首页 > 最新文献

Electronic Journal of Statistics最新文献

英文 中文
Tensor factorization recommender systems with dependency 具有依赖性的张量因子分解推荐系统
IF 1.1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2022-01-01 DOI: 10.1214/22-ejs1978
Jiuchen Zhang, Yubai Yuan, Annie Qu
: Dependency structure in recommender systems has been widely adopted in recent years to improve prediction accuracy. In this paper, we propose an innovative tensor-based recommender system, namely, the Ten- sor Factorization with Dependency (TFD). The proposed method utilizes shared factors to characterize the dependency between different modes, in addition to pairwise additive tensor factorization to integrate information among multiple modes. One advantage of the proposed method is that it provides flexibility for different dependency structures by incorporating shared latent factors. In addition, the proposed method unifies both binary and ordinal ratings in recommender systems. We achieve scalable computation for scarce tensors with high missing rates. In theory, we show the asymptotic consistency of estimators with various loss functions for both binary and ordinal data. Our numerical studies demonstrate that the pro- posed method outperforms the existing methods, especially on prediction accuracy.
:近年来,推荐系统中的依赖结构已被广泛采用,以提高预测精度。在本文中,我们提出了一个创新的基于张量的推荐系统,即具有依赖性的张量因子分解(TFD)。所提出的方法利用共享因子来表征不同模式之间的依赖性,此外还利用成对加性张量因子分解来整合多个模式之间的信息。所提出的方法的一个优点是,它通过结合共享的潜在因素,为不同的依赖结构提供了灵活性。此外,所提出的方法统一了推荐系统中的二进制和有序评级。我们实现了具有高丢失率的稀缺张量的可扩展计算。在理论上,我们证明了具有各种损失函数的估计量对二进制和有序数据的渐近一致性。我们的数值研究表明,所提出的方法优于现有方法,尤其是在预测精度方面。
{"title":"Tensor factorization recommender systems with dependency","authors":"Jiuchen Zhang, Yubai Yuan, Annie Qu","doi":"10.1214/22-ejs1978","DOIUrl":"https://doi.org/10.1214/22-ejs1978","url":null,"abstract":": Dependency structure in recommender systems has been widely adopted in recent years to improve prediction accuracy. In this paper, we propose an innovative tensor-based recommender system, namely, the Ten- sor Factorization with Dependency (TFD). The proposed method utilizes shared factors to characterize the dependency between different modes, in addition to pairwise additive tensor factorization to integrate information among multiple modes. One advantage of the proposed method is that it provides flexibility for different dependency structures by incorporating shared latent factors. In addition, the proposed method unifies both binary and ordinal ratings in recommender systems. We achieve scalable computation for scarce tensors with high missing rates. In theory, we show the asymptotic consistency of estimators with various loss functions for both binary and ordinal data. Our numerical studies demonstrate that the pro- posed method outperforms the existing methods, especially on prediction accuracy.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42174710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Nonparametric regression in nonstandard spaces 非标准空间中的非参数回归
IF 1.1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2022-01-01 DOI: 10.1214/22-ejs2056
Christof Schötz
{"title":"Nonparametric regression in nonstandard spaces","authors":"Christof Schötz","doi":"10.1214/22-ejs2056","DOIUrl":"https://doi.org/10.1214/22-ejs2056","url":null,"abstract":"","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47792822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Casting vector time series: algorithms for forecasting, imputation, and signal extraction 铸造向量时间序列:算法预测,imputation,和信号提取
IF 1.1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2022-01-01 DOI: 10.1214/22-ejs2068
T. McElroy
{"title":"Casting vector time series: algorithms for forecasting, imputation, and signal extraction","authors":"T. McElroy","doi":"10.1214/22-ejs2068","DOIUrl":"https://doi.org/10.1214/22-ejs2068","url":null,"abstract":"","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47473755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dimension independent excess risk by stochastic gradient descent 随机梯度下降的维数无关超额风险
IF 1.1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2022-01-01 DOI: 10.1214/22-ejs2055
X. Chen, Qiang Liu, Xin T. Tong
{"title":"Dimension independent excess risk by stochastic gradient descent","authors":"X. Chen, Qiang Liu, Xin T. Tong","doi":"10.1214/22-ejs2055","DOIUrl":"https://doi.org/10.1214/22-ejs2055","url":null,"abstract":"","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47118771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Penalized estimation of threshold auto-regressive models with many components and thresholds. 多成分多阈值阈值自回归模型的惩罚性估计
IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2022-01-01 Epub Date: 2022-03-22 DOI: 10.1214/22-EJS1982
Kunhui Zhang, Abolfazl Safikhani, Alex Tank, Ali Shojaie

Thanks to their simplicity and interpretable structure, autoregressive processes are widely used to model time series data. However, many real time series data sets exhibit non-linear patterns, requiring nonlinear modeling. The threshold Auto-Regressive (TAR) process provides a family of non-linear auto-regressive time series models in which the process dynamics are specific step functions of a thresholding variable. While estimation and inference for low-dimensional TAR models have been investigated, high-dimensional TAR models have received less attention. In this article, we develop a new framework for estimating high-dimensional TAR models, and propose two different sparsity-inducing penalties. The first penalty corresponds to a natural extension of classical TAR model to high-dimensional settings, where the same threshold is enforced for all model parameters. Our second penalty develops a more flexible TAR model, where different thresholds are allowed for different auto-regressive coefficients. We show that both penalized estimation strategies can be utilized in a three-step procedure that consistently learns both the thresholds and the corresponding auto-regressive coefficients. However, our theoretical and empirical investigations show that the direct extension of the TAR model is not appropriate for high-dimensional settings and is better suited for moderate dimensions. In contrast, the more flexible extension of the TAR model leads to consistent estimation and superior empirical performance in high dimensions.

自回归过程结构简单、易于解释,因此被广泛用于建立时间序列数据模型。然而,许多真实的时间序列数据集都表现出非线性模式,需要非线性建模。阈值自回归(TAR)过程提供了一系列非线性自回归时间序列模型,其中的过程动态是阈值变量的特定阶跃函数。虽然低维 TAR 模型的估计和推理已经得到研究,但高维 TAR 模型受到的关注较少。在本文中,我们为估计高维 TAR 模型开发了一个新框架,并提出了两种不同的稀疏性诱导惩罚。第一种惩罚相当于将经典 TAR 模型自然扩展到高维环境,在这种情况下,所有模型参数都有相同的阈值。我们的第二种惩罚方法开发了一种更灵活的 TAR 模型,允许对不同的自回归系数采用不同的阈值。我们的研究表明,这两种惩罚估计策略都可以在一个三步程序中使用,该程序可以持续学习阈值和相应的自回归系数。然而,我们的理论和实证研究表明,TAR 模型的直接扩展并不适合高维设置,而更适合中等维度。相比之下,TAR 模型更灵活的扩展则能在高维度下实现一致的估计和卓越的实证性能。
{"title":"Penalized estimation of threshold auto-regressive models with many components and thresholds.","authors":"Kunhui Zhang, Abolfazl Safikhani, Alex Tank, Ali Shojaie","doi":"10.1214/22-EJS1982","DOIUrl":"10.1214/22-EJS1982","url":null,"abstract":"<p><p>Thanks to their simplicity and interpretable structure, autoregressive processes are widely used to model time series data. However, many real time series data sets exhibit non-linear patterns, requiring nonlinear modeling. The threshold Auto-Regressive (TAR) process provides a family of non-linear auto-regressive time series models in which the process dynamics are specific step functions of a thresholding variable. While estimation and inference for low-dimensional TAR models have been investigated, high-dimensional TAR models have received less attention. In this article, we develop a new framework for estimating high-dimensional TAR models, and propose two different sparsity-inducing penalties. The first penalty corresponds to a natural extension of classical TAR model to high-dimensional settings, where the same threshold is enforced for all model parameters. Our second penalty develops a more flexible TAR model, where different thresholds are allowed for different auto-regressive coefficients. We show that both penalized estimation strategies can be utilized in a three-step procedure that consistently learns both the thresholds and the corresponding auto-regressive coefficients. However, our theoretical and empirical investigations show that the direct extension of the TAR model is not appropriate for high-dimensional settings and is better suited for moderate dimensions. In contrast, the more flexible extension of the TAR model leads to consistent estimation and superior empirical performance in high dimensions.</p>","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":"16 1","pages":"1891-1951"},"PeriodicalIF":1.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10088520/pdf/nihms-1885625.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9851486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On sufficient variable screening using log odds ratio filter 利用对数比值比滤波器进行充分变量筛选
IF 1.1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2022-01-01 DOI: 10.1214/21-ejs1951
Baoying Yang, Wenbo Wu, Xiangrong Yin
: For ultrahigh-dimensional data, variable screening is an impor- tant step to reduce the scale of the problem, hence, to improve the estimation accuracy and efficiency. In this paper, we propose a new dependence measure which is called the log odds ratio statistic to be used under the sufficient variable screening framework. The sufficient variable screening approach ensures the sufficiency of the selected input features in model-ing the regression function and is an enhancement of existing marginal screening methods. In addition, we propose an ensemble variable screening approach to combine the proposed fused log odds ratio filter with the fused Kolmogorov filter to achieve supreme performance by taking advantages of both filters. We establish the sure screening properties of the fused log odds ratio filter for both marginal variable screening and sufficient variable screening. Extensive simulations and a real data analysis are provided to demonstrate the usefulness of the proposed log odds ratio filter and the sufficient variable screening procedure.
:对于超高维数据,变量筛选是减少问题规模的重要步骤,因此可以提高估计精度和效率。在本文中,我们提出了一种新的相关性测度,称为对数比值比统计量,用于有效变量筛选框架下。有效的变量筛选方法确保了所选输入特征在回归函数建模中的有效性,是对现有边际筛选方法的改进。此外,我们提出了一种集成变量筛选方法,将所提出的融合对数比值比滤波器与融合Kolmogorov滤波器相结合,通过利用这两种滤波器的优势实现最高性能。我们为边际变量筛选和有效变量筛选建立了融合对数比值比滤波器的可靠筛选特性。提供了广泛的模拟和实际数据分析,以证明所提出的对数比值比滤波器和有效的变量筛选程序的有用性。
{"title":"On sufficient variable screening using log odds ratio filter","authors":"Baoying Yang, Wenbo Wu, Xiangrong Yin","doi":"10.1214/21-ejs1951","DOIUrl":"https://doi.org/10.1214/21-ejs1951","url":null,"abstract":": For ultrahigh-dimensional data, variable screening is an impor- tant step to reduce the scale of the problem, hence, to improve the estimation accuracy and efficiency. In this paper, we propose a new dependence measure which is called the log odds ratio statistic to be used under the sufficient variable screening framework. The sufficient variable screening approach ensures the sufficiency of the selected input features in model-ing the regression function and is an enhancement of existing marginal screening methods. In addition, we propose an ensemble variable screening approach to combine the proposed fused log odds ratio filter with the fused Kolmogorov filter to achieve supreme performance by taking advantages of both filters. We establish the sure screening properties of the fused log odds ratio filter for both marginal variable screening and sufficient variable screening. Extensive simulations and a real data analysis are provided to demonstrate the usefulness of the proposed log odds ratio filter and the sufficient variable screening procedure.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47203671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monte Carlo Markov chains constrained on graphs for a target with disconnected support 具有断开支持的目标在图上约束的蒙特卡罗马尔可夫链
IF 1.1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2022-01-01 DOI: 10.1214/22-ejs2043
R. Cerqueti, Emilio De Santis
{"title":"Monte Carlo Markov chains constrained on graphs for a target with disconnected support","authors":"R. Cerqueti, Emilio De Santis","doi":"10.1214/22-ejs2043","DOIUrl":"https://doi.org/10.1214/22-ejs2043","url":null,"abstract":"","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44387163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The robust nearest shrunken centroids classifier for high-dimensional heavy-tailed data 高维重尾数据的鲁棒最近收缩质心分类器
IF 1.1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2022-01-01 DOI: 10.1214/22-ejs2022
Shaokang Ren, Qing Mai
: The nearest shrunken centroids classifier (NSC) is a popular high-dimensional classifier. However, it is prone to inaccurate classification when the data is heavy-tailed. In this paper, we develop a robust general- ization of NSC (RNSC) which remains effective under such circumstances. By incorporating the Huber loss both in the estimation and the calcula- tion of the score function, we reduce the impacts of heavy tails. We rigorously show the variable selection, estimation, and prediction consistency in high dimensions under weak moment conditions. Empirically, our proposal greatly outperforms NSC and many other successful classifiers when data is heavy-tailed while remaining comparable to NSC in the absence of heavy tails. The favorable performance of RNSC is also demonstrated in a real data example.
最近萎缩质心分类器(NSC)是一种流行的高维分类器。然而,当数据是重尾数据时,容易导致分类不准确。在本文中,我们发展了一个在这种情况下仍然有效的稳健的NSC (RNSC)一般化。通过在分数函数的估计和计算中同时考虑Huber损失,我们减小了重尾的影响。我们严格地证明了在弱矩条件下高维变量选择、估计和预测的一致性。根据经验,当数据是重尾时,我们的建议大大优于NSC和许多其他成功的分类器,而在没有重尾的情况下,我们的建议与NSC相当。通过一个实际的数据实例验证了RNSC的良好性能。
{"title":"The robust nearest shrunken centroids classifier for high-dimensional heavy-tailed data","authors":"Shaokang Ren, Qing Mai","doi":"10.1214/22-ejs2022","DOIUrl":"https://doi.org/10.1214/22-ejs2022","url":null,"abstract":": The nearest shrunken centroids classifier (NSC) is a popular high-dimensional classifier. However, it is prone to inaccurate classification when the data is heavy-tailed. In this paper, we develop a robust general- ization of NSC (RNSC) which remains effective under such circumstances. By incorporating the Huber loss both in the estimation and the calcula- tion of the score function, we reduce the impacts of heavy tails. We rigorously show the variable selection, estimation, and prediction consistency in high dimensions under weak moment conditions. Empirically, our proposal greatly outperforms NSC and many other successful classifiers when data is heavy-tailed while remaining comparable to NSC in the absence of heavy tails. The favorable performance of RNSC is also demonstrated in a real data example.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45637959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-sample test for equal distributions in separate metric space: New maximum mean discrepancy based approaches 独立度量空间中相等分布的两样本检验:基于最大均值差异的新方法
IF 1.1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2022-01-01 DOI: 10.1214/22-ejs2033
Jin-Ting Zhang, Łukasz Smaga
{"title":"Two-sample test for equal distributions in separate metric space: New maximum mean discrepancy based approaches","authors":"Jin-Ting Zhang, Łukasz Smaga","doi":"10.1214/22-ejs2033","DOIUrl":"https://doi.org/10.1214/22-ejs2033","url":null,"abstract":"","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46448002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Functional estimation of anisotropic covariance and autocovariance operators on the sphere 球面上各向异性协方差和自协方差算子的函数估计
IF 1.1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2021-12-23 DOI: 10.1214/22-ejs2064
Alessia Caponera, J. Fageot, Matthieu Simeoni, V. Panaretos
We propose nonparametric estimators for the second-order central moments of possibly anisotropic spherical random fields, within a functional data analysis context. We consider a measurement framework where each random field among an identically distributed collection of spherical random fields is sampled at a few random directions, possibly subject to measurement error. The collection of random fields could be i.i.d. or serially dependent. Though similar setups have already been explored for random functions defined on the unit interval, the nonparametric estimators proposed in the literature often rely on local polynomials, which do not readily extend to the (product) spherical setting. We therefore formulate our estimation procedure as a variational problem involving a generalized Tikhonov regularization term. The latter favours smooth covariance/autocovariance functions, where the smoothness is specified by means of suitable Sobolev-like pseudo-differential operators. Using the machinery of reproducing kernel Hilbert spaces, we establish representer theorems that fully characterize the form of our estimators. We determine their uniform rates of convergence as the number of random fields diverges, both for the dense (increasing number of spatial samples) and sparse (bounded number of spatial samples) regimes. We moreover demonstrate the computational feasibility and practical merits of our estimation procedure in a simulation setting, assuming a fixed number of samples per random field. Our numerical estimation procedure leverages the sparsity and second-order Kronecker structure of our setup to reduce the computational and memory requirements by approximately three orders of magnitude compared to a naive implementation would require. AMS 2000 subject classifications: Primary 62G08; secondary 62M.
在函数数据分析的背景下,我们提出了可能各向异性球面随机场的二阶中心矩的非参数估计。我们考虑一个测量框架,其中在同分布的球形随机场集合中的每个随机场在几个随机方向上采样,可能会受到测量误差的影响。随机字段的集合可以是i.i.d.或序列相关的。尽管已经为单位区间上定义的随机函数探索了类似的设置,但文献中提出的非参数估计通常依赖于局部多项式,而局部多项式不容易扩展到(乘积)球面设置。因此,我们将我们的估计过程公式化为涉及广义Tikhonov正则化项的变分问题。后者倾向于平滑协方差/自协方差函数,其中平滑度是通过合适的类Sobolev伪微分算子来指定的。利用重生成核希尔伯特空间的机制,我们建立了完全表征我们的估计量形式的表示定理。对于密集(空间样本数量的增加)和稀疏(空间样本的有界数量)状态,我们确定它们随着随机场数的发散而一致的收敛速度。此外,我们还证明了我们的估计程序在模拟环境中的计算可行性和实际优点,假设每个随机场有固定数量的样本。我们的数值估计程序利用了我们设置的稀疏性和二阶Kronecker结构,与简单的实现相比,将计算和内存需求减少了大约三个数量级。AMS 2000学科分类:初级62G08;次级62M。
{"title":"Functional estimation of anisotropic covariance and autocovariance operators on the sphere","authors":"Alessia Caponera, J. Fageot, Matthieu Simeoni, V. Panaretos","doi":"10.1214/22-ejs2064","DOIUrl":"https://doi.org/10.1214/22-ejs2064","url":null,"abstract":"We propose nonparametric estimators for the second-order central moments of possibly anisotropic spherical random fields, within a functional data analysis context. We consider a measurement framework where each random field among an identically distributed collection of spherical random fields is sampled at a few random directions, possibly subject to measurement error. The collection of random fields could be i.i.d. or serially dependent. Though similar setups have already been explored for random functions defined on the unit interval, the nonparametric estimators proposed in the literature often rely on local polynomials, which do not readily extend to the (product) spherical setting. We therefore formulate our estimation procedure as a variational problem involving a generalized Tikhonov regularization term. The latter favours smooth covariance/autocovariance functions, where the smoothness is specified by means of suitable Sobolev-like pseudo-differential operators. Using the machinery of reproducing kernel Hilbert spaces, we establish representer theorems that fully characterize the form of our estimators. We determine their uniform rates of convergence as the number of random fields diverges, both for the dense (increasing number of spatial samples) and sparse (bounded number of spatial samples) regimes. We moreover demonstrate the computational feasibility and practical merits of our estimation procedure in a simulation setting, assuming a fixed number of samples per random field. Our numerical estimation procedure leverages the sparsity and second-order Kronecker structure of our setup to reduce the computational and memory requirements by approximately three orders of magnitude compared to a naive implementation would require. AMS 2000 subject classifications: Primary 62G08; secondary 62M.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49616151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
期刊
Electronic Journal of Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1