首页 > 最新文献

Electronic Journal of Statistics最新文献

英文 中文
Characterization of the solutions set of the generalized LASSO problems for non-full rank cases 非满秩情况下广义LASSO问题解集的刻画
IF 1.1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2023-01-01 DOI: 10.1214/23-ejs2138
Jaesung Hwang, Joong-Yeon Won, Yongdai Kim
{"title":"Characterization of the solutions set of the generalized LASSO problems for non-full rank cases","authors":"Jaesung Hwang, Joong-Yeon Won, Yongdai Kim","doi":"10.1214/23-ejs2138","DOIUrl":"https://doi.org/10.1214/23-ejs2138","url":null,"abstract":"","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46041984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tests for high-dimensional single-index models 高维单索引模型的测试
IF 1.1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2023-01-01 DOI: 10.1214/23-ejs2109
Leheng Cai, Xu Guo, Gaorong Li, Falong Tan
{"title":"Tests for high-dimensional single-index models","authors":"Leheng Cai, Xu Guo, Gaorong Li, Falong Tan","doi":"10.1214/23-ejs2109","DOIUrl":"https://doi.org/10.1214/23-ejs2109","url":null,"abstract":"","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42395312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
High-dimensional composite quantile regression: Optimal statistical guarantees and fast algorithms 高维复合分位数回归:最优统计保证和快速算法
4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2023-01-01 DOI: 10.1214/23-ejs2147
Haeseong Moon, Wen-Xin Zhou
The composite quantile regression (CQR) was introduced by Zou and Yuan [Ann. Statist. 36 (2008) 1108–1126] as a robust regression method for linear models with heavy-tailed errors while achieving high efficiency. Its penalized counterpart for high-dimensional sparse models was recently studied in Gu and Zou [IEEE Trans. Inf. Theory 66 (2020) 7132–7154], along with a specialized optimization algorithm based on the alternating direct method of multipliers (ADMM). Compared to the various first-order algorithms for penalized least squares, ADMM-based algorithms are not well-adapted to large-scale problems. To overcome this computational hardness, in this paper we employ a convolution-smoothed technique to CQR, complemented with iteratively reweighted ℓ1-regularization. The smoothed composite loss function is convex, twice continuously differentiable, and locally strong convex with high probability. We propose a gradient-based algorithm for penalized smoothed CQR via a variant of the majorize-minimization principal, which gains substantial computational efficiency over ADMM. Theoretically, we show that the iteratively reweighted ℓ1-penalized smoothed CQR estimator achieves near-minimax optimal convergence rate under heavy-tailed errors without any moment constraint, and further achieves near-oracle convergence rate under a weaker minimum signal strength condition than needed in Gu and Zou (2020). Numerical studies demonstrate that the proposed method exhibits significant computational advantages without compromising statistical performance compared to two state-of-the-art methods that achieve robustness and high efficiency simultaneously.
综合分位数回归(CQR)是由邹和袁[Ann]提出的。统计学家。36(2008)1108-1126]作为具有重尾误差的线性模型的鲁棒回归方法,同时实现了高效率。最近,Gu和Zou [IEEE Trans]研究了高维稀疏模型的惩罚对应物。Inf. Theory 66(2020) 7132-7154],以及基于乘数交替直接法(ADMM)的专门优化算法。与各种一阶惩罚最小二乘算法相比,基于admm的算法不太适合大规模问题。为了克服这种计算困难,在本文中,我们对CQR采用了卷积平滑技术,并辅以迭代重加权的1-正则化。光滑复合损失函数是凸的、两次连续可微的、高概率的局部强凸。我们提出了一种基于梯度的惩罚平滑CQR算法,该算法通过最大-最小原则的变体获得了比ADMM更高的计算效率。理论上,我们证明了迭代重加权的1-惩罚光滑CQR估计器在没有任何矩约束的情况下在重尾误差下实现了近极小极大最优收敛速率,并且在较弱的最小信号强度条件下实现了比Gu和Zou(2020)所需的近oracle收敛速率。数值研究表明,与同时实现鲁棒性和高效率的两种最先进的方法相比,该方法在不影响统计性能的情况下具有显著的计算优势。
{"title":"High-dimensional composite quantile regression: Optimal statistical guarantees and fast algorithms","authors":"Haeseong Moon, Wen-Xin Zhou","doi":"10.1214/23-ejs2147","DOIUrl":"https://doi.org/10.1214/23-ejs2147","url":null,"abstract":"The composite quantile regression (CQR) was introduced by Zou and Yuan [Ann. Statist. 36 (2008) 1108–1126] as a robust regression method for linear models with heavy-tailed errors while achieving high efficiency. Its penalized counterpart for high-dimensional sparse models was recently studied in Gu and Zou [IEEE Trans. Inf. Theory 66 (2020) 7132–7154], along with a specialized optimization algorithm based on the alternating direct method of multipliers (ADMM). Compared to the various first-order algorithms for penalized least squares, ADMM-based algorithms are not well-adapted to large-scale problems. To overcome this computational hardness, in this paper we employ a convolution-smoothed technique to CQR, complemented with iteratively reweighted ℓ1-regularization. The smoothed composite loss function is convex, twice continuously differentiable, and locally strong convex with high probability. We propose a gradient-based algorithm for penalized smoothed CQR via a variant of the majorize-minimization principal, which gains substantial computational efficiency over ADMM. Theoretically, we show that the iteratively reweighted ℓ1-penalized smoothed CQR estimator achieves near-minimax optimal convergence rate under heavy-tailed errors without any moment constraint, and further achieves near-oracle convergence rate under a weaker minimum signal strength condition than needed in Gu and Zou (2020). Numerical studies demonstrate that the proposed method exhibits significant computational advantages without compromising statistical performance compared to two state-of-the-art methods that achieve robustness and high efficiency simultaneously.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135911568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Efficient sampling from the PKBD distribution 从PKBD分布中有效采样
4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2023-01-01 DOI: 10.1214/23-ejs2149
Lukas Sablica, Kurt Hornik, Josef Leydold
In this paper we present and analyze random number generators for the Poisson Kernel-Based Distribution (PKBD) on the sphere. We show that the only currently available sampling scheme presented in Golzy and Markatou (2020) can be improved by a better selection of hyper-parameters but still yields an unbounded rejection constant as the concentration parameter approaches 1. Furthermore, we introduce two additional and superior sampling methods for which boundedness in the above mentioned case can be obtained. The first method proposes initial draws from angular central Gaussian distribution and offers uniformly bounded rejection constants for a significant part of the PKBD parameter space. The second method uses adaptive rejection sampling and the results of Ulrich (1984) to sample from the projected Saw distribution (Saw, 1978). Finally, both new methods are compared in a simulation study.
本文给出并分析了球上基于泊松核分布(PKBD)的随机数生成器。我们表明,Golzy和Markatou(2020)提出的目前唯一可用的采样方案可以通过更好地选择超参数来改进,但当浓度参数接近1时,仍然产生无界抑制常数。此外,我们还引入了另外两种更好的抽样方法,它们可以得到上述情况下的有界性。第一种方法从角中心高斯分布中提出初始提取,并为PKBD参数空间的重要部分提供均匀有界抑制常数。第二种方法使用自适应抑制采样和Ulrich(1984)的结果从预测的Saw分布(Saw, 1978)中采样。最后,在仿真研究中对两种方法进行了比较。
{"title":"Efficient sampling from the PKBD distribution","authors":"Lukas Sablica, Kurt Hornik, Josef Leydold","doi":"10.1214/23-ejs2149","DOIUrl":"https://doi.org/10.1214/23-ejs2149","url":null,"abstract":"In this paper we present and analyze random number generators for the Poisson Kernel-Based Distribution (PKBD) on the sphere. We show that the only currently available sampling scheme presented in Golzy and Markatou (2020) can be improved by a better selection of hyper-parameters but still yields an unbounded rejection constant as the concentration parameter approaches 1. Furthermore, we introduce two additional and superior sampling methods for which boundedness in the above mentioned case can be obtained. The first method proposes initial draws from angular central Gaussian distribution and offers uniformly bounded rejection constants for a significant part of the PKBD parameter space. The second method uses adaptive rejection sampling and the results of Ulrich (1984) to sample from the projected Saw distribution (Saw, 1978). Finally, both new methods are compared in a simulation study.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135911577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating causal effects with hidden confounding using instrumental variables and environments 使用工具变量和环境估计隐含混淆的因果效应
4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2023-01-01 DOI: 10.1214/23-ejs2160
James P. Long, Hongxu Zhu, Kim-Anh Do, Min Jin Ha
Recent works have proposed regression models which are invariant across data collection environments [24, 20, 11, 16, 8]. These estimators often have a causal interpretation under conditions on the environments and type of invariance imposed. One recent example, the Causal Dantzig (CD), is consistent under hidden confounding and represents an alternative to classical instrumental variable estimators such as Two Stage Least Squares (TSLS). In this work we derive the CD as a generalized method of moments (GMM) estimator. The GMM representation leads to several practical results, including 1) creation of the Generalized Causal Dantzig (GCD) estimator which can be applied to problems with continuous environments where the CD cannot be fit 2) a Hybrid (GCD-TSLS combination) estimator which has properties superior to GCD or TSLS alone 3) straightforward asymptotic results for all methods using GMM theory. We compare the CD, GCD, TSLS, and Hybrid estimators in simulations and an application to a Flow Cytometry data set. The newly proposed GCD and Hybrid estimators have superior performance to existing methods in many settings.
最近的研究提出了在数据收集环境中保持不变的回归模型[24,20,11,16,8]。这些估计量通常在环境条件和施加的不变性类型下具有因果解释。最近的一个例子,因果丹齐格(CD),在隐藏混淆下是一致的,代表了经典工具变量估计的替代方法,如两阶段最小二乘法(TSLS)。本文导出了广义矩量估计方法(GMM)。GMM表示导致了几个实际结果,包括1)创建广义因果丹齐格(GCD)估计量,它可以应用于不能拟合CD的连续环境问题;2)具有优于GCD或单独TSLS的特性的混合(GCD-TSLS组合)估计量;3)使用GMM理论的所有方法的直接渐近结果。我们比较了CD、GCD、TSLS和Hybrid估计器在模拟和流式细胞术数据集中的应用。新提出的GCD估计器和混合估计器在许多情况下都比现有方法具有更好的性能。
{"title":"Estimating causal effects with hidden confounding using instrumental variables and environments","authors":"James P. Long, Hongxu Zhu, Kim-Anh Do, Min Jin Ha","doi":"10.1214/23-ejs2160","DOIUrl":"https://doi.org/10.1214/23-ejs2160","url":null,"abstract":"Recent works have proposed regression models which are invariant across data collection environments [24, 20, 11, 16, 8]. These estimators often have a causal interpretation under conditions on the environments and type of invariance imposed. One recent example, the Causal Dantzig (CD), is consistent under hidden confounding and represents an alternative to classical instrumental variable estimators such as Two Stage Least Squares (TSLS). In this work we derive the CD as a generalized method of moments (GMM) estimator. The GMM representation leads to several practical results, including 1) creation of the Generalized Causal Dantzig (GCD) estimator which can be applied to problems with continuous environments where the CD cannot be fit 2) a Hybrid (GCD-TSLS combination) estimator which has properties superior to GCD or TSLS alone 3) straightforward asymptotic results for all methods using GMM theory. We compare the CD, GCD, TSLS, and Hybrid estimators in simulations and an application to a Flow Cytometry data set. The newly proposed GCD and Hybrid estimators have superior performance to existing methods in many settings.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135610266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotic analysis of ML-covariance parameter estimators based on covariance approximations 基于协方差近似的ml -协方差参数估计的渐近分析
4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2023-01-01 DOI: 10.1214/23-ejs2170
Reinhard Furrer, Michael Hediger
Given a zero-mean Gaussian random field with a covariance function that belongs to a parametric family of covariance functions, we introduce a new notion of likelihood approximations, termed truncated-likelihood functions. Truncated-likelihood functions are based on direct functional approximations of the presumed family of covariance functions. For compactly supported covariance functions, within an increasing-domain asymptotic framework, we provide sufficient conditions under which consistency and asymptotic normality of estimators based on truncated-likelihood functions are preserved. We apply our result to the family of generalized Wendland covariance functions and discuss several examples of Wendland approximations. For families of covariance functions that are not compactly supported, we combine our results with the covariance tapering approach and show that ML estimators, based on truncated-tapered likelihood functions, asymptotically minimize the Kullback-Leibler divergence, when the taper range is fixed.
给定一个零均值高斯随机场,其协方差函数属于参数协方差函数族,我们引入了似然近似的新概念,称为截断似然函数。截断似然函数基于假定的协方差函数族的直接函数近似。对于紧支持的协方差函数,在渐近框架内,给出了截断似然函数估计量的相合性和渐近正态性保持的充分条件。我们将结果应用于广义温德兰协方差函数族,并讨论了几个温德兰近似的例子。对于不紧支持的协方差函数家族,我们将我们的结果与协方差渐窄方法结合起来,并表明当渐窄范围固定时,基于截断渐窄似然函数的ML估计器可以渐近地最小化Kullback-Leibler散度。
{"title":"Asymptotic analysis of ML-covariance parameter estimators based on covariance approximations","authors":"Reinhard Furrer, Michael Hediger","doi":"10.1214/23-ejs2170","DOIUrl":"https://doi.org/10.1214/23-ejs2170","url":null,"abstract":"Given a zero-mean Gaussian random field with a covariance function that belongs to a parametric family of covariance functions, we introduce a new notion of likelihood approximations, termed truncated-likelihood functions. Truncated-likelihood functions are based on direct functional approximations of the presumed family of covariance functions. For compactly supported covariance functions, within an increasing-domain asymptotic framework, we provide sufficient conditions under which consistency and asymptotic normality of estimators based on truncated-likelihood functions are preserved. We apply our result to the family of generalized Wendland covariance functions and discuss several examples of Wendland approximations. For families of covariance functions that are not compactly supported, we combine our results with the covariance tapering approach and show that ML estimators, based on truncated-tapered likelihood functions, asymptotically minimize the Kullback-Leibler divergence, when the taper range is fixed.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135662412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Covariance discriminative power of kernel clustering methods 核聚类方法的协方差判别能力
IF 1.1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2023-01-01 DOI: 10.1214/23-ejs2107
A. Kammoun, Romain Couillet
{"title":"Covariance discriminative power of kernel clustering methods","authors":"A. Kammoun, Romain Couillet","doi":"10.1214/23-ejs2107","DOIUrl":"https://doi.org/10.1214/23-ejs2107","url":null,"abstract":"","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48173445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Least sum of squares of trimmed residuals regression 裁剪残差回归的最小平方和
4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2023-01-01 DOI: 10.1214/23-ejs2164
Yijun Zuo, Hanwen Zuo
In the famous least sum of trimmed squares (LTS) estimator [21], residuals are first squared and then trimmed. In this article, we first trim residuals – using a depth trimming scheme – and then square the remaining of residuals. The estimator that minimizes the sum of trimmed and squared residuals, is called an LST estimator. Not only is the LST a robust alternative to the classic least sum of squares (LS) estimator. It also has a high finite sample breakdown point-and can resist, asymptotically, up to 50% contamination without breakdown – in sharp contrast to the 0% of the LS estimator. The population version of the LST is Fisher consistent, and the sample version is strong, root-n consistent, and asymptotically normal. We propose approximate algorithms for computing the LST and test on synthetic and real data sets. Despite being approximate, one of the algorithms compute the LST estimator quickly with relatively small variances in contrast to the famous LTS estimator. Thus, evidence suggests the LST serves as a robust alternative to the LS estimator and is feasible even in high dimension data sets with contamination and outliers.
在著名的最小平方和(LTS)估计器[21]中,残差首先被平方,然后被裁剪。在本文中,我们首先使用深度修剪方案来修剪残差,然后对残差的剩余部分进行平方。使残差裁剪和平方之和最小的估计量称为LST估计量。LST不仅是经典最小平方和(LS)估计器的鲁棒替代品。它还具有很高的有限样本击穿点,并且可以渐进地抵抗高达50%的污染而不击穿-与LS估计器的0%形成鲜明对比。LST的总体版本是Fisher一致的,样本版本是强的,根n一致的,并且是渐近正态的。我们提出了计算LST的近似算法,并在合成数据集和真实数据集上进行了测试。尽管是近似的,但与著名的LTS估计器相比,其中一种算法计算LST估计器的速度较快,方差相对较小。因此,证据表明LST可以作为LS估计器的鲁棒替代品,即使在具有污染和异常值的高维数据集中也是可行的。
{"title":"Least sum of squares of trimmed residuals regression","authors":"Yijun Zuo, Hanwen Zuo","doi":"10.1214/23-ejs2164","DOIUrl":"https://doi.org/10.1214/23-ejs2164","url":null,"abstract":"In the famous least sum of trimmed squares (LTS) estimator [21], residuals are first squared and then trimmed. In this article, we first trim residuals – using a depth trimming scheme – and then square the remaining of residuals. The estimator that minimizes the sum of trimmed and squared residuals, is called an LST estimator. Not only is the LST a robust alternative to the classic least sum of squares (LS) estimator. It also has a high finite sample breakdown point-and can resist, asymptotically, up to 50% contamination without breakdown – in sharp contrast to the 0% of the LS estimator. The population version of the LST is Fisher consistent, and the sample version is strong, root-n consistent, and asymptotically normal. We propose approximate algorithms for computing the LST and test on synthetic and real data sets. Despite being approximate, one of the algorithms compute the LST estimator quickly with relatively small variances in contrast to the famous LTS estimator. Thus, evidence suggests the LST serves as a robust alternative to the LS estimator and is feasible even in high dimension data sets with contamination and outliers.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":"2010 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136202186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Efficient density estimation in an AR(1) model AR(1)模型的有效密度估计
4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2023-01-01 DOI: 10.1214/23-ejs2166
Anton Schick, Wolfgang Wefelmeyer
This paper studies a class of plug-in estimators of the stationary density of an autoregressive model with autoregression parameter 0<ϱ<1. These use two types of estimator of the innovation density, a standard kernel estimator and a weighted kernel estimator with weights chosen to mimic the condition that the innovation density has mean zero. Bahadur expansions are obtained for this class of estimators in L1, the space of integrable functions. These stochastic expansions establish root-n consistency in the L1-norm. It is shown that the density estimators based on the weighted kernel estimators are asymptotically efficient if an asymptotically efficient estimator of the autoregression parameter is used. Here asymptotic efficiency is understood in the sense of the Hájek–Le Cam convolution theorem.
研究了一类自回归参数为0<ϱ<1的自回归模型平稳密度的插入估计量。这些方法使用了两种类型的创新密度估计量,一种是标准核估计量,另一种是加权核估计量,其权重选择来模拟创新密度均值为零的情况。在可积函数空间L1中,得到了这类估计量的Bahadur展开式。这些随机展开式在l1范数中建立了根n一致性。如果使用自回归参数的渐近有效估计量,则表明基于加权核估计量的密度估计量是渐近有效的。这里的渐近效率是在Hájek-Le Cam卷积定理的意义上理解的。
{"title":"Efficient density estimation in an AR(1) model","authors":"Anton Schick, Wolfgang Wefelmeyer","doi":"10.1214/23-ejs2166","DOIUrl":"https://doi.org/10.1214/23-ejs2166","url":null,"abstract":"This paper studies a class of plug-in estimators of the stationary density of an autoregressive model with autoregression parameter 0<ϱ<1. These use two types of estimator of the innovation density, a standard kernel estimator and a weighted kernel estimator with weights chosen to mimic the condition that the innovation density has mean zero. Bahadur expansions are obtained for this class of estimators in L1, the space of integrable functions. These stochastic expansions establish root-n consistency in the L1-norm. It is shown that the density estimators based on the weighted kernel estimators are asymptotically efficient if an asymptotically efficient estimator of the autoregression parameter is used. Here asymptotic efficiency is understood in the sense of the Hájek–Le Cam convolution theorem.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":"358 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135610486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “Maximum likelihood estimation in logistic regression models with a diverging number of covariates” 更正“具有发散协变量数的逻辑回归模型中的最大似然估计”
IF 1.1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2023-01-01 DOI: 10.1214/12-EJS731
Hua Liang, Pang Du
Binary data with high-dimensional covariates have become more and more common in many disciplines. In this paper we consider the maximum likelihood estimation for logistic regression models with a diverging number of covariates. Under mild conditions we establish the asymptotic normality of the maximum likelihood estimate when the number of covariates p goes to infinity with the sample size n in the order of p = o(n). This remarkably improves the existing results that can only allow p growing in an order of o(nα) with α ∈ [1/5, 1/2] [12, 14]. A major innovation in our proof is the use of the injective function. AMS 2000 subject classifications: Primary 62F12; secondary 62J12.
具有高维协变量的二进制数据在许多学科中变得越来越普遍。在本文中,我们考虑具有发散协变量数的逻辑回归模型的最大似然估计。在温和条件下,当协变量的数量p随着样本大小n以p=o(n)的顺序变为无穷大时,我们建立了最大似然估计的渐近正态性。这显著改进了现有的结果,即仅允许p在α∈[1/5,1/2][12,14]的情况下以o(nα)的顺序生长。我们证明中的一个主要创新是使用了内射函数。AMS 2000学科分类:小学62F12;次级62J12。
{"title":"Corrigendum to “Maximum likelihood estimation in logistic regression models with a diverging number of covariates”","authors":"Hua Liang, Pang Du","doi":"10.1214/12-EJS731","DOIUrl":"https://doi.org/10.1214/12-EJS731","url":null,"abstract":"Binary data with high-dimensional covariates have become more and more common in many disciplines. In this paper we consider the maximum likelihood estimation for logistic regression models with a diverging number of covariates. Under mild conditions we establish the asymptotic normality of the maximum likelihood estimate when the number of covariates p goes to infinity with the sample size n in the order of p = o(n). This remarkably improves the existing results that can only allow p growing in an order of o(nα) with α ∈ [1/5, 1/2] [12, 14]. A major innovation in our proof is the use of the injective function. AMS 2000 subject classifications: Primary 62F12; secondary 62J12.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/12-EJS731","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48042414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
期刊
Electronic Journal of Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1