首页 > 最新文献

Virologie最新文献

英文 中文
[When 2'-O-methylation throws a wrench in HIV-1 reverse transcriptase]. [2'-O-甲基化对 HIV-1 逆转录酶的影响】。]
IF 0.7 4区 医学 Q4 VIROLOGY Pub Date : 2024-08-01 DOI: 10.1684/vir.2024.1056
Alice Decombe, Olve Peersen, Etienne Decroly

HIV-1 polymerase, commonly known as HIV reverse transcriptase (RT), catalyzes the critical reaction of reverse transcription by synthesizing a double-stranded DNA copy of the viral genomic RNA. During the replication cycle, this synthesized DNA is integrated into the host genome. This entire process is essential for viral replication and is targeted by several antiviral drugs. Numerous studies in biochemistry and structural biology have led to a good understanding of HIV-1 RT functions. However, the discovery of epitranscriptomic marks, such as 2'-O-methylations, on the HIV-1 RNA genome raise the questions about RT's ability to copy RNAs decorated with these biochemical modifications. This review focuses on the importance of RT in the viral cycle, its structure and function and the impact of 2'-O-methylations on its activity and replication regulation, particularly in quiescent cells.

HIV-1 聚合酶通常被称为 HIV 逆转录酶(RT),它通过合成病毒基因组 RNA 的双链 DNA 副本来催化关键的逆转录反应。在复制周期中,合成的 DNA 被整合到宿主基因组中。整个过程对病毒复制至关重要,也是多种抗病毒药物的靶点。生物化学和结构生物学方面的大量研究使人们对 HIV-1 RT 的功能有了很好的了解。然而,HIV-1 RNA 基因组上表转录标记(如 2'-O 甲基化)的发现使人们对 RT 复制具有这些生化修饰的 RNA 的能力产生了疑问。本综述将重点讨论 RT 在病毒循环中的重要性、其结构和功能以及 2'-O 甲基化对其活性和复制调控的影响,尤其是在静止细胞中的影响。
{"title":"[When 2'-O-methylation throws a wrench in HIV-1 reverse transcriptase].","authors":"Alice Decombe, Olve Peersen, Etienne Decroly","doi":"10.1684/vir.2024.1056","DOIUrl":"https://doi.org/10.1684/vir.2024.1056","url":null,"abstract":"<p><p>HIV-1 polymerase, commonly known as HIV reverse transcriptase (RT), catalyzes the critical reaction of reverse transcription by synthesizing a double-stranded DNA copy of the viral genomic RNA. During the replication cycle, this synthesized DNA is integrated into the host genome. This entire process is essential for viral replication and is targeted by several antiviral drugs. Numerous studies in biochemistry and structural biology have led to a good understanding of HIV-1 RT functions. However, the discovery of epitranscriptomic marks, such as 2'-O-methylations, on the HIV-1 RNA genome raise the questions about RT's ability to copy RNAs decorated with these biochemical modifications. This review focuses on the importance of RT in the viral cycle, its structure and function and the impact of 2'-O-methylations on its activity and replication regulation, particularly in quiescent cells.</p>","PeriodicalId":49377,"journal":{"name":"Virologie","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142156473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential role of alveolar macrophages in HIV persistence and lung disease. 肺泡巨噬细胞在艾滋病病毒持续存在和肺部疾病中的潜在作用。
IF 0.7 4区 医学 Q4 VIROLOGY Pub Date : 2024-08-01 DOI: 10.1684/vir.2024.1058
Cecilia T Costiniuk, Suzanne Samarani, Lixing Wang, MariaLuisa Vigano, Ali Ahmad

While antiretroviral therapy (ART) has revolutionized the management of human immunodeficiency virus (HIV) and has enabled people living with HIV (PLWH) to achieve near-normal life expectancies, an HIV cure remains elusive due to the presence of HIV reservoirs. Furthermore, compared with individuals in the general population, PLWH support a higher burden of multimorbidity, including pulmonary diseases of both an infectious and non-infection nature, which may be a consequence of the formation of HIV reservoirs. Their gut, lymph nodes, brain, testes and lungs constitute important anatomic sites for the reservoirs. While CD4+ T cells, and particularly memory CD4+ T cells, are the best characterized cellular HIV reservoirs, tissue resident macrophages (TRM) and alveolar macrophages (AM) also harbor HIV infection. AM are the most abundant cells in bronchoalveolar (BAL) fluid in healthy conditions, and act as sentinels in the alveolar space by patrolling and clearing debris, microbes and surfactant recycling. Long-lived tissue-resident AM of embryonic origin have the capacity of self-renewal without replenishment from peripheral monocytes. As in other tissues, close cell-cell contacts in lungs also provide a milieu conducive for cell-to-cell spread of HIV infection and establishment of reservoirs. As lungs are in constant exposure to antigens from the external environment, this situation contributes to pro-inflammatory phenotype rendering pulmonary immune cells exhausted and senescent-an environment facilitating HIV persistence. Factors such as tobacco and e-cigarette smoking, lung microbiome dysbiosis and respiratory coinfections further drive antigenic stimulation and HIV replication. HIV replication, in turn, contributes to ongoing inflammation and clonal expansion. Herein, the potential role of AM in HIV persistence is discussed. Furthermore, their contribution towards pulmonary inflammation and immune dysregulation, which may in turn render PLWH susceptible to chronic lung disease, despite ART, is explored. Finally, strategies to eliminate HIV-infected AM are discussed.

虽然抗逆转录病毒疗法(ART)彻底改变了人类免疫缺陷病毒(HIV)的治疗方法,并使艾滋病病毒感染者(PLWH)的预期寿命接近正常人,但由于艾滋病病毒库的存在,治愈艾滋病病毒仍然遥遥无期。此外,与普通人群相比,艾滋病毒感染者的多病负担更重,包括感染性和非感染性肺部疾病,这可能是艾滋病毒储库形成的结果。他们的肠道、淋巴结、大脑、睾丸和肺部是艾滋病病毒库的重要解剖部位。虽然 CD4+ T 细胞,尤其是记忆 CD4+ T 细胞,是特征最明显的细胞艾滋病病毒库,但组织常驻巨噬细胞(TRM)和肺泡巨噬细胞(AM)也携带艾滋病病毒感染。在健康状态下,AM 是支气管肺泡(BAL)液中最丰富的细胞,通过巡逻和清除碎片、微生物和表面活性物质循环,在肺泡空间充当哨兵。胚胎来源的长寿命组织驻留 AM 具有自我更新能力,无需外周单核细胞的补充。与其他组织一样,肺部细胞间的密切接触也为 HIV 感染的细胞间传播和储库的建立提供了有利环境。由于肺部经常接触外部环境中的抗原,这种情况会导致促炎表型,使肺部免疫细胞衰竭和衰老--这种环境有利于艾滋病病毒的持续存在。吸烟和吸电子烟、肺部微生物群失调和呼吸道合并感染等因素进一步推动了抗原刺激和艾滋病毒复制。反过来,HIV 复制又会导致持续的炎症和克隆扩增。本文讨论了AM在艾滋病病毒持续存在中的潜在作用。此外,还探讨了 AM 对肺部炎症和免疫调节失调的作用,这反过来又可能使感染艾滋病毒的 PLWH 在接受抗逆转录病毒疗法后仍易患慢性肺病。最后,讨论了消除感染艾滋病毒的 AM 的策略。
{"title":"Potential role of alveolar macrophages in HIV persistence and lung disease.","authors":"Cecilia T Costiniuk, Suzanne Samarani, Lixing Wang, MariaLuisa Vigano, Ali Ahmad","doi":"10.1684/vir.2024.1058","DOIUrl":"https://doi.org/10.1684/vir.2024.1058","url":null,"abstract":"<p><p>While antiretroviral therapy (ART) has revolutionized the management of human immunodeficiency virus (HIV) and has enabled people living with HIV (PLWH) to achieve near-normal life expectancies, an HIV cure remains elusive due to the presence of HIV reservoirs. Furthermore, compared with individuals in the general population, PLWH support a higher burden of multimorbidity, including pulmonary diseases of both an infectious and non-infection nature, which may be a consequence of the formation of HIV reservoirs. Their gut, lymph nodes, brain, testes and lungs constitute important anatomic sites for the reservoirs. While CD4+ T cells, and particularly memory CD4+ T cells, are the best characterized cellular HIV reservoirs, tissue resident macrophages (TRM) and alveolar macrophages (AM) also harbor HIV infection. AM are the most abundant cells in bronchoalveolar (BAL) fluid in healthy conditions, and act as sentinels in the alveolar space by patrolling and clearing debris, microbes and surfactant recycling. Long-lived tissue-resident AM of embryonic origin have the capacity of self-renewal without replenishment from peripheral monocytes. As in other tissues, close cell-cell contacts in lungs also provide a milieu conducive for cell-to-cell spread of HIV infection and establishment of reservoirs. As lungs are in constant exposure to antigens from the external environment, this situation contributes to pro-inflammatory phenotype rendering pulmonary immune cells exhausted and senescent-an environment facilitating HIV persistence. Factors such as tobacco and e-cigarette smoking, lung microbiome dysbiosis and respiratory coinfections further drive antigenic stimulation and HIV replication. HIV replication, in turn, contributes to ongoing inflammation and clonal expansion. Herein, the potential role of AM in HIV persistence is discussed. Furthermore, their contribution towards pulmonary inflammation and immune dysregulation, which may in turn render PLWH susceptible to chronic lung disease, despite ART, is explored. Finally, strategies to eliminate HIV-infected AM are discussed.</p>","PeriodicalId":49377,"journal":{"name":"Virologie","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142156474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Potential role of alveolar macrophages in HIV persistence and lung disease]. [肺泡巨噬细胞在艾滋病毒持续存在和肺部疾病中的潜在作用]。
IF 0.7 4区 医学 Q4 VIROLOGY Pub Date : 2024-08-01 DOI: 10.1684/vir.2024.1057
Cecilia T Costiniuk, Suzanne Samarani, Lixing Wang, MariaLuisa Vigano, Ali Ahmad

While antiretroviral therapy (ART) has revolutionized the management of human immunodeficiency virus (HIV) and has enabled people living with HIV (PLWH) to achieve near-normal life expectancies, an HIV cure remains elusive due to the presence of HIV reservoirs. Furthermore, compared with individuals in the general population, PLWH support a higher burden of multimorbidity, including pulmonary diseases of both an infectious and non-infection nature, which may be a consequence of the formation of HIV reservoirs. Their gut, lymph nodes, brain, testes and lungs constitute important anatomic sites for the reservoirs. While CD4+ T-cells, and particularly memory CD4+ T-cells, are the best characterized cellular HIV reservoirs, tissue resident macrophages (TRM) and alveolar macrophages (AM) also harbor HIV infection. AM are the most abundant cells in bronchoalveolar (BAL) fluid in healthy conditions, and act as sentinels in the alveolar space by patrolling and clearing debris, microbes and surfactant recycling. Long-lived tissue-resident AM of embryonic origin have the capacity of self-renewal without replenishment from peripheral monocytes. As in other tissues, close cell-cell contacts in lungs also provide a milieu conducive for cell-to-cell spread of HIV infection and establishment of reservoirs. As lungs are in constant exposure to antigens from the external environment, this situation contributes to pro-inflammatory phenotype rendering pulmonary immune cells exhausted and senescent-an environment facilitating HIV persistence. Factors such as tobacco and e-cigarette smoking, lung microbiome dysbiosis and respiratory co-infections further drive antigenic stimulation and HIV replication. HIV replication, in turn, contributes to ongoing inflammation and clonal expansion. Herein, the potential role of AM in HIV persistence is discussed. Furthermore, their contribution towards pulmonary inflammation and immune dysregulation, which may in turn render PLWH susceptible to chronic lung disease, despite ART, is explored. Finally, strategies to eliminate HIV-infected AM are discussed.

虽然抗逆转录病毒疗法(ART)彻底改变了人类免疫缺陷病毒(HIV)的治疗方法,并使艾滋病病毒感染者(PLWH)的预期寿命接近正常人,但由于艾滋病病毒库的存在,治愈艾滋病病毒仍然遥遥无期。此外,与普通人群相比,艾滋病毒感染者的多病负担更重,包括感染性和非感染性肺部疾病,这可能是艾滋病毒储库形成的结果。他们的肠道、淋巴结、大脑、睾丸和肺部构成了储库的重要解剖部位。虽然 CD4+ T 细胞,尤其是记忆 CD4+ T 细胞,是特征最明显的细胞艾滋病病毒库,但组织常驻巨噬细胞(TRM)和肺泡巨噬细胞(AM)也携带艾滋病病毒感染。在健康状况下,肺泡巨噬细胞是支气管肺泡(BAL)液中最丰富的细胞,通过巡逻和清除碎片、微生物和表面活性物质循环,在肺泡空间充当哨兵。胚胎来源的长寿命组织驻留 AM 具有自我更新能力,无需外周单核细胞的补充。与其他组织一样,肺部细胞间的密切接触也为 HIV 感染的细胞间传播和储库的建立提供了有利环境。由于肺部经常接触外部环境中的抗原,这种情况会导致促炎表型,使肺部免疫细胞衰竭和衰老--这种环境有利于艾滋病病毒的持续存在。吸烟和吸电子烟、肺部微生物群失调和呼吸道合并感染等因素进一步推动了抗原刺激和艾滋病毒复制。反过来,HIV 复制又会导致持续的炎症和克隆扩增。本文讨论了AM在艾滋病病毒持续存在中的潜在作用。此外,还探讨了 AM 对肺部炎症和免疫调节失调的作用,这反过来又可能使感染艾滋病毒的 PLWH 在接受抗逆转录病毒疗法后仍易患慢性肺病。最后,讨论了消除感染艾滋病毒的 AM 的策略。
{"title":"[Potential role of alveolar macrophages in HIV persistence and lung disease].","authors":"Cecilia T Costiniuk, Suzanne Samarani, Lixing Wang, MariaLuisa Vigano, Ali Ahmad","doi":"10.1684/vir.2024.1057","DOIUrl":"https://doi.org/10.1684/vir.2024.1057","url":null,"abstract":"<p><p>While antiretroviral therapy (ART) has revolutionized the management of human immunodeficiency virus (HIV) and has enabled people living with HIV (PLWH) to achieve near-normal life expectancies, an HIV cure remains elusive due to the presence of HIV reservoirs. Furthermore, compared with individuals in the general population, PLWH support a higher burden of multimorbidity, including pulmonary diseases of both an infectious and non-infection nature, which may be a consequence of the formation of HIV reservoirs. Their gut, lymph nodes, brain, testes and lungs constitute important anatomic sites for the reservoirs. While CD4+ T-cells, and particularly memory CD4+ T-cells, are the best characterized cellular HIV reservoirs, tissue resident macrophages (TRM) and alveolar macrophages (AM) also harbor HIV infection. AM are the most abundant cells in bronchoalveolar (BAL) fluid in healthy conditions, and act as sentinels in the alveolar space by patrolling and clearing debris, microbes and surfactant recycling. Long-lived tissue-resident AM of embryonic origin have the capacity of self-renewal without replenishment from peripheral monocytes. As in other tissues, close cell-cell contacts in lungs also provide a milieu conducive for cell-to-cell spread of HIV infection and establishment of reservoirs. As lungs are in constant exposure to antigens from the external environment, this situation contributes to pro-inflammatory phenotype rendering pulmonary immune cells exhausted and senescent-an environment facilitating HIV persistence. Factors such as tobacco and e-cigarette smoking, lung microbiome dysbiosis and respiratory co-infections further drive antigenic stimulation and HIV replication. HIV replication, in turn, contributes to ongoing inflammation and clonal expansion. Herein, the potential role of AM in HIV persistence is discussed. Furthermore, their contribution towards pulmonary inflammation and immune dysregulation, which may in turn render PLWH susceptible to chronic lung disease, despite ART, is explored. Finally, strategies to eliminate HIV-infected AM are discussed.</p>","PeriodicalId":49377,"journal":{"name":"Virologie","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142156471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Questioning the eradication of HIV-1 reservoirs by targeting cell proliferation]. [质疑以细胞增殖为目标根除 HIV-1 病毒库]。
IF 0.7 4区 医学 Q4 VIROLOGY Pub Date : 2024-08-01 DOI: 10.1684/vir.2024.1059
Petronela Ancuta
{"title":"[Questioning the eradication of HIV-1 reservoirs by targeting cell proliferation].","authors":"Petronela Ancuta","doi":"10.1684/vir.2024.1059","DOIUrl":"https://doi.org/10.1684/vir.2024.1059","url":null,"abstract":"","PeriodicalId":49377,"journal":{"name":"Virologie","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142156472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[The viral protein NS1: a major player in the pathogenesis of orthoflaviviruses]. [病毒蛋白 NS1:正黄病毒发病机制中的主要角色】。]
IF 0.7 4区 医学 Q4 VIROLOGY Pub Date : 2024-06-01 DOI: 10.1684/vir.2024.1050
Justine Revel, Caroline Desmetz, Yannick Simonin

Orthoflaviviruses are enveloped positive-sense RNA viruses comprising numerous human pathogens transmitted by hematophagous arthropods. This includes viruses such as dengue virus, Zika virus, and yellow fever virus. The viral nonstructural protein NS1 plays a central role in the pathogenesis and cycle of these viruses by acting in two different forms: associated with the plasma membrane (NS1m) or secreted outside the cell (NS1s). The versatility of NS1 is evident in its ability to modulate various aspects of the infectious process, from immune evasion to pathogenesis. As an intracellular protein, it disrupts many processes, interfering with signaling pathways and facilitating viral replication in concert with other viral proteins. As a secreted protein, NS1 actively participates in immune evasion, interfering with the host immune system, inhibiting the complement system, facilitating viral dissemination, and disrupting the integrity of endothelial barriers. This review primarily aims to address the role of NS1 in viral pathogenesis associated with orthoflaviviruses.

正黄病毒是有包膜的正义 RNA 病毒,是由食血节肢动物传播的多种人类病原体。其中包括登革热病毒、寨卡病毒和黄热病病毒。病毒非结构蛋白 NS1 在这些病毒的致病和循环过程中发挥着核心作用,它以两种不同的形式发挥作用:与质膜结合(NS1m)或分泌到细胞外(NS1s)。NS1 的多功能性体现在它能够调节从免疫逃避到致病的感染过程的各个方面。作为细胞内蛋白,它能扰乱许多过程,干扰信号传导途径,并与其他病毒蛋白一起促进病毒复制。作为一种分泌蛋白,NS1 积极参与免疫逃避,干扰宿主免疫系统,抑制补体系统,促进病毒传播,破坏内皮屏障的完整性。本综述主要探讨 NS1 在与正黄病毒相关的病毒发病机制中的作用。
{"title":"[The viral protein NS1: a major player in the pathogenesis of orthoflaviviruses].","authors":"Justine Revel, Caroline Desmetz, Yannick Simonin","doi":"10.1684/vir.2024.1050","DOIUrl":"10.1684/vir.2024.1050","url":null,"abstract":"<p><p>Orthoflaviviruses are enveloped positive-sense RNA viruses comprising numerous human pathogens transmitted by hematophagous arthropods. This includes viruses such as dengue virus, Zika virus, and yellow fever virus. The viral nonstructural protein NS1 plays a central role in the pathogenesis and cycle of these viruses by acting in two different forms: associated with the plasma membrane (NS1m) or secreted outside the cell (NS1s). The versatility of NS1 is evident in its ability to modulate various aspects of the infectious process, from immune evasion to pathogenesis. As an intracellular protein, it disrupts many processes, interfering with signaling pathways and facilitating viral replication in concert with other viral proteins. As a secreted protein, NS1 actively participates in immune evasion, interfering with the host immune system, inhibiting the complement system, facilitating viral dissemination, and disrupting the integrity of endothelial barriers. This review primarily aims to address the role of NS1 in viral pathogenesis associated with orthoflaviviruses.</p>","PeriodicalId":49377,"journal":{"name":"Virologie","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141545447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Renaud-Mahieux Prizes : best posters during the XXVIth Journées Francophones de Virologie (JFV), Brusels 10-12 April 2024]. [Renaud-Mahieux 奖:第 XXVI 届法语国家病毒学年会(JFV)期间的最佳海报,布鲁塞尔,2024 年 4 月 10-12 日]。
IF 0.7 4区 医学 Q4 VIROLOGY Pub Date : 2024-06-01 DOI: 10.1684/vir.2024.1054
Noël Tordo
{"title":"[Renaud-Mahieux Prizes : best posters during the XXVI<sup>th</sup> Journées Francophones de Virologie (JFV), Brusels 10-12 April 2024].","authors":"Noël Tordo","doi":"10.1684/vir.2024.1054","DOIUrl":"https://doi.org/10.1684/vir.2024.1054","url":null,"abstract":"","PeriodicalId":49377,"journal":{"name":"Virologie","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141545423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[International congress of Viruses 2024 - A World of Viruses]. [2024 年国际病毒大会--病毒的世界]。
IF 0.7 4区 医学 Q4 VIROLOGY Pub Date : 2024-06-01 DOI: 10.1684/vir.2024.1052
Lucas Schalck
{"title":"[International congress of Viruses 2024 - A World of Viruses].","authors":"Lucas Schalck","doi":"10.1684/vir.2024.1052","DOIUrl":"10.1684/vir.2024.1052","url":null,"abstract":"","PeriodicalId":49377,"journal":{"name":"Virologie","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141545421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Viroids : infectious non coding RNAs]. [病毒:传染性非编码 RNA]。
IF 0.7 4区 医学 Q4 VIROLOGY Pub Date : 2024-06-01 DOI: 10.1684/vir.2024.1051
Charith Raj Adkar-Purushothama, Pauline Lejault, Marc-Antoine Turcotte, Jean-Pierre Perreault

Viroids are the smallest non-coding infectious RNAs (between 246 and 401 nucleotides) known to be highly structured and replicate autonomously in the host plants. Although they do not encode any peptides, viroids induce visible symptoms in susceptible host plants. This article provides an overview of their physical and biological properties, the diseases they cause and their significance for the plants. The mechanisms underlying the expression of symptoms in host plants, their detection and various strategies employed for diseases prevention are also developed.

病毒是已知最小的非编码传染性 RNA(介于 246 和 401 个核苷酸之间),具有高度结构化,可在寄主植物中自主复制。虽然它们不编码任何肽,但病毒病会在易感寄主植物上诱发明显的症状。本文概述了它们的物理和生物特性、引起的病害及其对植物的意义。文章还介绍了病毒在寄主植物中表现症状的机制、病毒的检测方法以及各种预防疾病的策略。
{"title":"[Viroids : infectious non coding RNAs].","authors":"Charith Raj Adkar-Purushothama, Pauline Lejault, Marc-Antoine Turcotte, Jean-Pierre Perreault","doi":"10.1684/vir.2024.1051","DOIUrl":"https://doi.org/10.1684/vir.2024.1051","url":null,"abstract":"<p><p>Viroids are the smallest non-coding infectious RNAs (between 246 and 401 nucleotides) known to be highly structured and replicate autonomously in the host plants. Although they do not encode any peptides, viroids induce visible symptoms in susceptible host plants. This article provides an overview of their physical and biological properties, the diseases they cause and their significance for the plants. The mechanisms underlying the expression of symptoms in host plants, their detection and various strategies employed for diseases prevention are also developed.</p>","PeriodicalId":49377,"journal":{"name":"Virologie","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141545448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Oroupouche virus: towards a future emergence?] [奥鲁普切病毒:未来会出现吗?]
IF 0.7 4区 医学 Q4 VIROLOGY Pub Date : 2024-06-01 DOI: 10.1684/vir.2024.1055
Anne Lavergne, Antoine Enfissi, Dominique Rousset
{"title":"[Oroupouche virus: towards a future emergence?]","authors":"Anne Lavergne, Antoine Enfissi, Dominique Rousset","doi":"10.1684/vir.2024.1055","DOIUrl":"10.1684/vir.2024.1055","url":null,"abstract":"","PeriodicalId":49377,"journal":{"name":"Virologie","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141545422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Report of the plenary session "Archaeology to prevent the future" during the XXVIth JFV]. [第 XXVI 届联合论坛全体会议 "预防未来的考古学 "报告]。
IF 0.7 4区 医学 Q4 VIROLOGY Pub Date : 2024-06-01 DOI: 10.1684/vir.2024.1053
Charlène Martin
{"title":"[Report of the plenary session \"Archaeology to prevent the future\" during the XXVI<sup>th</sup> JFV].","authors":"Charlène Martin","doi":"10.1684/vir.2024.1053","DOIUrl":"10.1684/vir.2024.1053","url":null,"abstract":"","PeriodicalId":49377,"journal":{"name":"Virologie","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141545424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Virologie
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1