,002 unique hypermethylated and 90,626 hypomethylated CpG sites across all tissue types, with 130,137 (80%) hypermethylated CpGs and 74,703 (82%) hypomethylated CpG sites observed in a single tissue type. While the majority of age-associated CpG sites appeared tissue-specific, the patterns of enrichment among genomic features, such as chromatin states and CpG islands, were similar across most tissues, suggesting common mechanisms underlying cellular aging. Consistent with previous findings, we observed that hypermethylated CpG sites are enriched in regions with repressed polycomb signatures and CpG islands, while hypomethylated CpG sites preferentially occurred in non-CpG islands and enhancers. To gain insights into the functional effects of age-related DNAm changes, we assessed the correlation between DNAm and local gene expression changes to identify age-related expression quantitative trait methylation (age-eQTMs). We identified several age-eQTMs present in multiple tissue-types, including in the CDKN2A, HENMT1, and VCWE regions.</p><p><strong>Conclusion: </strong>Overall, our findings will aid future efforts to develop biomarkers of aging and understand mechanisms of aging in diverse human tissue types.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"17 1","pages":"25"},"PeriodicalIF":4.2,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11308253/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141908113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptional regulation mechanism of PARP1 and its application in disease treatment. PARP1 的转录调控机制及其在疾病治疗中的应用。
IF 4.2 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-08-08 DOI: 10.1186/s13072-024-00550-w
Yu Lu, Wenliang Fu, Weiwei Xing, Haowei Wu, Chao Zhang, Donggang Xu

Poly (ADP-ribose) polymerase 1 (PARP1) is a multifunctional nuclear enzyme that catalyzes poly-ADP ribosylation in eukaryotic cells. In addition to maintaining genomic integrity, this nuclear enzyme is also involved in transcriptional regulation. PARP1 can trigger and maintain changes in the chromatin structure and directly recruit transcription factors. PARP1 also prevents DNA methylation. However, most previous reviews on PARP1 have focused on its involvement in maintaining genome integrity, with less focus on its transcriptional regulatory function. This article comprehensively reviews the transcriptional regulatory function of PARP1 and its application in disease treatment, providing new ideas for targeting PARP1 for the treatment of diseases other than cancer.

聚(ADP-核糖)聚合酶 1(PARP1)是一种多功能核酶,在真核细胞中催化聚 ADP 核糖基化。除了维护基因组的完整性,这种核酶还参与转录调控。PARP1 可以引发和维持染色质结构的变化,并直接招募转录因子。PARP1 还能防止 DNA 甲基化。然而,以往关于 PARP1 的综述大多集中在其参与维持基因组完整性方面,而较少关注其转录调控功能。本文全面综述了 PARP1 的转录调控功能及其在疾病治疗中的应用,为靶向 PARP1 治疗癌症以外的疾病提供了新思路。
{"title":"Transcriptional regulation mechanism of PARP1 and its application in disease treatment.","authors":"Yu Lu, Wenliang Fu, Weiwei Xing, Haowei Wu, Chao Zhang, Donggang Xu","doi":"10.1186/s13072-024-00550-w","DOIUrl":"10.1186/s13072-024-00550-w","url":null,"abstract":"<p><p>Poly (ADP-ribose) polymerase 1 (PARP1) is a multifunctional nuclear enzyme that catalyzes poly-ADP ribosylation in eukaryotic cells. In addition to maintaining genomic integrity, this nuclear enzyme is also involved in transcriptional regulation. PARP1 can trigger and maintain changes in the chromatin structure and directly recruit transcription factors. PARP1 also prevents DNA methylation. However, most previous reviews on PARP1 have focused on its involvement in maintaining genome integrity, with less focus on its transcriptional regulatory function. This article comprehensively reviews the transcriptional regulatory function of PARP1 and its application in disease treatment, providing new ideas for targeting PARP1 for the treatment of diseases other than cancer.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"17 1","pages":"26"},"PeriodicalIF":4.2,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11308664/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141908114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-term exposure to diesel exhaust particles induces concordant changes in DNA methylation and transcriptome in human adenocarcinoma alveolar basal epithelial cells. 长期暴露于柴油废气颗粒会诱导人类腺癌肺泡基底上皮细胞的 DNA 甲基化和转录组发生一致的变化。
IF 4.2 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-08-05 DOI: 10.1186/s13072-024-00549-3
Alexandra Lukyanchuk, Naomi Muraki, Tomoko Kawai, Takehiro Sato, Kenichiro Hata, Tsuyoshi Ito, Atsushi Tajima

Background: Diesel exhaust particles (DEP), which contain hazardous compounds, are emitted during the combustion of diesel. As approximately one-third of the vehicles worldwide use diesel, there are growing concerns about the risks posed by DEP to human health. Long-term exposure to DEP is associated with airway hyperresponsiveness, pulmonary fibrosis, and inflammation; however, the molecular mechanisms behind the effects of DEP on the respiratory tract are poorly understood. Such mechanisms can be addressed by examining transcriptional and DNA methylation changes. Although several studies have focused on the effects of short-term DEP exposure on gene expression, research on the transcriptional effects and genome-wide DNA methylation changes caused by long-term DEP exposure is lacking. Hence, in this study, we investigated transcriptional and DNA methylation changes in human adenocarcinoma alveolar basal epithelial A549 cells caused by prolonged exposure to DEP and determined whether these changes are concordant.

Results: DNA methylation analysis using the Illumina Infinium MethylationEPIC BeadChips showed that the methylation levels of DEP-affected CpG sites in A549 cells changed in a dose-dependent manner; the extent of change increased with increasing dose reaching the statistical significance only in samples exposed to 30 µg/ml DEP. Four-week exposure to 30 µg/ml of DEP significantly induced DNA hypomethylation at 24,464 CpG sites, which were significantly enriched for DNase hypersensitive sites, genomic regions marked by H3K4me1 and H3K27ac, and several transcription factor binding sites. In contrast, 9,436 CpG sites with increased DNA methylation levels were significantly overrepresented in genomic regions marked by H3K27me3 as well as H3K4me1 and H3K27ac. In parallel, gene expression profiling by RNA sequencing demonstrated that long-term exposure to DEP altered the expression levels of 2,410 genes, enriching 16 gene sets including Xenobiotic metabolism, Inflammatory response, and Senescence. In silico analysis revealed that the expression levels of 854 genes correlated with the methylation levels of the DEP-affected cis-CpG sites.

Conclusions: To our knowledge, this is the first report of genome-wide transcriptional and DNA methylation changes and their associations in A549 cells following long-term exposure to DEP.

背景:柴油燃烧时会排放出含有有害化合物的柴油废气微粒(DEP)。由于全球约有三分之一的车辆使用柴油,人们越来越关注柴油废气对人体健康造成的风险。长期暴露于 DEP 与气道高反应性、肺纤维化和炎症有关;然而,人们对 DEP 影响呼吸道背后的分子机制知之甚少。可以通过研究转录和 DNA 甲基化的变化来了解这些机制。虽然已有多项研究关注了短期暴露于 DEP 对基因表达的影响,但有关长期暴露于 DEP 所引起的转录效应和全基因组 DNA 甲基化变化的研究还很缺乏。因此,在本研究中,我们调查了长期暴露于 DEP 引起的人腺癌肺泡基底上皮 A549 细胞的转录和 DNA 甲基化变化,并确定这些变化是否一致:使用Illumina Infinium MethylationEPIC BeadChip芯片进行的DNA甲基化分析表明,A549细胞中受DEP影响的CpG位点的甲基化水平以剂量依赖的方式发生变化;变化程度随着剂量的增加而增加,只有在暴露于30 µg/ml DEP的样本中才达到统计学意义。暴露于30微克/毫升的DEP四周后,24,464个CpG位点的DNA低甲基化被显著诱导,这些位点明显富集于DNase超敏位点、H3K4me1和H3K27ac标记的基因组区域以及几个转录因子结合位点。相比之下,DNA 甲基化水平增加的 9,436 个 CpG 位点在以 H3K27me3 以及 H3K4me1 和 H3K27ac 标记的基因组区域中的比例明显偏高。与此同时,通过 RNA 测序进行的基因表达谱分析表明,长期暴露于 DEP 会改变 2,410 个基因的表达水平,丰富了 16 个基因集,包括 Xenobiotic metabolism、Inflammatory response 和 Senescence。硅学分析表明,854 个基因的表达水平与受 DEP 影响的顺式-CpG 位点的甲基化水平相关:据我们所知,这是首次报道 A549 细胞长期暴露于 DEP 后的全基因组转录和 DNA 甲基化变化及其相关性。
{"title":"Long-term exposure to diesel exhaust particles induces concordant changes in DNA methylation and transcriptome in human adenocarcinoma alveolar basal epithelial cells.","authors":"Alexandra Lukyanchuk, Naomi Muraki, Tomoko Kawai, Takehiro Sato, Kenichiro Hata, Tsuyoshi Ito, Atsushi Tajima","doi":"10.1186/s13072-024-00549-3","DOIUrl":"10.1186/s13072-024-00549-3","url":null,"abstract":"<p><strong>Background: </strong>Diesel exhaust particles (DEP), which contain hazardous compounds, are emitted during the combustion of diesel. As approximately one-third of the vehicles worldwide use diesel, there are growing concerns about the risks posed by DEP to human health. Long-term exposure to DEP is associated with airway hyperresponsiveness, pulmonary fibrosis, and inflammation; however, the molecular mechanisms behind the effects of DEP on the respiratory tract are poorly understood. Such mechanisms can be addressed by examining transcriptional and DNA methylation changes. Although several studies have focused on the effects of short-term DEP exposure on gene expression, research on the transcriptional effects and genome-wide DNA methylation changes caused by long-term DEP exposure is lacking. Hence, in this study, we investigated transcriptional and DNA methylation changes in human adenocarcinoma alveolar basal epithelial A549 cells caused by prolonged exposure to DEP and determined whether these changes are concordant.</p><p><strong>Results: </strong>DNA methylation analysis using the Illumina Infinium MethylationEPIC BeadChips showed that the methylation levels of DEP-affected CpG sites in A549 cells changed in a dose-dependent manner; the extent of change increased with increasing dose reaching the statistical significance only in samples exposed to 30 µg/ml DEP. Four-week exposure to 30 µg/ml of DEP significantly induced DNA hypomethylation at 24,464 CpG sites, which were significantly enriched for DNase hypersensitive sites, genomic regions marked by H3K4me1 and H3K27ac, and several transcription factor binding sites. In contrast, 9,436 CpG sites with increased DNA methylation levels were significantly overrepresented in genomic regions marked by H3K27me3 as well as H3K4me1 and H3K27ac. In parallel, gene expression profiling by RNA sequencing demonstrated that long-term exposure to DEP altered the expression levels of 2,410 genes, enriching 16 gene sets including Xenobiotic metabolism, Inflammatory response, and Senescence. In silico analysis revealed that the expression levels of 854 genes correlated with the methylation levels of the DEP-affected cis-CpG sites.</p><p><strong>Conclusions: </strong>To our knowledge, this is the first report of genome-wide transcriptional and DNA methylation changes and their associations in A549 cells following long-term exposure to DEP.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"17 1","pages":"24"},"PeriodicalIF":4.2,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299313/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of ribosomal DNA methylation in embryonic development, aging and diseases. 核糖体 DNA 甲基化在胚胎发育、衰老和疾病中的作用。
IF 4.2 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-07-31 DOI: 10.1186/s13072-024-00548-4
Fei Yang, Xutong Guo, Yiming Bao, Rujiao Li

The ribosomal DNA (rDNA) constitutes a remarkably conserved DNA sequence within species, located in the area of the nucleolus, and responsible for coding three major types of rRNAs (18S, 5.8S and 28S). While historical investigations into rDNA focused on its structure and coding capabilities, recent research has turned to explore its functional roles in various biological processes. In this review, we summarize the main findings of rDNA methylation with embryonic development, aging and diseases in multiple species, including epigenetic alterations, related biological processes and potential applications of rDNA methylation. We present an overview of current related research and identify gaps in this field.

核糖体 DNA(rDNA)是物种内极为保守的 DNA 序列,位于核仁区域,负责编码三种主要类型的 rRNA(18S、5.8S 和 28S)。过去对 rDNA 的研究主要集中在其结构和编码能力上,而最近的研究则转向探索其在各种生物过程中的功能作用。在这篇综述中,我们总结了 rDNA 甲基化与多个物种的胚胎发育、衰老和疾病有关的主要发现,包括表观遗传学改变、相关生物过程和 rDNA 甲基化的潜在应用。我们概述了当前的相关研究,并指出了这一领域的差距。
{"title":"The role of ribosomal DNA methylation in embryonic development, aging and diseases.","authors":"Fei Yang, Xutong Guo, Yiming Bao, Rujiao Li","doi":"10.1186/s13072-024-00548-4","DOIUrl":"10.1186/s13072-024-00548-4","url":null,"abstract":"<p><p>The ribosomal DNA (rDNA) constitutes a remarkably conserved DNA sequence within species, located in the area of the nucleolus, and responsible for coding three major types of rRNAs (18S, 5.8S and 28S). While historical investigations into rDNA focused on its structure and coding capabilities, recent research has turned to explore its functional roles in various biological processes. In this review, we summarize the main findings of rDNA methylation with embryonic development, aging and diseases in multiple species, including epigenetic alterations, related biological processes and potential applications of rDNA methylation. We present an overview of current related research and identify gaps in this field.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"17 1","pages":"23"},"PeriodicalIF":4.2,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11290161/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CUT&Tag applied to zebrafish adult tail fins reveals a return of embryonic H3K4me3 patterns during regeneration. 将 CUT&Tag 应用于斑马鱼成体尾鳍,可发现再生过程中胚胎期 H3K4me3 模式的回归。
IF 4.2 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-07-20 DOI: 10.1186/s13072-024-00547-5
Phu Duong, Anjelica Rodriguez-Parks, Junsu Kang, Patrick J Murphy

Regenerative potential is governed by a complex process of transcriptional reprogramming, involving chromatin reorganization and dynamics in transcription factor binding patterns throughout the genome. The degree to which chromatin and epigenetic changes contribute to this process remains only partially understood. Here we provide a modified CUT&Tag protocol suitable for improved characterization and interrogation of changes in chromatin modifications during adult fin regeneration in zebrafish. Our protocol generates data that recapitulates results from previously published ChIP-Seq methods, requires far fewer cells as input, and significantly improves signal to noise ratios. We deliver high-resolution enrichment maps for H3K4me3 of uninjured and regenerating fin tissues. During regeneration, we find that H3K4me3 levels increase over gene promoters which become transcriptionally active and genes which lose H3K4me3 become silenced. Interestingly, these reprogramming events recapitulate the H3K4me3 patterns observed in developing fin folds of 24-h old zebrafish embryos. Our results indicate that changes in genomic H3K4me3 patterns during fin regeneration occur in a manner consistent with reactivation of developmental programs, demonstrating CUT&Tag to be an effective tool for profiling chromatin landscapes in regenerating tissues.

再生潜能受转录重编程这一复杂过程的支配,涉及染色质重组和整个基因组中转录因子结合模式的动态变化。染色质和表观遗传学变化对这一过程的促进程度仍只有部分了解。在这里,我们提供了一种改进的 CUT&Tag 方案,适合于改进斑马鱼成鳍再生过程中染色质修饰变化的表征和检测。我们的方案生成的数据再现了之前发表的 ChIP-Seq 方法的结果,所需的输入细胞数量大大减少,信噪比显著提高。我们提供了未损伤和再生鳍组织中 H3K4me3 的高分辨率富集图。我们发现,在再生过程中,转录活跃的基因启动子上的 H3K4me3 水平升高,而失去 H3K4me3 的基因则变得沉默。有趣的是,这些重编程事件再现了在发育中的24小时斑马鱼胚胎鳍皱中观察到的H3K4me3模式。我们的研究结果表明,鳍再生过程中基因组 H3K4me3 模式的变化与发育程序的重新激活是一致的,这证明 CUT&Tag 是分析再生组织染色质景观的有效工具。
{"title":"CUT&Tag applied to zebrafish adult tail fins reveals a return of embryonic H3K4me3 patterns during regeneration.","authors":"Phu Duong, Anjelica Rodriguez-Parks, Junsu Kang, Patrick J Murphy","doi":"10.1186/s13072-024-00547-5","DOIUrl":"10.1186/s13072-024-00547-5","url":null,"abstract":"<p><p>Regenerative potential is governed by a complex process of transcriptional reprogramming, involving chromatin reorganization and dynamics in transcription factor binding patterns throughout the genome. The degree to which chromatin and epigenetic changes contribute to this process remains only partially understood. Here we provide a modified CUT&Tag protocol suitable for improved characterization and interrogation of changes in chromatin modifications during adult fin regeneration in zebrafish. Our protocol generates data that recapitulates results from previously published ChIP-Seq methods, requires far fewer cells as input, and significantly improves signal to noise ratios. We deliver high-resolution enrichment maps for H3K4me3 of uninjured and regenerating fin tissues. During regeneration, we find that H3K4me3 levels increase over gene promoters which become transcriptionally active and genes which lose H3K4me3 become silenced. Interestingly, these reprogramming events recapitulate the H3K4me3 patterns observed in developing fin folds of 24-h old zebrafish embryos. Our results indicate that changes in genomic H3K4me3 patterns during fin regeneration occur in a manner consistent with reactivation of developmental programs, demonstrating CUT&Tag to be an effective tool for profiling chromatin landscapes in regenerating tissues.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"17 1","pages":"22"},"PeriodicalIF":4.2,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264793/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141735481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CREdb: A comprehensive database of Cis-Regulatory Elements and their activity in human cells and tissues. CREdb:顺式调控元件及其在人体细胞和组织中的活性的综合数据库。
IF 4.2 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-07-16 DOI: 10.1186/s13072-024-00545-7
Chris Hartl, Jiali Zhuang, Aaron Tyler, Bing Zhou, Emily Wong, David Merberg, Brad Farrell, Chris DeBoever, Julie Bryant, Dorothée Diogo

Background: Cis-regulatory elements (CREs) play a pivotal role in gene expression regulation, allowing cells to serve diverse functions and respond to external stimuli. Understanding CREs is essential for personalized medicine and disease research, as an increasing number of genetic variants associated with phenotypes and diseases overlap with CREs. However, existing databases often focus on subsets of regulatory elements and present each identified instance of element individually, confounding the effort to obtain a comprehensive view. To address this gap, we have created CREdb, a comprehensive database with over 10 million human regulatory elements across 1,058 cell types and 315 tissues harmonized from different data sources. We curated and aligned the cell types and tissues to standard ontologies for efficient data query.

Results: Data from 11 sources were curated and mapped to standard ontological terms. 11,223,434 combined elements are present in the final database, and these were merged into 5,666,240 consensus elements representing the combined ranges of the individual elements informed by their overlap. Each consensus element contains curated metadata including the number of elements supporting it and a hash linking to the source databases. The inferred activity of each consensus element in various cell-type and tissue context is also provided. Examples presented here show the potential utility of CREdb in annotating non-coding genetic variants and informing chromatin accessibility profiling analysis.

Conclusions: We developed CREdb, a comprehensive database of CREs, to simplify the analysis of CREs by providing a unified framework for researchers. CREdb compiles consensus ranges for each element by integrating the information from all instances identified across various source databases. This unified database facilitates the functional annotation of non-coding genetic variants and complements chromatin accessibility profiling analysis. CREdb will serve as an important resource in expanding our knowledge of the epigenome and its role in human diseases.

背景:顺式调控元件(CREs)在基因表达调控中发挥着关键作用,使细胞能够发挥多种功能并对外部刺激做出反应。由于越来越多与表型和疾病相关的基因变异与 CREs 重叠,因此了解 CREs 对个性化医疗和疾病研究至关重要。然而,现有的数据库通常只关注调控元件的子集,并单独呈现每个已识别的元件实例,从而影响了获得全面观点的努力。为了填补这一空白,我们创建了 CREdb,这是一个全面的数据库,包含 1,058 种细胞类型和 315 种组织中的 1,000 多万个人类调控元件,由不同的数据源协调而成。我们根据标准本体对细胞类型和组织进行了整理和对齐,以实现高效的数据查询:我们对来自 11 个数据源的数据进行了整理,并将其映射到标准本体术语。最终数据库中有 11,223,434 个组合元素,这些元素被合并为 5,666,240 个共识元素,代表了各个元素重叠后的组合范围。每个共识元素都包含经过整理的元数据,包括支持该元素的元素数量和链接到源数据库的哈希值。此外,还提供了每个共识元素在不同细胞类型和组织背景下的推断活性。这里介绍的例子显示了 CREdb 在注释非编码基因变异和为染色质可及性剖析分析提供信息方面的潜在用途:我们开发的 CREdb 是一个全面的 CREs 数据库,它为研究人员提供了一个统一的框架,从而简化了对 CREs 的分析。CREdb 通过整合在各种来源数据库中发现的所有实例的信息,为每个元素编制了共识范围。这个统一的数据库有助于对非编码基因变异进行功能注释,并补充染色质可及性分析。CREdb 将成为拓展我们对表观基因组及其在人类疾病中作用的认识的重要资源。
{"title":"CREdb: A comprehensive database of Cis-Regulatory Elements and their activity in human cells and tissues.","authors":"Chris Hartl, Jiali Zhuang, Aaron Tyler, Bing Zhou, Emily Wong, David Merberg, Brad Farrell, Chris DeBoever, Julie Bryant, Dorothée Diogo","doi":"10.1186/s13072-024-00545-7","DOIUrl":"10.1186/s13072-024-00545-7","url":null,"abstract":"<p><strong>Background: </strong>Cis-regulatory elements (CREs) play a pivotal role in gene expression regulation, allowing cells to serve diverse functions and respond to external stimuli. Understanding CREs is essential for personalized medicine and disease research, as an increasing number of genetic variants associated with phenotypes and diseases overlap with CREs. However, existing databases often focus on subsets of regulatory elements and present each identified instance of element individually, confounding the effort to obtain a comprehensive view. To address this gap, we have created CREdb, a comprehensive database with over 10 million human regulatory elements across 1,058 cell types and 315 tissues harmonized from different data sources. We curated and aligned the cell types and tissues to standard ontologies for efficient data query.</p><p><strong>Results: </strong>Data from 11 sources were curated and mapped to standard ontological terms. 11,223,434 combined elements are present in the final database, and these were merged into 5,666,240 consensus elements representing the combined ranges of the individual elements informed by their overlap. Each consensus element contains curated metadata including the number of elements supporting it and a hash linking to the source databases. The inferred activity of each consensus element in various cell-type and tissue context is also provided. Examples presented here show the potential utility of CREdb in annotating non-coding genetic variants and informing chromatin accessibility profiling analysis.</p><p><strong>Conclusions: </strong>We developed CREdb, a comprehensive database of CREs, to simplify the analysis of CREs by providing a unified framework for researchers. CREdb compiles consensus ranges for each element by integrating the information from all instances identified across various source databases. This unified database facilitates the functional annotation of non-coding genetic variants and complements chromatin accessibility profiling analysis. CREdb will serve as an important resource in expanding our knowledge of the epigenome and its role in human diseases.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"17 1","pages":"21"},"PeriodicalIF":4.2,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253421/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141628156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Imprinted DNA methylation of the H19 ICR is established and maintained in vivo in the absence of Kaiso 在没有 Kaiso 的情况下,体内 H19 ICR 的印迹 DNA 甲基化得以建立和维持
IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-06-05 DOI: 10.1186/s13072-024-00544-8
Hitomi Matsuzaki, Minami Kimura, Mizuki Morihashi, Keiji Tanimoto
Paternal allele-specific DNA methylation of the imprinting control region (H19 ICR) controls genomic imprinting at the Igf2/H19 locus. We previously demonstrated that the mouse H19 ICR transgene acquires imprinted DNA methylation in preimplantation mouse embryos. This activity is also present in the endogenous H19 ICR and protects it from genome-wide reprogramming after fertilization. We also identified a 118-bp sequence within the H19 ICR that is responsible for post-fertilization imprinted methylation. Two mutations, one in the five RCTG motifs and the other a 36-bp deletion both in the 118-bp segment, caused complete and partial loss, respectively, of methylation following paternal transmission in each transgenic mouse. Interestingly, these mutations overlap with the binding site for the transcription factor Kaiso, which is reportedly involved in maintaining paternal methylation at the human H19 ICR (IC1) in cultured cells. In this study, we investigated if Kaiso regulates imprinted DNA methylation of the H19 ICR in vivo. Neither Kaiso deletion nor mutation of Kaiso binding sites in the 118-bp region affected DNA methylation of the mouse H19 ICR transgene. The endogenous mouse H19 ICR was methylated in a wild-type manner in Kaiso-null mutant mice. Additionally, the human IC1 transgene acquired imprinted DNA methylation after fertilization in the absence of Kaiso. Our results indicate that Kaiso is not essential for either post-fertilization imprinted DNA methylation of the transgenic H19 ICR in mouse or for methylation imprinting of the endogenous mouse H19 ICR.
父系等位基因特异性印记控制区(H19 ICR)的 DNA 甲基化控制着 Igf2/H19 基因座的基因组印记。我们以前曾证实,小鼠 H19 ICR 转基因在植入前小鼠胚胎中获得了印记 DNA 甲基化。这种活性也存在于内源性 H19 ICR 中,并在受精后保护其免受全基因组重编程。我们还在 H19 ICR 中发现了一个 118-bp 的序列,该序列负责受精后的印记甲基化。在每只转基因小鼠中,有两个突变(一个是五个 RCTG 矩阵中的突变,另一个是 118 bp 序列中 36 bp 的缺失)分别导致了父系遗传后甲基化的完全和部分缺失。有趣的是,这些突变与转录因子 Kaiso 的结合位点重叠,据报道,Kaiso 在培养细胞中参与维持人类 H19 ICR(IC1)的父系甲基化。在这项研究中,我们调查了 Kaiso 是否调节体内 H19 ICR 的印记 DNA 甲基化。无论是 Kaiso 缺失还是 118-bp 区域中 Kaiso 结合位点的突变都不会影响小鼠 H19 ICR 转基因的 DNA 甲基化。内源性小鼠 H19 ICR 在 Kaiso 缺失突变小鼠体内以野生型方式被甲基化。此外,在 Kaiso 缺失的情况下,人类 IC1 转基因在受精后获得了印记 DNA 甲基化。我们的研究结果表明,Kaiso对于小鼠转基因H19 ICR受精后的印记DNA甲基化或小鼠内源H19 ICR的甲基化印记都不是必需的。
{"title":"Imprinted DNA methylation of the H19 ICR is established and maintained in vivo in the absence of Kaiso","authors":"Hitomi Matsuzaki, Minami Kimura, Mizuki Morihashi, Keiji Tanimoto","doi":"10.1186/s13072-024-00544-8","DOIUrl":"https://doi.org/10.1186/s13072-024-00544-8","url":null,"abstract":"Paternal allele-specific DNA methylation of the imprinting control region (H19 ICR) controls genomic imprinting at the Igf2/H19 locus. We previously demonstrated that the mouse H19 ICR transgene acquires imprinted DNA methylation in preimplantation mouse embryos. This activity is also present in the endogenous H19 ICR and protects it from genome-wide reprogramming after fertilization. We also identified a 118-bp sequence within the H19 ICR that is responsible for post-fertilization imprinted methylation. Two mutations, one in the five RCTG motifs and the other a 36-bp deletion both in the 118-bp segment, caused complete and partial loss, respectively, of methylation following paternal transmission in each transgenic mouse. Interestingly, these mutations overlap with the binding site for the transcription factor Kaiso, which is reportedly involved in maintaining paternal methylation at the human H19 ICR (IC1) in cultured cells. In this study, we investigated if Kaiso regulates imprinted DNA methylation of the H19 ICR in vivo. Neither Kaiso deletion nor mutation of Kaiso binding sites in the 118-bp region affected DNA methylation of the mouse H19 ICR transgene. The endogenous mouse H19 ICR was methylated in a wild-type manner in Kaiso-null mutant mice. Additionally, the human IC1 transgene acquired imprinted DNA methylation after fertilization in the absence of Kaiso. Our results indicate that Kaiso is not essential for either post-fertilization imprinted DNA methylation of the transgenic H19 ICR in mouse or for methylation imprinting of the endogenous mouse H19 ICR.","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"25 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141259000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Native and tagged CENP-A histones are functionally inequivalent. 原生组蛋白和标记的 CENP-A 组蛋白在功能上是不等同的。
IF 4.2 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-06-02 DOI: 10.1186/s13072-024-00543-9
Minh Bui, Songjoon Baek, Reda S Bentahar, Daniël P Melters, Yamini Dalal

Background: Over the past several decades, the use of biochemical and fluorescent tags has elucidated mechanistic and cytological processes that would otherwise be impossible. The challenging nature of certain nuclear proteins includes low abundancy, poor antibody recognition, and transient dynamics. One approach to get around those issues is the addition of a peptide or larger protein tag to the target protein to improve enrichment, purification, and visualization. However, many of these studies were done under the assumption that tagged proteins can fully recapitulate native protein function.

Results: We report that when C-terminally TAP-tagged CENP-A histone variant is introduced, it undergoes altered kinetochore protein binding, differs in post-translational modifications (PTMs), utilizes histone chaperones that differ from that of native CENP-A, and can partially displace native CENP-A in human cells. Additionally, these tagged CENP-A-containing nucleosomes have reduced centromeric incorporation at early G1 phase and poorly associates with linker histone H1.5 compared to native CENP-A nucleosomes.

Conclusions: These data suggest expressing tagged versions of histone variant CENP-A may result in unexpected utilization of non-native pathways, thereby altering the biological function of the histone variant.

背景:在过去的几十年中,生化和荧光标签的使用阐明了原本不可能阐明的机理和细胞学过程。某些核蛋白的挑战性在于丰度低、抗体识别能力差以及瞬时动态性。解决这些问题的一种方法是在目标蛋白质上添加多肽或更大的蛋白质标签,以提高富集、纯化和可视化效果。然而,许多此类研究都是在假设标签蛋白能完全再现原生蛋白功能的前提下进行的:我们报告说,当引入 C 端 TAP 标记的 CENP-A 组蛋白变体时,它的动点核蛋白结合发生了改变,翻译后修饰(PTMs)不同,利用的组蛋白伴侣与原生 CENP-A 不同,并能在人体细胞中部分取代原生 CENP-A。此外,与原生 CENP-A 核小体相比,这些含有标记 CENP-A 的核小体在 G1 期早期的中心粒结合率较低,与连接组蛋白 H1.5 的结合率也较低:这些数据表明,表达标记版组蛋白变体 CENP-A 可能会导致非原生途径的意外利用,从而改变组蛋白变体的生物学功能。
{"title":"Native and tagged CENP-A histones are functionally inequivalent.","authors":"Minh Bui, Songjoon Baek, Reda S Bentahar, Daniël P Melters, Yamini Dalal","doi":"10.1186/s13072-024-00543-9","DOIUrl":"10.1186/s13072-024-00543-9","url":null,"abstract":"<p><strong>Background: </strong>Over the past several decades, the use of biochemical and fluorescent tags has elucidated mechanistic and cytological processes that would otherwise be impossible. The challenging nature of certain nuclear proteins includes low abundancy, poor antibody recognition, and transient dynamics. One approach to get around those issues is the addition of a peptide or larger protein tag to the target protein to improve enrichment, purification, and visualization. However, many of these studies were done under the assumption that tagged proteins can fully recapitulate native protein function.</p><p><strong>Results: </strong>We report that when C-terminally TAP-tagged CENP-A histone variant is introduced, it undergoes altered kinetochore protein binding, differs in post-translational modifications (PTMs), utilizes histone chaperones that differ from that of native CENP-A, and can partially displace native CENP-A in human cells. Additionally, these tagged CENP-A-containing nucleosomes have reduced centromeric incorporation at early G1 phase and poorly associates with linker histone H1.5 compared to native CENP-A nucleosomes.</p><p><strong>Conclusions: </strong>These data suggest expressing tagged versions of histone variant CENP-A may result in unexpected utilization of non-native pathways, thereby altering the biological function of the histone variant.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"17 1","pages":"19"},"PeriodicalIF":4.2,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11145777/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141201093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From compartments to loops: understanding the unique chromatin organization in neuronal cells. 从区室到环路:了解神经元细胞中独特的染色质组织。
IF 4.2 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-05-23 DOI: 10.1186/s13072-024-00538-6
Diana Zagirova, Anna Kononkova, Nikita Vaulin, Ekaterina Khrameeva

The three-dimensional organization of the genome plays a central role in the regulation of cellular functions, particularly in the human brain. This review explores the intricacies of chromatin organization, highlighting the distinct structural patterns observed between neuronal and non-neuronal brain cells. We integrate findings from recent studies to elucidate the characteristics of various levels of chromatin organization, from differential compartmentalization and topologically associating domains (TADs) to chromatin loop formation. By defining the unique chromatin landscapes of neuronal and non-neuronal brain cells, these distinct structures contribute to the regulation of gene expression specific to each cell type. In particular, we discuss potential functional implications of unique neuronal chromatin organization characteristics, such as weaker compartmentalization, neuron-specific TAD boundaries enriched with active histone marks, and an increased number of chromatin loops. Additionally, we explore the role of Polycomb group (PcG) proteins in shaping cell-type-specific chromatin patterns. This review further emphasizes the impact of variations in chromatin architecture between neuronal and non-neuronal cells on brain development and the onset of neurological disorders. It highlights the need for further research to elucidate the details of chromatin organization in the human brain in order to unravel the complexities of brain function and the genetic mechanisms underlying neurological disorders. This research will help bridge a significant gap in our comprehension of the interplay between chromatin structure and cell functions.

基因组的三维组织在调控细胞功能方面发挥着核心作用,尤其是在人脑中。这篇综述探讨了染色质组织的复杂性,强调了在神经元和非神经元脑细胞之间观察到的不同结构模式。我们整合了最近的研究成果,阐明了从不同的区隔和拓扑关联域(TADs)到染色质环的形成等不同层次染色质组织的特征。通过定义神经元和非神经元脑细胞独特的染色质景观,这些不同的结构有助于调控每种细胞类型特有的基因表达。我们特别讨论了神经元独特的染色质组织特征的潜在功能影响,例如较弱的区隔、富含活性组蛋白标记的神经元特异性 TAD 边界以及染色质环的增加。此外,我们还探讨了多聚核糖体(PcG)蛋白在塑造细胞类型特异性染色质模式中的作用。这篇综述进一步强调了神经细胞和非神经细胞之间染色质结构的变化对大脑发育和神经系统疾病发病的影响。它强调了进一步研究阐明人脑染色质组织细节的必要性,以揭示大脑功能的复杂性和神经系统疾病的遗传机制。这项研究将有助于弥补我们在理解染色质结构与细胞功能之间相互作用方面的重大差距。
{"title":"From compartments to loops: understanding the unique chromatin organization in neuronal cells.","authors":"Diana Zagirova, Anna Kononkova, Nikita Vaulin, Ekaterina Khrameeva","doi":"10.1186/s13072-024-00538-6","DOIUrl":"10.1186/s13072-024-00538-6","url":null,"abstract":"<p><p>The three-dimensional organization of the genome plays a central role in the regulation of cellular functions, particularly in the human brain. This review explores the intricacies of chromatin organization, highlighting the distinct structural patterns observed between neuronal and non-neuronal brain cells. We integrate findings from recent studies to elucidate the characteristics of various levels of chromatin organization, from differential compartmentalization and topologically associating domains (TADs) to chromatin loop formation. By defining the unique chromatin landscapes of neuronal and non-neuronal brain cells, these distinct structures contribute to the regulation of gene expression specific to each cell type. In particular, we discuss potential functional implications of unique neuronal chromatin organization characteristics, such as weaker compartmentalization, neuron-specific TAD boundaries enriched with active histone marks, and an increased number of chromatin loops. Additionally, we explore the role of Polycomb group (PcG) proteins in shaping cell-type-specific chromatin patterns. This review further emphasizes the impact of variations in chromatin architecture between neuronal and non-neuronal cells on brain development and the onset of neurological disorders. It highlights the need for further research to elucidate the details of chromatin organization in the human brain in order to unravel the complexities of brain function and the genetic mechanisms underlying neurological disorders. This research will help bridge a significant gap in our comprehension of the interplay between chromatin structure and cell functions.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"17 1","pages":"18"},"PeriodicalIF":4.2,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11112951/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141089231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Epigenetics & Chromatin
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1