首页 > 最新文献

Electronic Journal of Statistics最新文献

英文 中文
Improving estimation efficiency for two-phase, outcome-dependent sampling studies 提高两阶段、结果相关抽样研究的估计效率
IF 1.1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2022-12-19 DOI: 10.1214/23-ejs2124
Menglu Che, Peisong Han, J. Lawless
Two-phase outcome dependent sampling (ODS) is widely used in many fields, especially when certain covariates are expensive and/or difficult to measure. For two-phase ODS, the conditional maximum likelihood (CML) method is very attractive because it can handle zero Phase 2 selection probabilities and avoids modeling the covariate distribution. However, most existing CML-based methods use only the Phase 2 sample and thus may be less efficient than other methods. We propose a general empirical likelihood method that uses CML augmented with additional information in the whole Phase 1 sample to improve estimation efficiency. The proposed method maintains the ability to handle zero selection probabilities and avoids modeling the covariate distribution, but can lead to substantial efficiency gains over CML in the inexpensive covariates, or in the influential covariate when a surrogate is available, because of an effective use of the Phase 1 data. Simulations and a real data illustration using NHANES data are presented.
两阶段结果相关采样(ODS)在许多领域被广泛使用,尤其是当某些协变量昂贵和/或难以测量时。对于两相ODS,条件最大似然(CML)方法非常有吸引力,因为它可以处理零的第二阶段选择概率,并避免对协变量分布进行建模。然而,大多数现有的基于CML的方法仅使用阶段2样本,因此可能不如其他方法有效。我们提出了一种通用的经验似然方法,该方法使用在整个阶段1样本中增加额外信息的CML来提高估计效率。所提出的方法保持了处理零选择概率的能力,并避免了对协变量分布进行建模,但由于有效地使用了第1阶段数据,在廉价的协变量中,或在有替代项的情况下,在有影响的协变量上,可以显著提高CML的效率。给出了使用NHANES数据的模拟和实际数据说明。
{"title":"Improving estimation efficiency for two-phase, outcome-dependent sampling studies","authors":"Menglu Che, Peisong Han, J. Lawless","doi":"10.1214/23-ejs2124","DOIUrl":"https://doi.org/10.1214/23-ejs2124","url":null,"abstract":"Two-phase outcome dependent sampling (ODS) is widely used in many fields, especially when certain covariates are expensive and/or difficult to measure. For two-phase ODS, the conditional maximum likelihood (CML) method is very attractive because it can handle zero Phase 2 selection probabilities and avoids modeling the covariate distribution. However, most existing CML-based methods use only the Phase 2 sample and thus may be less efficient than other methods. We propose a general empirical likelihood method that uses CML augmented with additional information in the whole Phase 1 sample to improve estimation efficiency. The proposed method maintains the ability to handle zero selection probabilities and avoids modeling the covariate distribution, but can lead to substantial efficiency gains over CML in the inexpensive covariates, or in the influential covariate when a surrogate is available, because of an effective use of the Phase 1 data. Simulations and a real data illustration using NHANES data are presented.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45404637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Posterior contraction and testing for multivariate isotonic regression 后缩和多元等张回归的检验
IF 1.1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2022-11-22 DOI: 10.1214/23-ejs2115
Kang-Kang Wang, S. Ghosal
We consider the nonparametric regression problem with multiple predictors and an additive error, where the regression function is assumed to be coordinatewise nondecreasing. We propose a Bayesian approach to make an inference on the multivariate monotone regression function, obtain the posterior contraction rate, and construct a universally consistent Bayesian testing procedure for multivariate monotonicity. To facilitate posterior analysis, we set aside the shape restrictions temporarily, and endow a prior on blockwise constant regression functions with heights independently normally distributed. The unknown variance of the error term is either estimated by the marginal maximum likelihood estimate or is equipped with an inverse-gamma prior. Then the unrestricted block heights are a posteriori also independently normally distributed given the error variance, by conjugacy. To comply with the shape restrictions, we project samples from the unrestricted posterior onto the class of multivariate monotone functions, inducing the"projection-posterior distribution", to be used for making an inference. Under an $mathbb{L}_1$-metric, we show that the projection-posterior based on $n$ independent samples contracts around the true monotone regression function at the optimal rate $n^{-1/(2+d)}$. Then we construct a Bayesian test for multivariate monotonicity based on the posterior probability of a shrinking neighborhood of the class of multivariate monotone functions. We show that the test is universally consistent, that is, the level of the Bayesian test goes to zero, and the power at any fixed alternative goes to one. Moreover, we show that for a smooth alternative function, power goes to one as long as its distance to the class of multivariate monotone functions is at least of the order of the estimation error for a smooth function.
我们考虑了具有多个预测因子和一个加性误差的非参数回归问题,其中假设回归函数是协调不递减的。我们提出了一种贝叶斯方法来推断多元单调回归函数,获得后验收缩率,并构造了多元单调性的普遍一致贝叶斯检验程序。为了便于后验分析,我们暂时搁置了形状限制,并赋予逐块常数回归函数的先验高度独立正态分布。误差项的未知方差要么通过边际最大似然估计来估计,要么配备有逆伽马先验。然后,在给定误差方差的情况下,通过共轭,不受限制的块高度是独立正态分布的后验。为了遵守形状限制,我们将来自非限制后验的样本投影到一类多元单调函数上,从而导出“投影后验分布”,用于进行推理。在$mathbb下{L}_1$-度量,我们证明了基于$n$独立样本的投影后验在最优速率$n^{-1/(2+d)}$下围绕真单调回归函数收缩。然后,基于一类多元单调函数收缩邻域的后验概率,构造了多元单调性的贝叶斯检验。我们证明了该测试是普遍一致的,也就是说,贝叶斯测试的水平为零,任何固定备选方案的功率为一。此外,我们证明了对于光滑的替代函数,只要它到多元单调函数类的距离至少是光滑函数的估计误差的阶数,幂就等于1。
{"title":"Posterior contraction and testing for multivariate isotonic regression","authors":"Kang-Kang Wang, S. Ghosal","doi":"10.1214/23-ejs2115","DOIUrl":"https://doi.org/10.1214/23-ejs2115","url":null,"abstract":"We consider the nonparametric regression problem with multiple predictors and an additive error, where the regression function is assumed to be coordinatewise nondecreasing. We propose a Bayesian approach to make an inference on the multivariate monotone regression function, obtain the posterior contraction rate, and construct a universally consistent Bayesian testing procedure for multivariate monotonicity. To facilitate posterior analysis, we set aside the shape restrictions temporarily, and endow a prior on blockwise constant regression functions with heights independently normally distributed. The unknown variance of the error term is either estimated by the marginal maximum likelihood estimate or is equipped with an inverse-gamma prior. Then the unrestricted block heights are a posteriori also independently normally distributed given the error variance, by conjugacy. To comply with the shape restrictions, we project samples from the unrestricted posterior onto the class of multivariate monotone functions, inducing the\"projection-posterior distribution\", to be used for making an inference. Under an $mathbb{L}_1$-metric, we show that the projection-posterior based on $n$ independent samples contracts around the true monotone regression function at the optimal rate $n^{-1/(2+d)}$. Then we construct a Bayesian test for multivariate monotonicity based on the posterior probability of a shrinking neighborhood of the class of multivariate monotone functions. We show that the test is universally consistent, that is, the level of the Bayesian test goes to zero, and the power at any fixed alternative goes to one. Moreover, we show that for a smooth alternative function, power goes to one as long as its distance to the class of multivariate monotone functions is at least of the order of the estimation error for a smooth function.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48939928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A bootstrap method for spectral statistics in high-dimensional elliptical models 高维椭圆模型光谱统计的自举方法
IF 1.1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2022-09-08 DOI: 10.1214/23-ejs2140
Si-Ying Wang, Miles E. Lopes
Although there is an extensive literature on the eigenvalues of high-dimensional sample covariance matrices, much of it is specialized to independent components (IC) models -- in which observations are represented as linear transformations of random vectors with independent entries. By contrast, less is known in the context of elliptical models, which violate the independence structure of IC models and exhibit quite different statistical phenomena. In particular, very little is known about the scope of bootstrap methods for doing inference with spectral statistics in high-dimensional elliptical models. To fill this gap, we show how a bootstrap approach developed previously for IC models can be extended to handle the different properties of elliptical models. Within this setting, our main theoretical result guarantees that the proposed method consistently approximates the distributions of linear spectral statistics, which play a fundamental role in multivariate analysis. We also provide empirical results showing that the proposed method performs well for a variety of nonlinear spectral statistics.
尽管有大量关于高维样本协方差矩阵特征值的文献,但其中大部分都专门用于独立分量(IC)模型,其中观测值表示为具有独立项的随机向量的线性变换。相比之下,在椭圆模型的背景下,人们所知甚少,椭圆模型违反了IC模型的独立性结构,并表现出截然不同的统计现象。特别是,对于在高维椭圆模型中使用谱统计进行推断的bootstrap方法的范围知之甚少。为了填补这一空白,我们展示了如何将以前为IC模型开发的引导方法扩展到处理椭圆模型的不同性质。在这种情况下,我们的主要理论结果保证了所提出的方法始终近似于线性谱统计的分布,线性谱统计在多元分析中起着重要作用。我们还提供了经验结果,表明所提出的方法在各种非线性谱统计中表现良好。
{"title":"A bootstrap method for spectral statistics in high-dimensional elliptical models","authors":"Si-Ying Wang, Miles E. Lopes","doi":"10.1214/23-ejs2140","DOIUrl":"https://doi.org/10.1214/23-ejs2140","url":null,"abstract":"Although there is an extensive literature on the eigenvalues of high-dimensional sample covariance matrices, much of it is specialized to independent components (IC) models -- in which observations are represented as linear transformations of random vectors with independent entries. By contrast, less is known in the context of elliptical models, which violate the independence structure of IC models and exhibit quite different statistical phenomena. In particular, very little is known about the scope of bootstrap methods for doing inference with spectral statistics in high-dimensional elliptical models. To fill this gap, we show how a bootstrap approach developed previously for IC models can be extended to handle the different properties of elliptical models. Within this setting, our main theoretical result guarantees that the proposed method consistently approximates the distributions of linear spectral statistics, which play a fundamental role in multivariate analysis. We also provide empirical results showing that the proposed method performs well for a variety of nonlinear spectral statistics.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42952281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Intuitive joint priors for Bayesian linear multilevel models: The R2D2M2 prior 贝叶斯线性多级模型的直观联合先验:R2D2M2先验
IF 1.1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2022-08-15 DOI: 10.1214/23-ejs2136
Javier Enrique Aguilar, Paul-Christian Burkner
The training of high-dimensional regression models on comparably sparse data is an important yet complicated topic, especially when there are many more model parameters than observations in the data. From a Bayesian perspective, inference in such cases can be achieved with the help of shrinkage prior distributions, at least for generalized linear models. However, real-world data usually possess multilevel structures, such as repeated measurements or natural groupings of individuals, which existing shrinkage priors are not built to deal with. We generalize and extend one of these priors, the R2D2 prior by Zhang et al. (2020), to linear multilevel models leading to what we call the R2D2M2 prior. The proposed prior enables both local and global shrinkage of the model parameters. It comes with interpretable hyperparameters, which we show to be intrinsically related to vital properties of the prior, such as rates of concentration around the origin, tail behavior, and amount of shrinkage the prior exerts. We offer guidelines on how to select the prior's hyperparameters by deriving shrinkage factors and measuring the effective number of non-zero model coefficients. Hence, the user can readily evaluate and interpret the amount of shrinkage implied by a specific choice of hyperparameters. Finally, we perform extensive experiments on simulated and real data, showing that our inference procedure for the prior is well calibrated, has desirable global and local regularization properties and enables the reliable and interpretable estimation of much more complex Bayesian multilevel models than was previously possible.
在相对稀疏的数据上训练高维回归模型是一个重要但复杂的主题,尤其是当数据中的模型参数比观测值多得多时。从贝叶斯的角度来看,在这种情况下,至少对于广义线性模型,可以在收缩先验分布的帮助下进行推理。然而,真实世界的数据通常具有多级结构,例如重复测量或个体的自然分组,而现有的收缩先验并不是为了处理这些结构而建立的。我们将其中一个先验,张等人的R2D2先验进行了推广和扩展。(2020),将其推广到线性多级模型,从而产生我们所说的R2D2M2先验。所提出的先验能够实现模型参数的局部和全局收缩。它带有可解释的超参数,我们发现这些超参数与先验的重要特性有着内在的联系,例如原点周围的集中率、尾部行为和先验施加的收缩量。我们提供了如何通过推导收缩因子和测量非零模型系数的有效数量来选择先验超参数的指南。因此,用户可以容易地评估和解释超参数的特定选择所暗示的收缩量。最后,我们在模拟和真实数据上进行了大量实验,表明我们对先验的推理过程经过了很好的校准,具有理想的全局和局部正则化特性,并能够对比以前可能的更复杂的贝叶斯多级模型进行可靠和可解释的估计。
{"title":"Intuitive joint priors for Bayesian linear multilevel models: The R2D2M2 prior","authors":"Javier Enrique Aguilar, Paul-Christian Burkner","doi":"10.1214/23-ejs2136","DOIUrl":"https://doi.org/10.1214/23-ejs2136","url":null,"abstract":"The training of high-dimensional regression models on comparably sparse data is an important yet complicated topic, especially when there are many more model parameters than observations in the data. From a Bayesian perspective, inference in such cases can be achieved with the help of shrinkage prior distributions, at least for generalized linear models. However, real-world data usually possess multilevel structures, such as repeated measurements or natural groupings of individuals, which existing shrinkage priors are not built to deal with. We generalize and extend one of these priors, the R2D2 prior by Zhang et al. (2020), to linear multilevel models leading to what we call the R2D2M2 prior. The proposed prior enables both local and global shrinkage of the model parameters. It comes with interpretable hyperparameters, which we show to be intrinsically related to vital properties of the prior, such as rates of concentration around the origin, tail behavior, and amount of shrinkage the prior exerts. We offer guidelines on how to select the prior's hyperparameters by deriving shrinkage factors and measuring the effective number of non-zero model coefficients. Hence, the user can readily evaluate and interpret the amount of shrinkage implied by a specific choice of hyperparameters. Finally, we perform extensive experiments on simulated and real data, showing that our inference procedure for the prior is well calibrated, has desirable global and local regularization properties and enables the reliable and interpretable estimation of much more complex Bayesian multilevel models than was previously possible.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44330955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Functional spherical autocorrelation: A robust estimate of the autocorrelation of a functional time series 函数球形自相关:对函数时间序列的自相关的稳健估计
IF 1.1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2022-07-12 DOI: 10.1214/23-ejs2112
Chi-Kuang Yeh, Gregory Rice, J. Dubin
We propose a new autocorrelation measure for functional time series that we term spherical autocorrelation. It is based on measuring the average angle between lagged pairs of series after having been projected onto the unit sphere. This new measure enjoys several complimentary advantages compared to existing autocorrelation measures for functional data, since it both 1) describes a notion of sign or direction of serial dependence in the series, and 2) is more robust to outliers. The asymptotic properties of estimators of the spherical autocorrelation are established, and are used to construct confidence intervals and portmanteau white noise tests. These confidence intervals and tests are shown to be effective in simulation experiments, and demonstrated in applications to model selection for daily electricity price curves, and measuring the volatility in densely observed asset price data.
我们提出了一种新的函数时间序列的自相关测度,称为球面自相关。它是基于测量投影到单位球面上后滞后的级数对之间的平均角度。与现有的函数数据自相关测量相比,这种新的测量具有几个互补的优势,因为它既1)描述了序列中序列相关性的符号或方向的概念,又2)对异常值更具鲁棒性。建立了球面自相关估计量的渐近性质,并用于构造置信区间和组合白噪声检验。这些置信区间和测试在模拟实验中被证明是有效的,并在日常电价曲线的模型选择和测量密集观察的资产价格数据的波动性的应用中得到了证明。
{"title":"Functional spherical autocorrelation: A robust estimate of the autocorrelation of a functional time series","authors":"Chi-Kuang Yeh, Gregory Rice, J. Dubin","doi":"10.1214/23-ejs2112","DOIUrl":"https://doi.org/10.1214/23-ejs2112","url":null,"abstract":"We propose a new autocorrelation measure for functional time series that we term spherical autocorrelation. It is based on measuring the average angle between lagged pairs of series after having been projected onto the unit sphere. This new measure enjoys several complimentary advantages compared to existing autocorrelation measures for functional data, since it both 1) describes a notion of sign or direction of serial dependence in the series, and 2) is more robust to outliers. The asymptotic properties of estimators of the spherical autocorrelation are established, and are used to construct confidence intervals and portmanteau white noise tests. These confidence intervals and tests are shown to be effective in simulation experiments, and demonstrated in applications to model selection for daily electricity price curves, and measuring the volatility in densely observed asset price data.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42080559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Training-conditional coverage for distribution-free predictive inference 无分布预测推理的训练条件覆盖
IF 1.1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2022-05-07 DOI: 10.1214/23-ejs2145
Michael Bian, R. Barber
The field of distribution-free predictive inference provides tools for provably valid prediction without any assumptions on the distribution of the data, which can be paired with any regression algorithm to provide accurate and reliable predictive intervals. The guarantees provided by these methods are typically marginal, meaning that predictive accuracy holds on average over both the training data set and the test point that is queried. However, it may be preferable to obtain a stronger guarantee of training-conditional coverage, which would ensure that most draws of the training data set result in accurate predictive accuracy on future test points. This property is known to hold for the split conformal prediction method. In this work, we examine the training-conditional coverage properties of several other distribution-free predictive inference methods, and find that training-conditional coverage is achieved by some methods but is impossible to guarantee without further assumptions for others.
无分布预测推理领域提供了用于可证明有效预测的工具,而无需对数据的分布进行任何假设,可以与任何回归算法配对,以提供准确可靠的预测区间。这些方法提供的保证通常是边际的,这意味着预测准确性在训练数据集和被查询的测试点上平均保持不变。然而,可能更可取的是获得训练条件覆盖的更强保证,这将确保训练数据集的大多数提取导致对未来测试点的准确预测准确性。已知这种性质适用于分裂共形预测方法。在这项工作中,我们检验了其他几种无分布预测推理方法的训练条件覆盖特性,发现训练条件覆盖是通过一些方法实现的,但如果没有对其他方法的进一步假设,就无法保证。
{"title":"Training-conditional coverage for distribution-free predictive inference","authors":"Michael Bian, R. Barber","doi":"10.1214/23-ejs2145","DOIUrl":"https://doi.org/10.1214/23-ejs2145","url":null,"abstract":"The field of distribution-free predictive inference provides tools for provably valid prediction without any assumptions on the distribution of the data, which can be paired with any regression algorithm to provide accurate and reliable predictive intervals. The guarantees provided by these methods are typically marginal, meaning that predictive accuracy holds on average over both the training data set and the test point that is queried. However, it may be preferable to obtain a stronger guarantee of training-conditional coverage, which would ensure that most draws of the training data set result in accurate predictive accuracy on future test points. This property is known to hold for the split conformal prediction method. In this work, we examine the training-conditional coverage properties of several other distribution-free predictive inference methods, and find that training-conditional coverage is achieved by some methods but is impossible to guarantee without further assumptions for others.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44104591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Tail inference using extreme U-statistics 使用极端u统计量的尾部推断
IF 1.1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2022-03-16 DOI: 10.1214/23-ejs2129
Jochem Oorschot, J. Segers, Chen Zhou
Extreme U-statistics arise when the kernel of a U-statistic has a high degree but depends only on its arguments through a small number of top order statistics. As the kernel degree of the U-statistic grows to infinity with the sample size, estimators built out of such statistics form an intermediate family in between those constructed in the block maxima and peaks-over-threshold frameworks in extreme value analysis. The asymptotic normality of extreme U-statistics based on location-scale invariant kernels is established. Although the asymptotic variance coincides with the one of the H'ajek projection, the proof goes beyond considering the first term in Hoeffding's variance decomposition. We propose a kernel depending on the three highest order statistics leading to a location-scale invariant estimator of the extreme value index resembling the Pickands estimator. This extreme Pickands U-estimator is asymptotically normal and its finite-sample performance is competitive with that of the pseudo-maximum likelihood estimator.
当U-统计量的核具有很高的度,但仅通过少量的高阶统计量依赖于其自变量时,就会出现极端U-统计量。随着U-统计量的核度随着样本量的增加而增长到无穷大,由这种统计量构建的估计量在极值分析中的块最大值和峰值阈值框架中构建的估计之间形成了一个中间族。建立了基于位置尺度不变核的极限U-统计量的渐近正态性。尽管渐近方差与H’ajek投影的渐近方差一致,但证明超出了考虑Hoeffding方差分解中的第一项。我们提出了一个依赖于三个最高阶统计量的核,从而产生类似于Pickands估计器的极值指数的位置-尺度不变估计器。该极限Pickands U-估计是渐近正态的,其有限样本性能与伪最大似然估计具有竞争性。
{"title":"Tail inference using extreme U-statistics","authors":"Jochem Oorschot, J. Segers, Chen Zhou","doi":"10.1214/23-ejs2129","DOIUrl":"https://doi.org/10.1214/23-ejs2129","url":null,"abstract":"Extreme U-statistics arise when the kernel of a U-statistic has a high degree but depends only on its arguments through a small number of top order statistics. As the kernel degree of the U-statistic grows to infinity with the sample size, estimators built out of such statistics form an intermediate family in between those constructed in the block maxima and peaks-over-threshold frameworks in extreme value analysis. The asymptotic normality of extreme U-statistics based on location-scale invariant kernels is established. Although the asymptotic variance coincides with the one of the H'ajek projection, the proof goes beyond considering the first term in Hoeffding's variance decomposition. We propose a kernel depending on the three highest order statistics leading to a location-scale invariant estimator of the extreme value index resembling the Pickands estimator. This extreme Pickands U-estimator is asymptotically normal and its finite-sample performance is competitive with that of the pseudo-maximum likelihood estimator.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47501723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Pathwise least-squares estimator for linear SPDEs with additive fractional noise 具有加性分数噪声的线性SPDEs的路径最小二乘估计
IF 1.1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2022-03-10 DOI: 10.1214/22-EJS1990
Pavel Kvr'ivz, Jana vSnup'arkov'a
This paper deals with the drift estimation in linear stochastic evolution equations (with emphasis on linear SPDEs) with additive fractional noise (with Hurst index ranging from 0 to 1) via least-squares procedure. Since the least-squares estimator contains stochastic integrals of divergence type, we address the problem of its pathwise (and robust to observation errors) evaluation by comparison with the pathwise integral of Stratonovich type and using its chain-rule property. The resulting pathwise LSE is then defined implicitly as a solution to a non-linear equation. We study its numerical properties (existence and uniqueness of the solution) as well as statistical properties (strong consistency and the speed of its convergence). The asymptotic properties are obtained assuming fixed time horizon and increasing number of the observed Fourier modes (space asymptotics). We also conjecture the asymptotic normality of the pathwise LSE.
本文用最小二乘法研究了具有加性分数阶噪声(Hurst指数为0 ~ 1)的线性随机演化方程(重点是线性SPDEs)的漂移估计问题。由于最小二乘估计量包含散度型随机积分,我们通过与Stratonovich型路径积分的比较,并利用其链式法则性质,解决了其路径(且对观测误差具有鲁棒性)估计问题。由此产生的路径LSE被隐式地定义为非线性方程的解。研究了它的数值性质(解的存在唯一性)和统计性质(强相合性和收敛速度)。假设时间范围固定,观测到的傅里叶模数增加(空间渐近),得到渐近性质。我们还推测了路径LSE的渐近正态性。
{"title":"Pathwise least-squares estimator for linear SPDEs with additive fractional noise","authors":"Pavel Kvr'ivz, Jana vSnup'arkov'a","doi":"10.1214/22-EJS1990","DOIUrl":"https://doi.org/10.1214/22-EJS1990","url":null,"abstract":"This paper deals with the drift estimation in linear stochastic evolution equations (with emphasis on linear SPDEs) with additive fractional noise (with Hurst index ranging from 0 to 1) via least-squares procedure. Since the least-squares estimator contains stochastic integrals of divergence type, we address the problem of its pathwise (and robust to observation errors) evaluation by comparison with the pathwise integral of Stratonovich type and using its chain-rule property. The resulting pathwise LSE is then defined implicitly as a solution to a non-linear equation. We study its numerical properties (existence and uniqueness of the solution) as well as statistical properties (strong consistency and the speed of its convergence). The asymptotic properties are obtained assuming fixed time horizon and increasing number of the observed Fourier modes (space asymptotics). We also conjecture the asymptotic normality of the pathwise LSE.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":"1 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66088611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deconvolution of spherical data corrupted with unknown noise 带有未知噪声的球面数据的反褶积
IF 1.1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2022-03-01 DOI: 10.1214/23-ejs2106
J'er'emie Capitao-Miniconi, E. Gassiat
We consider the deconvolution problem for densities supported on a $(d-1)$-dimensional sphere with unknown center and unknown radius, in the situation where the distribution of the noise is unknown and without any other observations. We propose estimators of the radius, of the center, and of the density of the signal on the sphere that are proved consistent without further information. The estimator of the radius is proved to have almost parametric convergence rate for any dimension $d$. When $d=2$, the estimator of the density is proved to achieve the same rate of convergence over Sobolev regularity classes of densities as when the noise distribution is known.
我们考虑了在未知中心和未知半径的$(d-1)$维球面上支持密度的反卷积问题,其中噪声的分布是未知的,并且没有任何其他观测值。我们提出了球面上信号的半径、中心和密度的估计,这些估计在没有进一步信息的情况下被证明是一致的。证明了该半径估计器对任意维数都具有几乎参数收敛速率。当d=2时,证明了密度估计器在Sobolev正则密度类上的收敛速度与噪声分布已知时相同。
{"title":"Deconvolution of spherical data corrupted with unknown noise","authors":"J'er'emie Capitao-Miniconi, E. Gassiat","doi":"10.1214/23-ejs2106","DOIUrl":"https://doi.org/10.1214/23-ejs2106","url":null,"abstract":"We consider the deconvolution problem for densities supported on a $(d-1)$-dimensional sphere with unknown center and unknown radius, in the situation where the distribution of the noise is unknown and without any other observations. We propose estimators of the radius, of the center, and of the density of the signal on the sphere that are proved consistent without further information. The estimator of the radius is proved to have almost parametric convergence rate for any dimension $d$. When $d=2$, the estimator of the density is proved to achieve the same rate of convergence over Sobolev regularity classes of densities as when the noise distribution is known.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43791674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Bayesian inference and prediction for mean-mixtures of normal distributions 正态分布均值混合的贝叶斯推断与预测
IF 1.1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2022-02-01 DOI: 10.1214/23-ejs2142
Pankaj Bhagwat, É. Marchand
We study frequentist risk properties of predictive density estimators for mean mixtures of multivariate normal distributions, involving an unknown location parameter $theta in mathbb{R}^d$, and which include multivariate skew normal distributions. We provide explicit representations for Bayesian posterior and predictive densities, including the benchmark minimum risk equivariant (MRE) density, which is minimax and generalized Bayes with respect to an improper uniform density for $theta$. For four dimensions or more, we obtain Bayesian densities that improve uniformly on the MRE density under Kullback-Leibler loss. We also provide plug-in type improvements, investigate implications for certain type of parametric restrictions on $theta$, and illustrate and comment the findings based on numerical evaluations.
我们研究了多元正态分布平均混合的预测密度估计的频率风险性质,涉及未知位置参数$theta 在mathbb{R}^d$中,并且包含多元偏态正态分布。我们提供了贝叶斯后验密度和预测密度的显式表示,包括基准最小风险等变(MRE)密度,它是关于$theta$的不适当均匀密度的极小和广义贝叶斯。对于四维或四维以上,我们得到了在Kullback-Leibler损失下均匀提高MRE密度的贝叶斯密度。我们还提供了插件类型的改进,研究了$theta$上某些类型的参数限制的含义,并基于数值评估说明和评论了研究结果。
{"title":"Bayesian inference and prediction for mean-mixtures of normal distributions","authors":"Pankaj Bhagwat, É. Marchand","doi":"10.1214/23-ejs2142","DOIUrl":"https://doi.org/10.1214/23-ejs2142","url":null,"abstract":"We study frequentist risk properties of predictive density estimators for mean mixtures of multivariate normal distributions, involving an unknown location parameter $theta in mathbb{R}^d$, and which include multivariate skew normal distributions. We provide explicit representations for Bayesian posterior and predictive densities, including the benchmark minimum risk equivariant (MRE) density, which is minimax and generalized Bayes with respect to an improper uniform density for $theta$. For four dimensions or more, we obtain Bayesian densities that improve uniformly on the MRE density under Kullback-Leibler loss. We also provide plug-in type improvements, investigate implications for certain type of parametric restrictions on $theta$, and illustrate and comment the findings based on numerical evaluations.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43938179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Electronic Journal of Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1