The main objectives of this study were to compare the prediction accuracy of different Bayesian methods for traits with a wide range of genetic architecture using simulation and real data and to assess the sensitivity of these methods to the violation of their assumptions. For the simulation study, different scenarios were implemented based on two traits with low or high heritability and different numbers of QTL and the distribution of their effects. For real data analysis, a German Holstein dataset for milk fat percentage, milk yield, and somatic cell score was used. The simulation results showed that, with the exception of the Bayes R, the other methods were sensitive to changes in the number of QTLs and distribution of QTL effects. Having a distribution of QTL effects, similar to what different Bayesian methods assume for estimating marker effects, did not improve their prediction accuracy. The Bayes B method gave higher or equal accuracy rather than the rest. The real data analysis showed that similar to scenarios with a large number of QTLs in the simulation, there was no difference between the accuracies of the different methods for any of the traits.
A major challenge in plant developmental biology is to understand how plant growth is coordinated by interacting hormones and genes. To meet this challenge, it is important to not only use experimental data, but also formulate a mathematical model. For the mathematical model to best describe the true biological system, it is necessary to understand the parameter space of the model, along with the links between the model, the parameter space and experimental observations. We develop sequential history matching methodology, using Bayesian emulation, to gain substantial insight into biological model parameter spaces. This is achieved by finding sets of acceptable parameters in accordance with successive sets of physical observations. These methods are then applied to a complex hormonal crosstalk model for Arabidopsis root growth. In this application, we demonstrate how an initial set of 22 observed trends reduce the volume of the set of acceptable inputs to a proportion of 6.1 × 10-7 of the original space. Additional sets of biologically relevant experimental data, each of size 5, reduce the size of this space by a further three and two orders of magnitude respectively. Hence, we provide insight into the constraints placed upon the model structure by, and the biological consequences of, measuring subsets of observations.
Genome wide association study (GWAS) is becoming fundamental in the arduous task of deciphering the etiology of complex diseases. The majority of the statistical models used to address the genes-disease association consider a single response variable. However, it is common for certain diseases to have correlated phenotypes such as in cardiovascular diseases. Usually, GWAS typically sample unrelated individuals from a population and the shared familial risk factors are not investigated. In this paper, we propose to apply a bivariate model using family data that associates two phenotypes with a genetic region. Using generalized estimation equations (GEE), we model two phenotypes, either discrete, continuous or a mixture of them, as a function of genetic variables and other important covariates. We incorporate the kinship relationships into the working matrix extended to a bivariate analysis. The estimation method and the joint gene-set effect in both phenotypes are developed in this work. We also evaluate the proposed methodology with a simulation study and an application to real data.
Short Tandem Repeats (STRs) are a type of DNA polymorphism. This study considers discriminant analysis to determine the population of test individuals using an STR database containing the lengths of STRs observed at more than one locus. The discriminant method based on the Bayes factor is discussed and an improved method is proposed. The main issues are to develop a method that is relatively robust to sample size imbalance, identify a procedure to select loci, and treat the parameter in the prior distribution. A previous study achieved a classification accuracy of 0.748 for the g-mean (geometric mean of classification accuracies for two populations) and 0.867 for the AUC (area under the receiver operating characteristic curve). We improve the maximum values for the g-mean to 0.830 and the AUC to 0.935. Computer simulations indicate that the previous method is susceptible to sample size imbalance, whereas the proposed method is more robust while achieving almost identical classification accuracy. Furthermore, the results confirm that threshold adjustment is an effective countermeasure to sample size imbalance.
Functional pathways involve a series of biological alterations that may result in the occurrence of many diseases including cancer. With the availability of various "omics" technologies it becomes feasible to integrate information from a hierarchy of biological layers to provide a more comprehensive understanding to the disease. In many diseases, it is believed that only a small number of networks, each relatively small in size, drive the disease. Our goal in this study is to develop methods to discover these functional networks across biological layers correlated with the phenotype. We derive a novel Network Summary Matrix (NSM) that highlights potential pathways conforming to least squares regression relationships. An algorithm called Decomposition of Network Summary Matrix via Instability (DNSMI) involving decomposition of NSM using instability regularization is proposed. Simulations and real data analysis from The Cancer Genome Atlas (TCGA) program will be shown to demonstrate the performance of the algorithm.
In this study, we conduct a comparison of three most recent statistical methods for joint variable selection and covariance estimation with application of detecting expression quantitative trait loci (eQTL) and gene network estimation, and introduce a new hierarchical Bayesian method to be included in the comparison. Unlike the traditional univariate regression approach in eQTL, all four methods correlate phenotypes and genotypes by multivariate regression models that incorporate the dependence information among phenotypes, and use Bayesian multiplicity adjustment to avoid multiple testing burdens raised by traditional multiple testing correction methods. We presented the performance of three methods (MSSL - Multivariate Spike and Slab Lasso, SSUR - Sparse Seemingly Unrelated Bayesian Regression, and OBFBF - Objective Bayes Fractional Bayes Factor), along with the proposed, JDAG (Joint estimation via a Gaussian Directed Acyclic Graph model) method through simulation experiments, and publicly available HapMap real data, taking asthma as an example. Compared with existing methods, JDAG identified networks with higher sensitivity and specificity under row-wise sparse settings. JDAG requires less execution in small-to-moderate dimensions, but is not currently applicable to high dimensional data. The eQTL analysis in asthma data showed a number of known gene regulations such as STARD3, IKZF3 and PGAP3, all reported in asthma studies. The code of the proposed method is freely available at GitHub (https://github.com/xuan-cao/Joint-estimation-for-eQTL).
Maximum likelihood is a common method of estimating a phylogenetic tree based on a set of genetic data. However, models of evolution for certain types of genetic data are highly flawed in their specification, and this misspecification can have an adverse impact on phylogenetic inference. Our attention here is focused on extending an existing class of models for estimating phylogenetic trees from discrete morphological characters. The main advance of this work is a model that allows unequal equilibrium frequencies in the estimation of phylogenetic trees from discrete morphological character data using likelihood methods. Possible extensions of the proposed model will also be discussed.
The Dirichlet Process (DP) mixture model has become a popular choice for model-based clustering, largely because it allows the number of clusters to be inferred. The sequential updating and greedy search (SUGS) algorithm (Wang & Dunson, 2011) was proposed as a fast method for performing approximate Bayesian inference in DP mixture models, by posing clustering as a Bayesian model selection (BMS) problem and avoiding the use of computationally costly Markov chain Monte Carlo methods. Here we consider how this approach may be extended to permit variable selection for clustering, and also demonstrate the benefits of Bayesian model averaging (BMA) in place of BMS. Through an array of simulation examples and well-studied examples from cancer transcriptomics, we show that our method performs competitively with the current state-of-the-art, while also offering computational benefits. We apply our approach to reverse-phase protein array (RPPA) data from The Cancer Genome Atlas (TCGA) in order to perform a pan-cancer proteomic characterisation of 5157 tumour samples. We have implemented our approach, together with the original SUGS algorithm, in an open-source R package named sugsvarsel, which accelerates analysis by performing intensive computations in C++ and provides automated parallel processing. The R package is freely available from: https://github.com/ococrook/sugsvarsel.

