Pub Date : 2023-11-19DOI: 10.1080/15732479.2023.2277884
Pier Giorgio Malerba
The San Michele Bridge in Paderno, Italy, is a prime example of the refurbishment of a historic structure. An architectural and historical landmark, it is the last of a remarkable group of trussed ...
{"title":"The strengthening of the 130-year-old San Michele bridge in Paderno d’Adda, Italy – an experience between past and present","authors":"Pier Giorgio Malerba","doi":"10.1080/15732479.2023.2277884","DOIUrl":"https://doi.org/10.1080/15732479.2023.2277884","url":null,"abstract":"The San Michele Bridge in Paderno, Italy, is a prime example of the refurbishment of a historic structure. An architectural and historical landmark, it is the last of a remarkable group of trussed ...","PeriodicalId":49468,"journal":{"name":"Structure and Infrastructure Engineering","volume":"128 9","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138519975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-16DOI: 10.1080/15732479.2023.2280995
Yu Zou, Dong Xu, Qinlong Jia
Precast concrete segmental bridges (PCSBs) are prone to weakness at the joints. To ensure accurate positioning and effective force transmission between segments, steel shear keyed joints were desig...
预制混凝土节段桥存在接缝薄弱的问题。为保证构件间的准确定位和有效传力,设计了钢剪力键连接。
{"title":"Shear mechanism and strength calculation of steel shear keyed dry joints in precast segmental bridges","authors":"Yu Zou, Dong Xu, Qinlong Jia","doi":"10.1080/15732479.2023.2280995","DOIUrl":"https://doi.org/10.1080/15732479.2023.2280995","url":null,"abstract":"Precast concrete segmental bridges (PCSBs) are prone to weakness at the joints. To ensure accurate positioning and effective force transmission between segments, steel shear keyed joints were desig...","PeriodicalId":49468,"journal":{"name":"Structure and Infrastructure Engineering","volume":"42 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138519966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-16DOI: 10.1080/15732479.2023.2280727
Numa J. Bertola, Eugen Brühwiler
The management of existing civil infrastructure is becoming more crucial as a large share of bridges is approaching their theoretical end of service duration. Structural performance monitoring aims...
{"title":"Framework to evaluate the value of monitoring-technique information for structural performance monitoring","authors":"Numa J. Bertola, Eugen Brühwiler","doi":"10.1080/15732479.2023.2280727","DOIUrl":"https://doi.org/10.1080/15732479.2023.2280727","url":null,"abstract":"The management of existing civil infrastructure is becoming more crucial as a large share of bridges is approaching their theoretical end of service duration. Structural performance monitoring aims...","PeriodicalId":49468,"journal":{"name":"Structure and Infrastructure Engineering","volume":"108 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138519973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-15DOI: 10.1080/15732479.2023.2280053
Sajjad Safari, Tyler DuBose, Monique H. Head, Harry W. Shenton III, Jovan Tatar, Michael J. Chajes, Jonathan Karam, Jason N. Hastings
Buried culverts are important structures within the civil infrastructure that convey water beneath roadways, bridges, and other systems while also being load bearing. However, many culverts are det...
{"title":"Diagnostic load testing and assessment of a corroded corrugated metal pipe culvert before rehabilitation","authors":"Sajjad Safari, Tyler DuBose, Monique H. Head, Harry W. Shenton III, Jovan Tatar, Michael J. Chajes, Jonathan Karam, Jason N. Hastings","doi":"10.1080/15732479.2023.2280053","DOIUrl":"https://doi.org/10.1080/15732479.2023.2280053","url":null,"abstract":"Buried culverts are important structures within the civil infrastructure that convey water beneath roadways, bridges, and other systems while also being load bearing. However, many culverts are det...","PeriodicalId":49468,"journal":{"name":"Structure and Infrastructure Engineering","volume":"7 9","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138519969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-10DOI: 10.1080/15732479.2023.2275696
Chen Wu, Xiaofei Xiao, Shenglan Ma, Kedan Chen, Guoliang Lin
AbstractThis paper proposes an ambient-cured ultra-high performance concrete (ACUHPC) by optimising its mixing procedure based on general materials. Seven reinforced concrete (RC) beams were designed and subjected to different levels of damage and strengthened using the proposed ACUHPC. Flexural experiments were performed, and corresponding finite element (FE) models were developed to investigate the flexural performance of the strengthened beams. The influence of the level of damage and thickness of the ACUHPC strengthening layer on the response of the beams was evaluated. The scope of application of the proposed ACUHPC strengthening method, suggestions for its implementation, and methods for estimating the flexural capacity and mid-span deflection of the strengthened beams are presented herein. The results indicated that using the ACUHPC can significantly increase the flexural capacity and effectively decrease the deflections and maximum crack width of the strengthened beams. Furthermore, the flexural capacity of the most severely damaged beam was enhanced by 36.3% after strengthening.Keywords: Ambient-cured ultra-high performance concretedamaged beamsdeflectionsflexural behaviourreinforced concrete beamsstrengthening Disclosure statementThe authors declare that there is no any competing interest for this study.Additional informationFundingAuthors acknowledge the financial support provided by the Industry-university Cooperation Project of Fujian Province, China (Grant No. 2022H6032); the Natural Science Foundation of Fujian Province, China (Grant No. 2020J05184); and National Natural Science Foundation of China (Grant No. 52378494).
{"title":"Flexural strengthening of reinforced concrete beams with different levels of damage using ambient-cured ultra-high performance concrete","authors":"Chen Wu, Xiaofei Xiao, Shenglan Ma, Kedan Chen, Guoliang Lin","doi":"10.1080/15732479.2023.2275696","DOIUrl":"https://doi.org/10.1080/15732479.2023.2275696","url":null,"abstract":"AbstractThis paper proposes an ambient-cured ultra-high performance concrete (ACUHPC) by optimising its mixing procedure based on general materials. Seven reinforced concrete (RC) beams were designed and subjected to different levels of damage and strengthened using the proposed ACUHPC. Flexural experiments were performed, and corresponding finite element (FE) models were developed to investigate the flexural performance of the strengthened beams. The influence of the level of damage and thickness of the ACUHPC strengthening layer on the response of the beams was evaluated. The scope of application of the proposed ACUHPC strengthening method, suggestions for its implementation, and methods for estimating the flexural capacity and mid-span deflection of the strengthened beams are presented herein. The results indicated that using the ACUHPC can significantly increase the flexural capacity and effectively decrease the deflections and maximum crack width of the strengthened beams. Furthermore, the flexural capacity of the most severely damaged beam was enhanced by 36.3% after strengthening.Keywords: Ambient-cured ultra-high performance concretedamaged beamsdeflectionsflexural behaviourreinforced concrete beamsstrengthening Disclosure statementThe authors declare that there is no any competing interest for this study.Additional informationFundingAuthors acknowledge the financial support provided by the Industry-university Cooperation Project of Fujian Province, China (Grant No. 2022H6032); the Natural Science Foundation of Fujian Province, China (Grant No. 2020J05184); and National Natural Science Foundation of China (Grant No. 52378494).","PeriodicalId":49468,"journal":{"name":"Structure and Infrastructure Engineering","volume":" 613","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135186092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-10DOI: 10.1080/15732479.2023.2276373
Putri S. Firdaus, Hiroshi Matsuzaki, Mitsuyoshi Akiyama, Koki Aoki, Dan M. Frangopol
AbstractTo estimate the connectivity of a road network, it is crucial to evaluate the correlation of hazard intensities among individual bridge locations since the probability of multiple bridges being damaged simultaneously depends on the degree of this correlation. However, research on connectivity assessment of bridge networks considering spatial correlations associated with flood intensities is scarce in the literature. When quantifying the spatial correlation of flood intensities, modeling based on the stream distance rather than the Euclidean distance is required, taking into account that river flow is restricted only within the stream network. To achieve this purpose, a novel methodology is proposed to evaluate the spatial correlation of a stream network based on a geostatistical linear model and stream network covariance models. In addition, this study considers the spatial correlation of seismic hazard intensity. With the proposed method, it is possible to identify which bridges play an important role in ensuring the connectivity of the road network under multiple hazards, i.e. flood and seismic. As an illustrative example, the proposed method is applied to a hypothetical bridge network in Kumamoto Prefecture, Japan. The results demonstrate that improved network connectivity can be achieved by implementing a relevant retrofitting strategy for important bridges.Keywords: Network connectivitybridgesspatial correlationmultiple hazardsflood hazardseismic hazardMonte Carlo simulation Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by JSPS KAKENHI (Grant number: 23H00217) and JST-JICA SATREPS (Grant ID: JPMJSA2009).
{"title":"Probabilistic connectivity assessment of bridge networks considering spatial correlations associated with flood and seismic hazards","authors":"Putri S. Firdaus, Hiroshi Matsuzaki, Mitsuyoshi Akiyama, Koki Aoki, Dan M. Frangopol","doi":"10.1080/15732479.2023.2276373","DOIUrl":"https://doi.org/10.1080/15732479.2023.2276373","url":null,"abstract":"AbstractTo estimate the connectivity of a road network, it is crucial to evaluate the correlation of hazard intensities among individual bridge locations since the probability of multiple bridges being damaged simultaneously depends on the degree of this correlation. However, research on connectivity assessment of bridge networks considering spatial correlations associated with flood intensities is scarce in the literature. When quantifying the spatial correlation of flood intensities, modeling based on the stream distance rather than the Euclidean distance is required, taking into account that river flow is restricted only within the stream network. To achieve this purpose, a novel methodology is proposed to evaluate the spatial correlation of a stream network based on a geostatistical linear model and stream network covariance models. In addition, this study considers the spatial correlation of seismic hazard intensity. With the proposed method, it is possible to identify which bridges play an important role in ensuring the connectivity of the road network under multiple hazards, i.e. flood and seismic. As an illustrative example, the proposed method is applied to a hypothetical bridge network in Kumamoto Prefecture, Japan. The results demonstrate that improved network connectivity can be achieved by implementing a relevant retrofitting strategy for important bridges.Keywords: Network connectivitybridgesspatial correlationmultiple hazardsflood hazardseismic hazardMonte Carlo simulation Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by JSPS KAKENHI (Grant number: 23H00217) and JST-JICA SATREPS (Grant ID: JPMJSA2009).","PeriodicalId":49468,"journal":{"name":"Structure and Infrastructure Engineering","volume":" 622","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135186236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AbstractBase isolation technology is highly advocated by the research community worldwide for efficient mitigation of earthquake-induced vibrations and alleviating seismic risks posed to civil engineering structures. However, the construction cost of implementing this advanced technique to real-life buildings compared to the conventional ones remains a debatable topic, and a research problem to examine. Therefore, the present study focuses on assessing the short- and long-term cost-benefits of base-isolated buildings vis-é-vis fixed-base buildings over their service life. Notably, the benefit-cost analysis methodology prescribed in FEMA-356 is utilized to quantify the economic consequences of natural calamities on the base-isolated building. Various aspects, such as structural responses, damage vulnerability, collapse probability, and occupancy rate are thoroughly analyzed. A real-life mid-rise reinforced concrete building in the Indian subcontinent, having double-curvature friction pendulum bearings (FPBs) at stilt level is deliberated in this study. A series of quasi-static and nonlinear time-history analyses are carried out based on the recently drafted Indian seismic code for base isolation to comprehend the improved performance of the FPB-isolated building. Additionally, two fixed-base buildings are designed with an aim to make their performance almost at par with the base-isolated building, and then to assess the cost implications of attaining such comparable performance. The outcomes of this study, particularly the structural performance enhancement and cost benefits, will assist both decision makers and structural designers to have a persuasive opinion on the better adaptability of the base isolation technology for improved seismic resistance and financial outlooks associated thereof.Keywords: Friction pendulum bearingIndian seismic code and provisionsperformance-based seismic designBenefit-cost analysisLoss estimationPassive vibration control Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThe financial support extended by M/s Resistoflex Dynamics Private Limited, Sector 2, NOIDA, Uttar Pradesh (U.P.) – 201 301, India in conducting the present study is gratefully acknowledged.
{"title":"Seismic performance assessment and benefit-cost analysis of mid-rise reinforced concrete base-isolated building using double-curvature friction pendulum bearings","authors":"Jagajyoti Panda, Vijay Singh, Ratish Jain, Vasant Matsagar","doi":"10.1080/15732479.2023.2275698","DOIUrl":"https://doi.org/10.1080/15732479.2023.2275698","url":null,"abstract":"AbstractBase isolation technology is highly advocated by the research community worldwide for efficient mitigation of earthquake-induced vibrations and alleviating seismic risks posed to civil engineering structures. However, the construction cost of implementing this advanced technique to real-life buildings compared to the conventional ones remains a debatable topic, and a research problem to examine. Therefore, the present study focuses on assessing the short- and long-term cost-benefits of base-isolated buildings vis-é-vis fixed-base buildings over their service life. Notably, the benefit-cost analysis methodology prescribed in FEMA-356 is utilized to quantify the economic consequences of natural calamities on the base-isolated building. Various aspects, such as structural responses, damage vulnerability, collapse probability, and occupancy rate are thoroughly analyzed. A real-life mid-rise reinforced concrete building in the Indian subcontinent, having double-curvature friction pendulum bearings (FPBs) at stilt level is deliberated in this study. A series of quasi-static and nonlinear time-history analyses are carried out based on the recently drafted Indian seismic code for base isolation to comprehend the improved performance of the FPB-isolated building. Additionally, two fixed-base buildings are designed with an aim to make their performance almost at par with the base-isolated building, and then to assess the cost implications of attaining such comparable performance. The outcomes of this study, particularly the structural performance enhancement and cost benefits, will assist both decision makers and structural designers to have a persuasive opinion on the better adaptability of the base isolation technology for improved seismic resistance and financial outlooks associated thereof.Keywords: Friction pendulum bearingIndian seismic code and provisionsperformance-based seismic designBenefit-cost analysisLoss estimationPassive vibration control Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThe financial support extended by M/s Resistoflex Dynamics Private Limited, Sector 2, NOIDA, Uttar Pradesh (U.P.) – 201 301, India in conducting the present study is gratefully acknowledged.","PeriodicalId":49468,"journal":{"name":"Structure and Infrastructure Engineering","volume":" 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135290602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-07DOI: 10.1080/15732479.2023.2276896
Ayaho Miyamoto, Akito Yabe, Petr Hradil, Ilkka Hakola
AbstractThis article proposes an innovative concept of an intelligent bridge system that integrates sensors, a processing unit, and an actuator to maintain bridge safety and performance even in the face of unexpected environmental changes and disturbances. Although technically challenging, this system is an exciting prospect for young engineers who aspire to contribute to cutting-edge technological advancements. As a practical example, this article presents an ICT-based bridge remote monitoring system called the "Intelligent Bridge," which allows real-time monitoring and control during extreme events such as earthquakes and typhoons. The Intelligent Bridge comprises a stand-alone monitoring system and a web-based internet monitoring system for bridge maintenance, which is introduced as an intelligent structure integrated into the intelligent bridge system. To verify the validity of the proposed system, it is investigated the ability to adjust cable forces on a 2-span continuous cable-stayed bridge model to control its structural performance. The development of an intelligent bridge system represents a significant advancement in bridge engineering and has the potential to improve the safety and longevity of bridges, particularly in areas prone to extreme environmental events. The system proposed in this article has practical applications that can benefit both engineers and the general public.Keywords: Feasibility studyhealth monitoringinformation processingintelligent bridgeinternet monitoringlong-lifeself-examinationstand-alone monitoring Disclosure statementNo potential conflict of interest was reported by the author(s).
{"title":"Feasibility study on intelligent bridge combined with smart monitoring techniques","authors":"Ayaho Miyamoto, Akito Yabe, Petr Hradil, Ilkka Hakola","doi":"10.1080/15732479.2023.2276896","DOIUrl":"https://doi.org/10.1080/15732479.2023.2276896","url":null,"abstract":"AbstractThis article proposes an innovative concept of an intelligent bridge system that integrates sensors, a processing unit, and an actuator to maintain bridge safety and performance even in the face of unexpected environmental changes and disturbances. Although technically challenging, this system is an exciting prospect for young engineers who aspire to contribute to cutting-edge technological advancements. As a practical example, this article presents an ICT-based bridge remote monitoring system called the \"Intelligent Bridge,\" which allows real-time monitoring and control during extreme events such as earthquakes and typhoons. The Intelligent Bridge comprises a stand-alone monitoring system and a web-based internet monitoring system for bridge maintenance, which is introduced as an intelligent structure integrated into the intelligent bridge system. To verify the validity of the proposed system, it is investigated the ability to adjust cable forces on a 2-span continuous cable-stayed bridge model to control its structural performance. The development of an intelligent bridge system represents a significant advancement in bridge engineering and has the potential to improve the safety and longevity of bridges, particularly in areas prone to extreme environmental events. The system proposed in this article has practical applications that can benefit both engineers and the general public.Keywords: Feasibility studyhealth monitoringinformation processingintelligent bridgeinternet monitoringlong-lifeself-examinationstand-alone monitoring Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":49468,"journal":{"name":"Structure and Infrastructure Engineering","volume":"15 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135479904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-05DOI: 10.1080/15732479.2023.2274878
Parham Paydavosi, Mohammad Saied Dehghani, Sue McNeil
AbstractEffective maintenance decisions for bridges depend on accurate performance prediction. Machine learning (ML) models use historical bridge performance data to learn and predict performance. However, in many agencies, the condition history of bridges is limited and does not go beyond a few years. The question, therefore, is, to what extent does condition history help us make better predictions? To address this question, a ML model was developed that analysed more than 600,000 bridge decks with 27 years of condition history. Two data selection methods were designed: non-overlapping and overlapping data. The non-overlapping data are typically used to train the model. The overlapping data introduced in this study uses the data more efficiently for model training recognising that strings of historical data convey more information. Longer term predictions were found to be positively impacted by every additional year of condition history. Short-term condition prediction (one or two years) does not need significant historical data. It was also found that overlapping data, compared to non-overlapping data, produced larger training samples and had higher prediction accuracy in the majority of experiments, but at the cost of higher running time due to a larger sample size.Keywords: Artificial intelligencebig datainfrastructure asset managementmachine learningbridge structure deteriorationbridge conditionneural networkperformance prediction Disclosure statementNo potential conflict of interest was reported by the author(s).
{"title":"Evaluating the accuracy of predicted bridge condition using machine learning: the role of condition history","authors":"Parham Paydavosi, Mohammad Saied Dehghani, Sue McNeil","doi":"10.1080/15732479.2023.2274878","DOIUrl":"https://doi.org/10.1080/15732479.2023.2274878","url":null,"abstract":"AbstractEffective maintenance decisions for bridges depend on accurate performance prediction. Machine learning (ML) models use historical bridge performance data to learn and predict performance. However, in many agencies, the condition history of bridges is limited and does not go beyond a few years. The question, therefore, is, to what extent does condition history help us make better predictions? To address this question, a ML model was developed that analysed more than 600,000 bridge decks with 27 years of condition history. Two data selection methods were designed: non-overlapping and overlapping data. The non-overlapping data are typically used to train the model. The overlapping data introduced in this study uses the data more efficiently for model training recognising that strings of historical data convey more information. Longer term predictions were found to be positively impacted by every additional year of condition history. Short-term condition prediction (one or two years) does not need significant historical data. It was also found that overlapping data, compared to non-overlapping data, produced larger training samples and had higher prediction accuracy in the majority of experiments, but at the cost of higher running time due to a larger sample size.Keywords: Artificial intelligencebig datainfrastructure asset managementmachine learningbridge structure deteriorationbridge conditionneural networkperformance prediction Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":49468,"journal":{"name":"Structure and Infrastructure Engineering","volume":"97 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135725934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AbstractThis article reports the process that allowed to check the condition of a steel railway bridge having a strategic position within the network. The framework representing the actions needed for the service life extension of the bridge is first described, then the conducted inspections are illustrated, together with the developed numerical analyses and the conception of specific tests on site. The conclusion, downstream of all these analyses and with the comparison of the real-life experiments, was to allow a limited extension of the useful life of the bridge, even with some reductions in the safety factor, respecting a reduction in the speed of railway trains and prescribing continuous monitoring of the bridge. In this context, all the test evaluations, combined with the surveillance/monitoring, and joined with an important numerical modelling activity, lead to the concept of “structural augmentation” of the bridge for service life extension purposes. The specific case of the examined bridge is supposed to be an example of good practice useful for infrastructure authorities.Keywords: Railway bridgesbridge managementservice lifebridge modellingtraffic limitationcontinuous monitoringstructural augmentation Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe Financial support of the Research Project No. CN1221844D08208F from Sapienza University of Rome under the umbrella of the national program PNRR – CN1 – Spoke 5 (Directorial Decretation no. 1031 of June, 17th, 2022) is gratefully acknowledged by the authors from Sapienza University of Rome.
摘要本文报道了对某具有战略地位的铁路桥进行状态检测的过程。首先描述了代表桥梁使用寿命延长所需行动的框架,然后说明了所进行的检查,以及开发的数值分析和现场具体试验的概念。所有这些分析的结论,以及与实际实验的比较,是允许有限地延长桥梁的使用寿命,即使在安全系数有所降低的情况下,考虑到铁路列车速度的降低,并规定对桥梁进行持续监测。在这种情况下,所有的试验评估,结合监测/监测,并结合一个重要的数值模拟活动,导致桥梁的“结构增强”概念,以延长使用寿命。被检查的桥梁的具体情况应该是基础设施当局有用的良好做法的一个例子。关键词:铁路桥梁桥梁管理服务寿命桥建模交通限制持续监测结构增强披露声明作者未报告潜在的利益冲突。其他信息资助研究项目的财政支持编号:CN1221844D08208F来自罗马萨皮恩扎大学,在国家计划PNRR - CN1 - Spoke 5的保护下。1031 of June 17, 2022),感谢罗马Sapienza大学的作者。
{"title":"Service life extension of strategic bridges","authors":"Franco Bontempi, Francesco Petrini, Marina Mazzacane, Michele Ronchi, Michelangelo Monno, Rosalia Piscopo","doi":"10.1080/15732479.2023.2276368","DOIUrl":"https://doi.org/10.1080/15732479.2023.2276368","url":null,"abstract":"AbstractThis article reports the process that allowed to check the condition of a steel railway bridge having a strategic position within the network. The framework representing the actions needed for the service life extension of the bridge is first described, then the conducted inspections are illustrated, together with the developed numerical analyses and the conception of specific tests on site. The conclusion, downstream of all these analyses and with the comparison of the real-life experiments, was to allow a limited extension of the useful life of the bridge, even with some reductions in the safety factor, respecting a reduction in the speed of railway trains and prescribing continuous monitoring of the bridge. In this context, all the test evaluations, combined with the surveillance/monitoring, and joined with an important numerical modelling activity, lead to the concept of “structural augmentation” of the bridge for service life extension purposes. The specific case of the examined bridge is supposed to be an example of good practice useful for infrastructure authorities.Keywords: Railway bridgesbridge managementservice lifebridge modellingtraffic limitationcontinuous monitoringstructural augmentation Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe Financial support of the Research Project No. CN1221844D08208F from Sapienza University of Rome under the umbrella of the national program PNRR – CN1 – Spoke 5 (Directorial Decretation no. 1031 of June, 17th, 2022) is gratefully acknowledged by the authors from Sapienza University of Rome.","PeriodicalId":49468,"journal":{"name":"Structure and Infrastructure Engineering","volume":"57 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135934694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}