Pub Date : 2024-04-16DOI: 10.1016/j.jsps.2024.102070
Adel F. Alghaith , Gamal M. Mahrous , Ahmed S. Alenazi , Suliaman M. ALMufarrij , Mohammed S. Alhazzaa , Awwad A. Radwan , Abdullah S. Alhamed , Mohamed S. Bin Salamah , Sultan Alshehri
Cancer is the leading cause of mortality worldwide. In patients with metastatic non-small cell lung cancer, epidermal growth factor receptor (EGFR) is often overexpressed. Gefitinib (GEF), an inhibitor of EGFR, is approved for the treatment of patients with metastatic non-small cell lung cancer (NSCLC). However, the low solubility and dissolution of GEF limits its bioavailability. Numerous methods, including solid dispersion (SD) and complexation, have been reported to enhance the dissolution of poorly soluble drugs. In this study, GEF complexes were prepared using methyl-β-cyclodextrin (MβCD) and hydroxypropyl-β-cyclodextrin (HPβCD) in two molar ratios (1:1 and 1:2), furthermore, GEF SDs were prepared using polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), and poloxamer-188(PXM) in three different ratios (1:2, 1:4 and 1:6 w/w). Dissolution studies were conducted on the prepared formulations. Dissolution results showed a 1.22–2.17-fold enhancement in drug dissolution after one hour compared to untreated GEF. Two formulations that showed higher dissolution enhancement were subsequently evaluated for in-vitro cytotoxicity and were formulated into tablets. The selected PVP–GEF (1:4 w/w) and MβCD–GEF (1:1M) formulas displayed improved cytotoxicity compared to untreated GEF. The IC50 values of the PVP–GEF and MβCD–GEF were 4.33 ± 0.66 and 4.84 ± 0.38 µM, respectively which are significantly lower (p < 0.05) than free GEF. In addition, the formulated tablets exhibited enhanced dissolution compared to pure GEF tablets. PVP–GEF SD tablets released (35.1 %±0.4) of GEF after one hour, while GEF-MβCD tablets released (42.2 % ± 0.7) after one hour. In the meantime, tablets containing pure GEF showed only 15 % ± 0.5 release at the same time. The findings of this study offer valuable insights for optimizing the dissolution and hence therapeutic capabilities of GEF while mitigating its limitations.
{"title":"Dissolution enhancement of Gefitinib by solid dispersion and complexation with β-cyclodextrins: In vitro testing, cytotoxic activity, and tablet formulation","authors":"Adel F. Alghaith , Gamal M. Mahrous , Ahmed S. Alenazi , Suliaman M. ALMufarrij , Mohammed S. Alhazzaa , Awwad A. Radwan , Abdullah S. Alhamed , Mohamed S. Bin Salamah , Sultan Alshehri","doi":"10.1016/j.jsps.2024.102070","DOIUrl":"https://doi.org/10.1016/j.jsps.2024.102070","url":null,"abstract":"<div><p>Cancer is the leading cause of mortality worldwide. In patients with metastatic non-small cell lung cancer, epidermal growth factor receptor (EGFR) is often overexpressed. Gefitinib (GEF), an inhibitor of EGFR, is approved for the treatment of patients with metastatic non-small cell lung cancer (NSCLC). However, the low solubility and dissolution of GEF limits its bioavailability. Numerous methods, including solid dispersion (SD) and complexation, have been reported to enhance the dissolution of poorly soluble drugs. In this study, GEF complexes were prepared using methyl-β-cyclodextrin (MβCD) and hydroxypropyl-β-cyclodextrin (HPβCD) in two molar ratios (1:1 and 1:2), furthermore, GEF SDs were prepared using polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), and poloxamer-188(PXM) in three different ratios (1:2, 1:4 and 1:6 w/w). Dissolution studies were conducted on the prepared formulations. Dissolution results showed a 1.22–2.17-fold enhancement in drug dissolution after one hour compared to untreated GEF. Two formulations that showed higher dissolution enhancement were subsequently evaluated for in-vitro cytotoxicity and were formulated into tablets. The selected PVP–GEF (1:4 w/w) and MβCD–GEF (1:1M) formulas displayed improved cytotoxicity compared to untreated GEF. The IC<sub>50</sub> values of the PVP–GEF and MβCD–GEF were 4.33 ± 0.66 and 4.84 ± 0.38 µM, respectively which are significantly lower (p < 0.05) than free GEF. In addition, the formulated tablets exhibited enhanced dissolution compared to pure GEF tablets. PVP–GEF SD tablets released (35.1 %<em>±0</em>.4) of GEF after one hour, while GEF-MβCD tablets released (42.2 % <em>± 0.7)</em> after one hour. In the meantime, tablets containing pure GEF showed only 15 % <em>±</em> 0.5 release at the same time. The findings of this study offer valuable insights for optimizing the dissolution and hence therapeutic capabilities of GEF while mitigating its limitations.</p></div>","PeriodicalId":49257,"journal":{"name":"Saudi Pharmaceutical Journal","volume":"32 6","pages":"Article 102070"},"PeriodicalIF":4.1,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319016424001208/pdfft?md5=5e7d0845d40ef62a9216841ca91d88fc&pid=1-s2.0-S1319016424001208-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140605830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-14DOI: 10.1016/j.jsps.2024.102069
Raha Orfali , Safina Ghaffar , Lateefa AlAjlan , Shagufta Perveen , Eman Al-Turki , Fuad Ameen
The expeditious incidence of diabetes mellitus in Riyadh, Saudi Arabia, there is a significant increase in the total number of people with diabetic foot ulcers. For diabetic lower limb wound infections (DLWs) to be effectively treated, information on the prevalence of bacteria that cause in this region as well as their patterns of antibiotic resistance is significant. Growing evidence indicates that biofilm formers are present in chronic DFU and that these biofilm formers promote the emergence of multi-drug antibiotic resistant (MDR) strains and therapeutic rejection. The current study targeted to isolate bacteria from wounds caused by diabetes specifically at hospitals in Riyadh and assess the bacterium's resistance to antibiotics and propensity to develop biofilms. Totally 63 pathogenic microbes were identified from 70 patients suffering from DFU. Sixteen (25.4%) of the 63 bacterial strains were gram-positive, and 47 (74.6%) were gram-negative. Most of the gram-negative bacteria were resistant to tigecycline, nitrofurantoin, ampicillin, amoxicillin, cefalotin, and cefoxitin. Several gram-negative bacteria are susceptible to piperacillin, meropenem, amikacin, gentamicin, imipenem, ciprofloxacin, and trimethoprim. The most significant antibiotic that demonstrated 100% susceptibility to all pathogens was meropenem. Serratia marcescens and Staphylococcus aureus were shown to have significant biofilm formers. MDR bacterial strains comprised about 87.5% of the biofilm former strains. To the best of our knowledge, Riyadh, Saudi Arabia is the first region where Serratia marcescens was the most common bacteria from DFU infections. Our research findings would deliver information on evidence-based alternative strategies to develop effective treatment approaches for DFU treatment.
{"title":"Diabetes-related lower limb wounds: Antibiotic susceptibility pattern and biofilm formation","authors":"Raha Orfali , Safina Ghaffar , Lateefa AlAjlan , Shagufta Perveen , Eman Al-Turki , Fuad Ameen","doi":"10.1016/j.jsps.2024.102069","DOIUrl":"https://doi.org/10.1016/j.jsps.2024.102069","url":null,"abstract":"<div><p>The expeditious incidence of diabetes mellitus in Riyadh, Saudi Arabia, there is a significant increase in the total number of people with diabetic foot ulcers. For diabetic lower limb wound infections (DLWs) to be effectively treated, information on the prevalence of bacteria that cause in this region as well as their patterns of antibiotic resistance is significant. Growing evidence indicates that biofilm formers are present in chronic DFU and that these biofilm formers promote the emergence of multi-drug antibiotic resistant (MDR) strains and therapeutic rejection. The current study targeted to isolate bacteria from wounds caused by diabetes specifically at hospitals in Riyadh and assess the bacterium's resistance to antibiotics and propensity to develop biofilms. Totally 63 pathogenic microbes were identified from 70 patients suffering from DFU. Sixteen (25.4%) of the 63 bacterial strains were gram-positive, and 47 (74.6%) were gram-negative. Most of the gram-negative bacteria were resistant to tigecycline, nitrofurantoin, ampicillin, amoxicillin, cefalotin, and cefoxitin. Several gram-negative bacteria are susceptible to piperacillin, meropenem, amikacin, gentamicin, imipenem, ciprofloxacin, and trimethoprim. The most significant antibiotic that demonstrated 100% susceptibility to all pathogens was meropenem. <em>Serratia marcescens</em> and <em>Staphylococcus aureus</em> were shown to have significant biofilm formers. MDR bacterial strains comprised about 87.5% of the biofilm former strains. To the best of our knowledge, Riyadh, Saudi Arabia is the first region where <em>Serratia marcescens</em> was the most common bacteria from DFU infections. Our research findings would deliver information on evidence-based alternative strategies to develop effective treatment approaches for DFU treatment.</p></div>","PeriodicalId":49257,"journal":{"name":"Saudi Pharmaceutical Journal","volume":"32 6","pages":"Article 102069"},"PeriodicalIF":4.1,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319016424001191/pdfft?md5=f16c50ce48c39ad9af772475e7507c8e&pid=1-s2.0-S1319016424001191-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140620727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-12DOI: 10.1016/j.jsps.2024.102068
N. V. L. Sirisha Mulukuri , Sujeet Kumar , Moumita Dhara , Gupta Dheeraj Rajesh , Pankaj Kumar
Andrographolide is a natural diterpene lactone with multiple biological effects. In the present study, a total of 11 andrographolide-loaded emulgels (ANG 1- ANG 11) were prepared by emulsification and solvent evaporation method using flaxseed oil and xanthan gum in different ratios, as suggested by the Design-Expert software. A 2-factor-5-level design was employed with different responses including spreadability, extrudability, viscosity, and drug release after 1 h (h) and 24 h. Based on the Design-Expert software response, the optimized emulgel ANG 12 was formulated and evaluated. The 24 h In-vitro drug release was found to be 95.7 % following Higuchi kinetics. Ex-vivo skin retention of 784.78 ug/cm2 was observed during the study. MTT assay performed on Human epidermoid carcinoma (A-431) cells demonstrated cell growth arrest at G0/G1 and G2/M phase after 24 h of ANG 12 treatment (IC50: 11.5 µg/ml). The cellular permeability of ANG-12 was assessed by Fluorescein isothiocyanate (FITC) assay. Compared to untreated cells (0.54 % uptake) the ANG-12 treated cells had shown 87.17 % FITC permeation. The biocompatibility study performed on non-cancerous human dermal fibroblast cells (HDF cells) shows 91.54 % viability after 24 h of the treatment showing the non-toxic nature of ANG-12. Confocal imaging had shown a significant time-dependent increase in in-vivo cellular uptake with enhanced, progressive penetration of the emulgel into the skin. An in-vivo skin irritation study conducted on Swiss albino mice confirmed the safety aspects of the ANG 12. Hence, it can be concluded that nanoemulgel of andrographolide (ANG 12) could be a novel approach to treating skin cancer.
{"title":"Statistical modeling, optimization and characterization of andrographolide loaded emulgel for its therapeutic application on skin cancer through enhancing its skin permeability","authors":"N. V. L. Sirisha Mulukuri , Sujeet Kumar , Moumita Dhara , Gupta Dheeraj Rajesh , Pankaj Kumar","doi":"10.1016/j.jsps.2024.102068","DOIUrl":"https://doi.org/10.1016/j.jsps.2024.102068","url":null,"abstract":"<div><p>Andrographolide is a natural diterpene lactone with multiple biological effects. In the present study, a total of 11 andrographolide-loaded emulgels (ANG 1- ANG 11) were prepared by emulsification and solvent evaporation method using flaxseed oil and xanthan gum in different ratios, as suggested by the Design-Expert software. A 2-factor-5-level design was employed with different responses including spreadability, extrudability, viscosity, and drug release after 1 h (h) and 24 h. Based on the Design-Expert software response, the optimized emulgel ANG 12 was formulated and evaluated. The 24 h <em>In-vitro</em> drug release was found to be 95.7 % following Higuchi kinetics. <em>Ex-vivo</em> skin retention of 784.78 ug/cm<sup>2</sup> was observed during the study. MTT assay performed on Human epidermoid carcinoma (A-431) cells demonstrated cell growth arrest at G0/G1 and G2/M phase after 24 h of ANG 12 treatment (IC<sub>50</sub>: 11.5 µg/ml). The cellular permeability of ANG-12 was assessed by Fluorescein isothiocyanate (FITC) assay. Compared to untreated cells (0.54 % uptake) the ANG-12 treated cells had shown 87.17 % FITC permeation. The biocompatibility study performed on non-cancerous human dermal fibroblast cells (HDF cells) shows 91.54 % viability after 24 h of the treatment showing the non-toxic nature of ANG-12. Confocal imaging had shown a significant time-dependent increase in <em>in-vivo</em> cellular uptake with enhanced, progressive penetration of the emulgel into the skin. An <em>in-vivo</em> skin irritation study conducted on Swiss albino mice confirmed the safety aspects of the ANG 12. Hence, it can be concluded that nanoemulgel of andrographolide (ANG 12) could be a novel approach to treating skin cancer.</p></div>","PeriodicalId":49257,"journal":{"name":"Saudi Pharmaceutical Journal","volume":"32 6","pages":"Article 102068"},"PeriodicalIF":4.1,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S131901642400118X/pdfft?md5=70da1db50ff86c260b041adb66e5034f&pid=1-s2.0-S131901642400118X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140645174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-12DOI: 10.1016/j.jsps.2024.102063
Rihaf Alfaraj , Sandra Hababah , Esra K. Eltayb , Fulwah Y. Alqahtani , Fadilah S. Aleanizy
Purpose
Isotretinoin (ITN) is a poorly water-soluble drug. The objective of this study was to design a successful liquid self-nanoemulsifying drug delivery system (L-SNEDDS) for ITN to improve its solubility, dissolution rate, and antibacterial activity.
Methods
According to solubility and emulsification studies, castor oil, Cremophor EL, and Transcutol HP were selected as system excipients. A pseudo ternary phase diagram was constructed to reveal the self-emulsification area. The developed SNEDDS were visually assessed, and the droplet size was measured. In vitro release studies and stability studies were conducted. The antimicrobial effectiveness against multiple bacterial strains, including Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and different accessory gene regulator (Agr) variants were investigated for the optimum ITN-loaded SNEDDS formulation.
Results
Characterization studies showed emulsion homogeneity and stability (%T 95.40–99.20, A graded) with low droplet sizes (31.87 ± 1.23 nm–115.47 ± 0.36 nm). It was found that the developed ITN-SNEDDS provided significantly a higher release rate (>96 % in 1 h) as compared to the raw drug (<10 % in 1 h). The in vitro antimicrobial activities of pure ITN and ITN-loaded SNEDDS demonstrated a remarkable inhibitory effect on bacterial growth with statistically significant findings (p < 0.0001) for all tested strains when treated with ITN-SNEDDS as compared to the raw drug.
Conclusion
These outcomes suggested that SNEDDS could be a potential approach for improving solubility, dissolution rates, and antibacterial activity of ITN.
{"title":"Isotretinoin self-nano-emulsifying drug delivery system: Preparation, optimization and antibacterial evaluation","authors":"Rihaf Alfaraj , Sandra Hababah , Esra K. Eltayb , Fulwah Y. Alqahtani , Fadilah S. Aleanizy","doi":"10.1016/j.jsps.2024.102063","DOIUrl":"https://doi.org/10.1016/j.jsps.2024.102063","url":null,"abstract":"<div><h3>Purpose</h3><p>Isotretinoin (ITN) is a poorly water-soluble drug. The objective of this study was to design a successful liquid self-nanoemulsifying drug delivery system (L-SNEDDS) for ITN to improve its solubility, dissolution rate, and antibacterial activity.</p></div><div><h3>Methods</h3><p>According to solubility and emulsification studies, castor oil, Cremophor EL, and Transcutol HP were selected as system excipients. A pseudo ternary phase diagram was constructed to reveal the self-emulsification area. The developed SNEDDS were visually assessed, and the droplet size was measured. In vitro release studies and stability studies were conducted. The antimicrobial effectiveness against multiple bacterial strains, including Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and different accessory gene regulator (Agr) variants were investigated for the optimum ITN-loaded SNEDDS formulation.</p></div><div><h3>Results</h3><p>Characterization studies showed emulsion homogeneity and stability (%T 95.40–99.20, A graded) with low droplet sizes (31.87 ± 1.23 nm–115.47 ± 0.36 nm). It was found that the developed ITN-SNEDDS provided significantly a higher release rate (>96 % in 1 h) as compared to the raw drug (<10 % in 1 h). The in vitro antimicrobial activities of pure ITN and ITN-loaded SNEDDS demonstrated a remarkable inhibitory effect on bacterial growth with statistically significant findings (p < 0.0001) for all tested strains when treated with ITN-SNEDDS as compared to the raw drug.</p></div><div><h3>Conclusion</h3><p>These outcomes suggested that SNEDDS could be a potential approach for improving solubility, dissolution rates, and antibacterial activity of ITN.</p></div>","PeriodicalId":49257,"journal":{"name":"Saudi Pharmaceutical Journal","volume":"32 6","pages":"Article 102063"},"PeriodicalIF":4.1,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319016424001130/pdfft?md5=33ce1210b76e28145c211db8f048967b&pid=1-s2.0-S1319016424001130-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140554723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-09DOI: 10.1016/j.jsps.2024.102066
Varda Shakeel , Iftikhar Hussain Gul , Peter John , Attya Bhatti
Nanotechnology has transformed drug delivery, offering opportunities to enhance treatment outcomes while minimizing adverse effects. This study focuses on gelatin-coated cobalt and manganese ferrite nanoparticles for potential drug delivery applications. The synthesis involved a co-precipitation method, and the nanoparticles were characterized using various techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and vibrating sample magnetometer (VSM). Results revealed stable structures, distinct chemical features introduced by gelatin coating, and unique magnetic properties. The hemolysis assay demonstrated reduced hemolytic activity with gelatin coating, enhancing biocompatibility. Drug release studies indicated differential release profiles, with gelatin-coated cobalt ferrite exhibiting higher drug release compared to gelatin-coated manganese ferrite. The Higuchi model supported diffusion-controlled drug release for gelatin-coated cobalt ferrite. These findings suggest the potential of gelatin-coated ferrite nanoparticles for controlled and targeted drug delivery, highlighting their significance in advancing nanomedicine.
纳米技术改变了给药方式,为提高治疗效果同时减少不良反应提供了机会。本研究的重点是明胶包覆的钴和锰铁氧体纳米粒子在潜在药物递送方面的应用。该研究采用共沉淀法合成纳米颗粒,并使用多种技术对其进行表征,包括 X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、傅立叶变换红外光谱 (FTIR)、拉曼光谱和振动样品磁力计 (VSM)。研究结果显示了稳定的结构、明胶涂层带来的独特化学特征以及独特的磁性。溶血试验表明,明胶涂层降低了溶血活性,增强了生物相容性。药物释放研究显示了不同的释放曲线,与明胶包裹的锰铁氧体相比,明胶包裹的钴铁氧体具有更高的药物释放率。樋口模型支持明胶包覆钴铁氧体的扩散控制药物释放。这些研究结果表明,明胶包覆的铁氧体纳米粒子具有控制和靶向给药的潜力,在推动纳米医学发展方面具有重要意义。
{"title":"Biocompatible gelatin-coated ferrite nanoparticles: A magnetic approach to advanced drug delivery","authors":"Varda Shakeel , Iftikhar Hussain Gul , Peter John , Attya Bhatti","doi":"10.1016/j.jsps.2024.102066","DOIUrl":"https://doi.org/10.1016/j.jsps.2024.102066","url":null,"abstract":"<div><p>Nanotechnology has transformed drug delivery, offering opportunities to enhance treatment outcomes while minimizing adverse effects. This study focuses on gelatin-coated cobalt and manganese ferrite nanoparticles for potential drug delivery applications. The synthesis involved a co-precipitation method, and the nanoparticles were characterized using various techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and vibrating sample magnetometer (VSM). Results revealed stable structures, distinct chemical features introduced by gelatin coating, and unique magnetic properties. The hemolysis assay demonstrated reduced hemolytic activity with gelatin coating, enhancing biocompatibility. Drug release studies indicated differential release profiles, with gelatin-coated cobalt ferrite exhibiting higher drug release compared to gelatin-coated manganese ferrite. The Higuchi model supported diffusion-controlled drug release for gelatin-coated cobalt ferrite. These findings suggest the potential of gelatin-coated ferrite nanoparticles for controlled and targeted drug delivery, highlighting their significance in advancing nanomedicine.</p></div>","PeriodicalId":49257,"journal":{"name":"Saudi Pharmaceutical Journal","volume":"32 6","pages":"Article 102066"},"PeriodicalIF":4.1,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319016424001166/pdfft?md5=ccda88027e67e784e526d3315ceb5b4e&pid=1-s2.0-S1319016424001166-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140824015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-08DOI: 10.1016/j.jsps.2024.102065
Ahmed Ibrahim Al-Asmari
Workplace drug testing (WDT) is essential to prevent drug abuse disorders among the workforce because it can impair work performance and safety. However, WDT is limited by many challenges, such as urine adulteration, specimen selection, and new psychoactive substances (NPS). This review examined the issues related to WDT. Various scientific databases were searched for articles on WDT for drug detection published between 1986 (when WDT started) and January 2024. The review discussed the history, importance, and challenges of WDT, such as time of specimen collection/testing, specimen adulteration, interference in drug testing, and detection of NPS. It evaluated the best methods to detect NPS in forensic laboratories. Moreover, it compared different techniques that can enhance WDT, such as immunoassays, targeted mass spectrometry, and nontargeted mass spectrometry. These techniques can be used to screen for known and unknown drugs and metabolites in biological samples. This review assessed the strengths and weaknesses of such techniques, such as their validation, identification, library search, and reference standards. Furthermore, this review contrasted the benefits and drawbacks of different specimens for WDT and discussed studies that have applied these techniques for WDT. WDT remains the best approach for preventing drug abuse in the workplace, despite the challenges posed by NPS and limitations of the screening methods. Nontargeted techniques using high-resolution liquid chromatography-mass spectrometry (MS)/gas chromatography–tandem MS can improve the detection and identification of drugs during WDT and provide useful information regarding the prevalence, trends, and toxicity of both traditional and NPS drugs. Finally, this review suggested that WDT can be improved by using a combination of techniques, multiple specimens, and online library searches in case of new NPS as well as by updating the methods and databases to include new NPS and metabolites as they emerge. To the best of the author's knowledge, this is the first review to address NPS as an issue in WDT and its application and propose the best methods to detect these substances in the workplace environment.
{"title":"A critical review of workplace drug testing methods for old and new psychoactive substances: Gaps, advances, and perspectives","authors":"Ahmed Ibrahim Al-Asmari","doi":"10.1016/j.jsps.2024.102065","DOIUrl":"https://doi.org/10.1016/j.jsps.2024.102065","url":null,"abstract":"<div><p>Workplace drug testing (WDT) is essential to prevent drug abuse disorders among the workforce because it can impair work performance and safety. However, WDT is limited by many challenges, such as urine adulteration, specimen selection, and new psychoactive substances (NPS). This review examined the issues related to WDT. Various scientific databases were searched for articles on WDT for drug detection published between 1986 (when WDT started) and January 2024. The review discussed the history, importance, and challenges of WDT, such as time of specimen collection/testing, specimen adulteration, interference in drug testing, and detection of NPS. It evaluated the best methods to detect NPS in forensic laboratories. Moreover, it compared different techniques that can enhance WDT, such as immunoassays, targeted mass spectrometry, and nontargeted mass spectrometry. These techniques can be used to screen for known and unknown drugs and metabolites in biological samples. This review assessed the strengths and weaknesses of such techniques, such as their validation, identification, library search, and reference standards. Furthermore, this review contrasted the benefits and drawbacks of different specimens for WDT and discussed studies that have applied these techniques for WDT. WDT remains the best approach for preventing drug abuse in the workplace, despite the challenges posed by NPS and limitations of the screening methods. Nontargeted techniques using high-resolution liquid chromatography-mass spectrometry (MS)/gas chromatography–tandem MS can improve the detection and identification of drugs during WDT and provide useful information regarding the prevalence, trends, and toxicity of both traditional and NPS drugs. Finally, this review suggested that WDT can be improved by using a combination of techniques, multiple specimens, and online library searches in case of new NPS as well as by updating the methods and databases to include new NPS and metabolites as they emerge. To the best of the author's knowledge, this is the first review to address NPS as an issue in WDT and its application and propose the best methods to detect these substances in the workplace environment.</p></div>","PeriodicalId":49257,"journal":{"name":"Saudi Pharmaceutical Journal","volume":"32 5","pages":"Article 102065"},"PeriodicalIF":4.1,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319016424001154/pdfft?md5=b3ec1bb8b51be956d62a0e58b47861e2&pid=1-s2.0-S1319016424001154-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140551755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-07DOI: 10.1016/j.jsps.2024.102064
Sulaiman S. Alhudaithi , Mohd Abul Kalam , Lama Binobaid , Raisuddin Ali , Mohammed M. Almutairi , Wajhul Qamar , Hessa Bin Hithlayn , Atheer Almutairi , Abdullah K. Alshememry
Hepatocellular carcinoma (HCC) exhibits high mortality rates in the advanced stage (>90 %). Sorafenib (SORA) is a targeted therapy approved for the treatment of advanced HCC; however, the reported response rate to such a therapeutic is suboptimal (<3%). Piperine (PIP) is an alkaloid demonstrated to exert a direct tumoricidal activity in HCC and improve the pharmacokinetic profiles of anticancer drugs including SORA. In this study, we developed a strategy to improve efficacy outcomes in HCC using PIP as an add-on treatment to support the first-line therapy SORA using biodegradable Poly (D, L-Lactide-co-glycolide, PLGA) nanoparticles (NPs). SORA and PIP (both exhibit low aqueous solubility) were co-loaded into PLGA NPs (PNPs) and stabilized with various concentrations of polyvinyl alcohol (PVA). The SORA and PIP-loaded PNPs (SP-PNPs) were characterized using Fourier Transform Infrared (FTIR) Spectroscopy, X-ray Powder Diffraction (XRD), Dynamic Light Scattering (DLS), and Scanning Electron Microscopy (SEM), Release of these drugs from SP-PNPs was investigated in vitro at both physiological and acidic pH, and kinetic models were employed to assess the mechanism of drug release. The in vitro efficacy of SP-PNPs against HCC cells (HepG2) was also evaluated. FTIR and XRD analyses revealed that the drugs encapsulated in PNPs were in an amorphous state, with no observed chemical interactions among the drugs or excipients. Assessment of drug release in vitro at pH 5 and 7.4 showed that SORA and PIP loaded in PNPs with 0.5 % PVA were released in a sustained manner, unlike pure drugs, which exhibited relatively fast release. SP-PNPs with 0.5 % PVA were spherical, had an average size of 224 nm, and had a high encapsulation efficiency (SORA ∼ 82 %, PIP ∼ 79 %), as well as superior cytotoxicity compared to SORA monotherapy in vitro. These results suggest that combining PIP with SORA using PNPs may be an effective strategy for the treatment of HCC and may set the stage for a comprehensive in vivo study to evaluate the efficacy and safety of this novel formulation using a murine HCC model.
{"title":"Sorafenib and Piperine co-loaded PLGA nanoparticles: Development, characterization, and anti-cancer activity against hepatocellular carcinoma cell line","authors":"Sulaiman S. Alhudaithi , Mohd Abul Kalam , Lama Binobaid , Raisuddin Ali , Mohammed M. Almutairi , Wajhul Qamar , Hessa Bin Hithlayn , Atheer Almutairi , Abdullah K. Alshememry","doi":"10.1016/j.jsps.2024.102064","DOIUrl":"https://doi.org/10.1016/j.jsps.2024.102064","url":null,"abstract":"<div><p>Hepatocellular carcinoma (HCC) exhibits high mortality rates in the advanced stage (>90 %). Sorafenib (SORA) is a targeted therapy approved for the treatment of advanced HCC; however, the reported response rate to such a therapeutic is suboptimal (<3%). Piperine (PIP) is an alkaloid demonstrated to exert a direct tumoricidal activity in HCC and improve the pharmacokinetic profiles of anticancer drugs including SORA. In this study, we developed a strategy to improve efficacy outcomes in HCC using PIP as an add-on treatment to support the first-line therapy SORA using biodegradable Poly (D, L-Lactide-co-glycolide, PLGA) nanoparticles (NPs). SORA and PIP (both exhibit low aqueous solubility) were co-loaded into PLGA NPs (PNPs) and stabilized with various concentrations of polyvinyl alcohol (PVA). The SORA and PIP-loaded PNPs (SP-PNPs) were characterized using Fourier Transform Infrared (FTIR) Spectroscopy, X-ray Powder Diffraction (XRD), Dynamic Light Scattering (DLS), and Scanning Electron Microscopy (SEM), Release of these drugs from SP-PNPs was investigated <em>in vitro</em> at both physiological and acidic pH, and kinetic models were employed to assess the mechanism of drug release. The <em>in vitro</em> efficacy of SP-PNPs against HCC cells (HepG2) was also evaluated. FTIR and XRD analyses revealed that the drugs encapsulated in PNPs were in an amorphous state, with no observed chemical interactions among the drugs or excipients. Assessment of drug release <em>in vitro</em> at pH 5 and 7.4 showed that SORA and PIP loaded in PNPs with 0.5 % PVA were released in a sustained manner, unlike pure drugs, which exhibited relatively fast release. SP-PNPs with 0.5 % PVA were spherical, had an average size of 224 nm, and had a high encapsulation efficiency (SORA ∼ 82 %, PIP ∼ 79 %), as well as superior cytotoxicity compared to SORA monotherapy <em>in vitro</em>. These results suggest that combining PIP with SORA using PNPs may be an effective strategy for the treatment of HCC and may set the stage for a comprehensive <em>in vivo</em> study to evaluate the efficacy and safety of this novel formulation using a murine HCC model.</p></div>","PeriodicalId":49257,"journal":{"name":"Saudi Pharmaceutical Journal","volume":"32 5","pages":"Article 102064"},"PeriodicalIF":4.1,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319016424001142/pdfft?md5=fd08dcae2bd9f3976c80e36251bd5ed0&pid=1-s2.0-S1319016424001142-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140539262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This research describes the synthesis by an environmentally-friendly method, microwave irradiation, development and analysis of three novel and one previously identified Schiff base derivative as a potential inhibitor of bovine xanthine oxidase (BXO), a key enzyme implicated in the progression of gout. Meticulous experimentation revealed that these compounds (10, 9, 4, and 7) have noteworthy inhibitory effects on BXO, with IC50 values ranging from 149.56 µM to 263.60 µM, indicating their good efficacy compared to that of the standard control. The validation of these results was further enhanced through comprehensive in silico studies, which revealed the pivotal interactions between the inhibitors and the catalytic sites of BXO, with a particular emphasis on the imine group (-C = N-) functionalities. Intriguingly, the compounds exhibiting the highest inhibition rates also showcase advantageous ADMET profiles, alongside encouraging initial assessments via PASS, hinting at their broad-spectrum potential. The implications of these findings are profound, suggesting that these Schiff base derivatives not only offer a new vantage point for the inhibition of BXO but also hold considerable promise as innovative therapeutic agents in the management and treatment of gout, marking a significant leap forward in the quest for more effective gout interventions.
{"title":"Unveiling potent Schiff base derivatives with selective xanthine oxidase inhibition: In silico and in vitro approach","authors":"Fatna Bellahcene , Khedidja Benarous , Arif Mermer , Houssem Boulebd , Talia Serseg , Abderahmane Linani , Alaeddine Kaouka , Mohamed Yousfi , Asad Syed , Abdallah M. Elgorban , Yasuhiro Ozeki , Sarkar M.A. Kawsar","doi":"10.1016/j.jsps.2024.102062","DOIUrl":"https://doi.org/10.1016/j.jsps.2024.102062","url":null,"abstract":"<div><p>This research describes the synthesis by an environmentally-friendly method, microwave irradiation, development and analysis of three novel and one previously identified Schiff base derivative as a potential inhibitor of bovine xanthine oxidase (BXO), a key enzyme implicated in the progression of gout. Meticulous experimentation revealed that these compounds (<strong>10</strong>, <strong>9</strong>, <strong>4</strong>, and <strong>7</strong>) have noteworthy inhibitory effects on BXO, with IC50 values ranging from 149.56 µM to 263.60 µM, indicating their good efficacy compared to that of the standard control. The validation of these results was further enhanced through comprehensive in silico studies, which revealed the pivotal interactions between the inhibitors and the catalytic sites of BXO, with a particular emphasis on the imine group (-C = N-) functionalities. Intriguingly, the compounds exhibiting the highest inhibition rates also showcase advantageous ADMET profiles, alongside encouraging initial assessments via PASS, hinting at their broad-spectrum potential. The implications of these findings are profound, suggesting that these Schiff base derivatives not only offer a new vantage point for the inhibition of BXO but also hold considerable promise as innovative therapeutic agents in the management and treatment of gout, marking a significant leap forward in the quest for more effective gout interventions.</p></div>","PeriodicalId":49257,"journal":{"name":"Saudi Pharmaceutical Journal","volume":"32 5","pages":"Article 102062"},"PeriodicalIF":4.1,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319016424001129/pdfft?md5=7207201b9c4a4e327df6fc7c1195b88c&pid=1-s2.0-S1319016424001129-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140533390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-03DOI: 10.1016/j.jsps.2024.102061
Ohoud Aljuhani , Khalid Al Sulaiman , Ghazwa B. Korayem , Ali F. Altebainawi , Abdulrahman Alshaya , Majed Nahari , Khuzama Alsamnan , Munirah A. Alkathiri , Bodoor S. Al-Dosari , Abeer A. Alenazi , Samiah Alsohimi , Lina I. Alnajjar , Mashael Alfaifi , Nora AlQussair , Reem M. Alanazi , Munirah F. Alhmoud , Nadin L. Alanazi , Hadeel Alkofide , Aljawharah M. Alenezi , Ramesh Vishwakarma
Backgrounds
Ketamine possesses analgesia, anti-inflammation, anticonvulsant, and neuroprotection properties. However, the evidence that supports its use in mechanically ventilated critically ill patients with COVID-19 is insufficient. The study's goal was to assess ketamine's effectiveness and safety in critically ill, mechanically ventilated (MV) patients with COVID-19.
Methods
Adult critically ill patients with COVID-19 were included in a multicenter retrospective-prospective cohort study. Patients admitted between March 1, 2020, and July 31, 2021, to five ICUs in Saudi Arabia were included. Eligible patients who required MV within 24 hours of ICU admission were divided into two sub-cohort groups based on their use of ketamine (Control vs. Ketamine). The primary outcome was the length of stay (LOS) in the hospital. P/F ratio differences, lactic acid normalization, MV duration, and mortality were considered secondary outcomes. Propensity score (PS) matching was used (1:2 ratio) based on the selected criteria.
Results
In total, 1,130 patients met the eligibility criteria. Among these, 1036 patients (91.7 %) were in the control group, whereas 94 patients (8.3 %) received ketamine. The total number of patients after PS matching, was 264 patients, including 88 patients (33.3 %) who received ketamine. The ketamine group's LOS was significantly lower (beta coefficient (95 % CI): −0.26 (−0.45, −0.07), P = 0.008). Furthermore, the PaO2/FiO2 ratio significantly improved 24 hours after the start of ketamine treatment compared to the pre-treatment period (6 hours) (124.9 (92.1, 184.5) vs. 106 (73.1, 129.3; P = 0.002). Additionally, the ketamine group had a substantially shorter mean time for lactic acid normalization (beta coefficient (95 % CI): −1.55 (−2.42, −0.69), P 0.01). However, there were no significant differences in the duration of MV or mortality.
Conclusions
Ketamine-based sedation was associated with lower hospital LOS and faster lactic acid normalization but no mortality benefits in critically ill patients with COVID-19. Thus, larger prospective studies are recommended to assess the safety and effectiveness of ketamine as a sedative in critically ill adult patients.
{"title":"Ketamine-based Sedation Use in Mechanically Ventilated Critically Ill Patients with COVID-19: A Multicenter Cohort Study","authors":"Ohoud Aljuhani , Khalid Al Sulaiman , Ghazwa B. Korayem , Ali F. Altebainawi , Abdulrahman Alshaya , Majed Nahari , Khuzama Alsamnan , Munirah A. Alkathiri , Bodoor S. Al-Dosari , Abeer A. Alenazi , Samiah Alsohimi , Lina I. Alnajjar , Mashael Alfaifi , Nora AlQussair , Reem M. Alanazi , Munirah F. Alhmoud , Nadin L. Alanazi , Hadeel Alkofide , Aljawharah M. Alenezi , Ramesh Vishwakarma","doi":"10.1016/j.jsps.2024.102061","DOIUrl":"https://doi.org/10.1016/j.jsps.2024.102061","url":null,"abstract":"<div><h3>Backgrounds</h3><p>Ketamine possesses analgesia, anti-inflammation, anticonvulsant, and neuroprotection properties. However, the evidence that supports its use in mechanically ventilated critically ill patients with COVID-19 is insufficient. The study's goal was to assess ketamine's effectiveness and safety in critically ill, mechanically ventilated (MV) patients with COVID-19.</p></div><div><h3>Methods</h3><p>Adult critically ill patients with COVID-19 were included in a multicenter retrospective-prospective cohort study. Patients admitted between March 1, 2020, and July 31, 2021, to five ICUs in Saudi Arabia were included. Eligible patients who required MV within 24 hours of ICU admission were divided into two sub-cohort groups based on their use of ketamine (Control vs. Ketamine). The primary outcome was the length of stay (LOS) in the hospital. P/F ratio differences, lactic acid normalization, MV duration, and mortality were considered secondary outcomes. Propensity score (PS) matching was used (1:2 ratio) based on the selected criteria.</p></div><div><h3>Results</h3><p>In total, 1,130 patients met the eligibility criteria. Among these, 1036 patients (91.7 %) were in the control group, whereas 94 patients (8.3 %) received ketamine. The total number of patients after PS matching, was 264 patients, including 88 patients (33.3 %) who received ketamine. The ketamine group's LOS was significantly lower (beta coefficient (95 % CI): −0.26 (−0.45, −0.07), P = 0.008). Furthermore, the PaO2/FiO2 ratio significantly improved 24 hours after the start of ketamine treatment compared to the pre-treatment period (6 hours) (124.9 (92.1, 184.5) vs. 106 (73.1, 129.3; P = 0.002). Additionally, the ketamine group had a substantially shorter mean time for lactic acid normalization (beta coefficient (95 % CI): −1.55 (−2.42, −0.69), P 0.01). However, there were no significant differences in the duration of MV or mortality.</p></div><div><h3>Conclusions</h3><p>Ketamine-based sedation was associated with lower hospital LOS and faster lactic acid normalization but no mortality benefits in critically ill patients with COVID-19. Thus, larger prospective studies are recommended to assess the safety and effectiveness of ketamine as a sedative in critically ill adult patients.</p></div>","PeriodicalId":49257,"journal":{"name":"Saudi Pharmaceutical Journal","volume":"32 5","pages":"Article 102061"},"PeriodicalIF":4.1,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319016424001117/pdfft?md5=0c96de1f613524eb88838a45ba4548e3&pid=1-s2.0-S1319016424001117-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140351404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}