Pub Date : 2021-02-25DOI: 10.1186/s00015-020-00383-1
J. Ragusa, L. M. Ospina-Ostios, P. Kindler, M. Sartori
{"title":"Stratigraphic revision and reconstruction of the deep-sea fan of the Voirons Flysch (Voirons Nappe, Chablais Prealps)","authors":"J. Ragusa, L. M. Ospina-Ostios, P. Kindler, M. Sartori","doi":"10.1186/s00015-020-00383-1","DOIUrl":"https://doi.org/10.1186/s00015-020-00383-1","url":null,"abstract":"","PeriodicalId":49456,"journal":{"name":"Swiss Journal of Geosciences","volume":"114 1","pages":"1-32"},"PeriodicalIF":3.1,"publicationDate":"2021-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s00015-020-00383-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41458505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-12DOI: 10.1186/s00015-021-00385-7
M. Roda, M. Zucali, L. Corti, R. Visalli, G. Ortolano, M. Spalla
{"title":"Blueschist mylonitic zones accommodating syn-subduction exhumation of deeply buried continental crust: the example of the Rocca Canavese Thrust Sheets Unit (Sesia–Lanzo Zone, Italian Western Alps)","authors":"M. Roda, M. Zucali, L. Corti, R. Visalli, G. Ortolano, M. Spalla","doi":"10.1186/s00015-021-00385-7","DOIUrl":"https://doi.org/10.1186/s00015-021-00385-7","url":null,"abstract":"","PeriodicalId":49456,"journal":{"name":"Swiss Journal of Geosciences","volume":"114 1","pages":"1-33"},"PeriodicalIF":3.1,"publicationDate":"2021-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s00015-021-00385-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43258816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-11DOI: 10.1186/s00015-020-00384-0
P. Niggli, Medal
{"title":"Anders McCarthy receives the 2020 Paul Niggli Medal","authors":"P. Niggli, Medal","doi":"10.1186/s00015-020-00384-0","DOIUrl":"https://doi.org/10.1186/s00015-020-00384-0","url":null,"abstract":"","PeriodicalId":49456,"journal":{"name":"Swiss Journal of Geosciences","volume":"114 1","pages":"1-2"},"PeriodicalIF":3.1,"publicationDate":"2021-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s00015-020-00384-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42079860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-11DOI: 10.1186/s00015-020-00382-2
T. Diehl, J. Clinton, C. Cauzzi, T. Kraft, P. Kästli, N. Deichmann, F. Massin, F. Grigoli, I. Molinari, Maren Bӧse, M. Hobiger, F. Haslinger, D. Fäh, S. Wiemer
{"title":"Earthquakes in Switzerland and surrounding regions during 2017 and 2018","authors":"T. Diehl, J. Clinton, C. Cauzzi, T. Kraft, P. Kästli, N. Deichmann, F. Massin, F. Grigoli, I. Molinari, Maren Bӧse, M. Hobiger, F. Haslinger, D. Fäh, S. Wiemer","doi":"10.1186/s00015-020-00382-2","DOIUrl":"https://doi.org/10.1186/s00015-020-00382-2","url":null,"abstract":"","PeriodicalId":49456,"journal":{"name":"Swiss Journal of Geosciences","volume":"114 1","pages":"1-29"},"PeriodicalIF":3.1,"publicationDate":"2021-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s00015-020-00382-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45413505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-05DOI: 10.1186/s00015-020-00380-4
Thierry Decrausaz, O. Müntener, P. Manzotti, Romain Lafay, C. Spandler
{"title":"Fossil oceanic core complexes in the Alps. New field, geochemical and isotopic constraints from the Tethyan Aiguilles Rouges Ophiolite (Val d’Hérens, Western Alps, Switzerland)","authors":"Thierry Decrausaz, O. Müntener, P. Manzotti, Romain Lafay, C. Spandler","doi":"10.1186/s00015-020-00380-4","DOIUrl":"https://doi.org/10.1186/s00015-020-00380-4","url":null,"abstract":"","PeriodicalId":49456,"journal":{"name":"Swiss Journal of Geosciences","volume":"114 1","pages":"1-27"},"PeriodicalIF":3.1,"publicationDate":"2021-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s00015-020-00380-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46421118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-25DOI: 10.1186/s00015-020-00376-0
M. Egli, G. Wiesenberg, J. Leifeld, H. Gärtner, J. Seibert, C. Röösli, Vladimir R. Wingate, Wasja Dollenmeier, P. Griffel, Jeannine Suremann, J. Weber, Mergime Zyberaj, Alessandra Musso
{"title":"Formation and decay of peat bogs in the vegetable belt of Switzerland","authors":"M. Egli, G. Wiesenberg, J. Leifeld, H. Gärtner, J. Seibert, C. Röösli, Vladimir R. Wingate, Wasja Dollenmeier, P. Griffel, Jeannine Suremann, J. Weber, Mergime Zyberaj, Alessandra Musso","doi":"10.1186/s00015-020-00376-0","DOIUrl":"https://doi.org/10.1186/s00015-020-00376-0","url":null,"abstract":"","PeriodicalId":49456,"journal":{"name":"Swiss Journal of Geosciences","volume":"114 1","pages":"1-16"},"PeriodicalIF":3.1,"publicationDate":"2021-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s00015-020-00376-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45380877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-14DOI: 10.1186/s00015-020-00379-x
F. Piccoli, Giulia Guidobaldi
{"title":"A report on gender diversity and equality in the geosciences: an analysis of the Swiss Geoscience Meetings from 2003 to 2019","authors":"F. Piccoli, Giulia Guidobaldi","doi":"10.1186/s00015-020-00379-x","DOIUrl":"https://doi.org/10.1186/s00015-020-00379-x","url":null,"abstract":"","PeriodicalId":49456,"journal":{"name":"Swiss Journal of Geosciences","volume":"114 1","pages":"1-12"},"PeriodicalIF":3.1,"publicationDate":"2021-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s00015-020-00379-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49417044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01Epub Date: 2021-03-03DOI: 10.1186/s00015-020-00381-3
Lukas Nibourel, Alfons Berger, Daniel Egli, Stefan Heuberger, Marco Herwegh
The thermo-kinematic evolution of the eastern Aar Massif, Swiss Alps, was investigated using peak temperature data estimated from Raman spectroscopy of carbonaceous material and detailed field analyses. New and compiled temperature-time constraints along the deformed and exhumed basement-cover contact allow us to (i) establish the timing of metamorphism and deformation, (ii) track long-term horizontal and vertical orogenic movements and (iii) assess the influence of temperature and structural inheritance on the kinematic evolution. We present a new shear zone map, structural cross sections and a step-wise retrodeformation. From onwards, basement-involved deformation started with the formation of relatively discrete NNW-directed thrusts. Peak metamorphic isograds are weakly deformed by these thrusts, suggesting that they initiated before or during the metamorphic peak under ongoing burial in the footwall to the basal Helvetic roof thrust. Subsequent peak- to post-metamorphic deformation was dominated by steep, mostly NNW-vergent reverse faults ( 22-14 Ma). Field investigations demonstrate that these shear zones were steeper than already at inception. This produced the massif-internal structural relief and was associated with large vertical displacements (7 km shortening vs. up to 11 km exhumation). From 14 Ma onwards, the eastern Aar massif exhumed "en bloc" (i.e., without significant differential massif-internal exhumation) in the hanging wall of frontal thrusts, which is consistent with the transition to strike-slip dominated deformation observed within the massif. Our results indicate 13 km shortening and 9 km exhumation between 14 Ma and present. Inherited normal faults were not significantly reactivated. Instead, new thrusts/reverse faults developed in the basement below syn-rift basins, and can be traced into overturned fold limbs in the overlying sediment, producing tight synclines and broad anticlines along the basement-cover contact. The sediments were not detached from their crystalline substratum and formed disharmonic folds. Our results highlight decreasing rheological contrasts between (i) relatively strong basement and (ii) relatively weak cover units and inherited faults at higher temperature conditions. Both the timing of basement-involved deformation and the structural style (shear zone dip) appear to be controlled by evolving temperature conditions.
{"title":"Structural and thermal evolution of the eastern Aar Massif: insights from structural field work and Raman thermometry.","authors":"Lukas Nibourel, Alfons Berger, Daniel Egli, Stefan Heuberger, Marco Herwegh","doi":"10.1186/s00015-020-00381-3","DOIUrl":"https://doi.org/10.1186/s00015-020-00381-3","url":null,"abstract":"<p><p>The thermo-kinematic evolution of the eastern Aar Massif, Swiss Alps, was investigated using peak temperature data estimated from Raman spectroscopy of carbonaceous material and detailed field analyses. New and compiled temperature-time constraints along the deformed and exhumed basement-cover contact allow us to (i) establish the timing of metamorphism and deformation, (ii) track long-term horizontal and vertical orogenic movements and (iii) assess the influence of temperature and structural inheritance on the kinematic evolution. We present a new shear zone map, structural cross sections and a step-wise retrodeformation. From <math><mtext>ca.;26,Ma</mtext></math> onwards, basement-involved deformation started with the formation of relatively discrete NNW-directed thrusts. Peak metamorphic isograds are weakly deformed by these thrusts, suggesting that they initiated before or during the metamorphic peak under ongoing burial in the footwall to the basal Helvetic roof thrust. Subsequent peak- to post-metamorphic deformation was dominated by steep, mostly NNW-vergent reverse faults ( <math><mtext>ca.</mtext></math> 22-14 Ma). Field investigations demonstrate that these shear zones were steeper than <math><msup><mn>50</mn> <mo>∘</mo></msup> </math> already at inception. This produced the massif-internal structural relief and was associated with large vertical displacements (7 km shortening vs. up to 11 km exhumation). From 14 Ma onwards, the eastern Aar massif exhumed \"en bloc\" (i.e., without significant differential massif-internal exhumation) in the hanging wall of frontal thrusts, which is consistent with the transition to strike-slip dominated deformation observed within the massif. Our results indicate 13 km shortening and 9 km exhumation between 14 Ma and present. Inherited normal faults were not significantly reactivated. Instead, new thrusts/reverse faults developed in the basement below syn-rift basins, and can be traced into overturned fold limbs in the overlying sediment, producing tight synclines and broad anticlines along the basement-cover contact. The sediments were not detached from their crystalline substratum and formed disharmonic folds. Our results highlight decreasing rheological contrasts between (i) relatively strong basement and (ii) relatively weak cover units and inherited faults at higher temperature conditions. Both the timing of basement-involved deformation and the structural style (shear zone dip) appear to be controlled by evolving temperature conditions.</p>","PeriodicalId":49456,"journal":{"name":"Swiss Journal of Geosciences","volume":"114 1","pages":"9"},"PeriodicalIF":3.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s00015-020-00381-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25500539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01Epub Date: 2021-05-10DOI: 10.1186/s00015-021-00391-9
Edwin Gnos, Josef Mullis, Emmanuelle Ricchi, Christian A Bergemann, Emilie Janots, Alfons Berger
Fluid assisted Alpine fissure-vein and cleft formation starts at prograde, peak or retrograde metamorphic conditions of 450-550 °C and 0.3-0.6 GPa and below, commonly at conditions of ductile to brittle rock deformation. Early-formed fissures become overprinted by subsequent deformation, locally leading to a reorientation. Deformation that follows fissure formation initiates a cycle of dissolution, dissolution/reprecipitation or new growth of fissure minerals enclosing fluid inclusions. Although fissures in upper greenschist and amphibolite facies rocks predominantly form under retrograde metamorphic conditions, this work confirms that the carbon dioxide fluid zone correlates with regions of highest grade Alpine metamorphism, suggesting carbon dioxide production by prograde devolatilization reactions and rock-buffering of the fissure-filling fluid. For this reason, fluid composition zones systematically change in metamorphosed and exhumed nappe stacks from diagenetic to amphibolite facies metamorphic rocks from saline fluids dominated by higher hydrocarbons, methane, water and carbon dioxide. Open fissures are in most cases oriented roughly perpendicular to the foliation and lineation of the host rock. The type of fluid constrains the habit of the very frequently crystallizing quartz crystals. Open fissures also form in association with more localized strike-slip faults and are oriented perpendicular to the faults. The combination of fissure orientation, fissure quartz fluid inclusion and fissure monazite-(Ce) (hereafter monazite) Th-Pb ages shows that fissure formation occurred episodically (1) during the Cretaceous (eo-Alpine) deformation cycle in association with exhumation of the Austroalpine Koralpe-Saualpe region (~ 90 Ma) and subsequent extensional movements in association with the formation of the Gosau basins (~ 90-70 Ma), (2) during rapid exhumation of high-pressure overprinted Briançonnais and Piemontais units (36-30 Ma), (3) during unroofing of the Tauern and Lepontine metamorphic domes, during emplacement and reverse faulting of the external Massifs (25-12 Ma; except Argentera) and due to local dextral strike-slip faulting in association with the opening of the Ligurian sea, and (4) during the development of a young, widespread network of ductile to brittle strike-slip faults (12-5 Ma).
Supplementary information: The online version contains supplementary material available at 10.1186/s00015-021-00391-9.
{"title":"Episodes of fissure formation in the Alps: connecting quartz fluid inclusion, fissure monazite age, and fissure orientation data.","authors":"Edwin Gnos, Josef Mullis, Emmanuelle Ricchi, Christian A Bergemann, Emilie Janots, Alfons Berger","doi":"10.1186/s00015-021-00391-9","DOIUrl":"https://doi.org/10.1186/s00015-021-00391-9","url":null,"abstract":"<p><p>Fluid assisted Alpine fissure-vein and cleft formation starts at prograde, peak or retrograde metamorphic conditions of 450-550 °C and 0.3-0.6 GPa and below, commonly at conditions of ductile to brittle rock deformation. Early-formed fissures become overprinted by subsequent deformation, locally leading to a reorientation. Deformation that follows fissure formation initiates a cycle of dissolution, dissolution/reprecipitation or new growth of fissure minerals enclosing fluid inclusions. Although fissures in upper greenschist and amphibolite facies rocks predominantly form under retrograde metamorphic conditions, this work confirms that the carbon dioxide fluid zone correlates with regions of highest grade Alpine metamorphism, suggesting carbon dioxide production by prograde devolatilization reactions and rock-buffering of the fissure-filling fluid. For this reason, fluid composition zones systematically change in metamorphosed and exhumed nappe stacks from diagenetic to amphibolite facies metamorphic rocks from saline fluids dominated by higher hydrocarbons, methane, water and carbon dioxide. Open fissures are in most cases oriented roughly perpendicular to the foliation and lineation of the host rock. The type of fluid constrains the habit of the very frequently crystallizing quartz crystals. Open fissures also form in association with more localized strike-slip faults and are oriented perpendicular to the faults. The combination of fissure orientation, fissure quartz fluid inclusion and fissure monazite-(Ce) (hereafter monazite) Th-Pb ages shows that fissure formation occurred episodically (1) during the Cretaceous (eo-Alpine) deformation cycle in association with exhumation of the Austroalpine Koralpe-Saualpe region (~ 90 Ma) and subsequent extensional movements in association with the formation of the Gosau basins (~ 90-70 Ma), (2) during rapid exhumation of high-pressure overprinted Briançonnais and Piemontais units (36-30 Ma), (3) during unroofing of the Tauern and Lepontine metamorphic domes, during emplacement and reverse faulting of the external Massifs (25-12 Ma; except Argentera) and due to local dextral strike-slip faulting in association with the opening of the Ligurian sea, and (4) during the development of a young, widespread network of ductile to brittle strike-slip faults (12-5 Ma).</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1186/s00015-021-00391-9.</p>","PeriodicalId":49456,"journal":{"name":"Swiss Journal of Geosciences","volume":"114 1","pages":"14"},"PeriodicalIF":3.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s00015-021-00391-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39578818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}