首页 > 最新文献

Statistica Sinica最新文献

英文 中文
On Construction of Nonregular Two-Level Factorial Designs With Maximum Generalized Resolutions 具有最大广义分辨率的非正则二水平阶乘设计的构造
3区 数学 Q2 Mathematics Pub Date : 2023-01-01 DOI: 10.5705/ss.202021.0024
Chenlu Shi, Boxin Tang
{"title":"On Construction of Nonregular Two-Level Factorial Designs With Maximum Generalized Resolutions","authors":"Chenlu Shi, Boxin Tang","doi":"10.5705/ss.202021.0024","DOIUrl":"https://doi.org/10.5705/ss.202021.0024","url":null,"abstract":"","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135182934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Interval estimation for operating characteristic of continuous biomarkers with controlled sensitivity or specificity. 对连续生物标记物的操作特征进行区间估计,并控制其灵敏度或特异性。
IF 1.4 3区 数学 Q2 Mathematics Pub Date : 2023-01-01 DOI: 10.5705/ss.202021.0020
Yijian Huang, Isaac Parakati, Dattatraya H Patil, Martin G Sanda

The receiver operating characteristic (ROC) curve provides a comprehensive performance assessment of a continuous biomarker over the full threshold spectrum. Nevertheless, a medical test often dictates to operate at a certain high level of sensitivity or specificity. A diagnostic accuracy metric directly targeting the clinical utility is specificity at the controlled sensitivity level, or vice versa. While the empirical point estimation is readily adopted in practice, the nonparametric interval estimation is challenged by the fact that the variance involves density functions due to estimated threshold. In addition, even with a fixed threshold, many standard confidence intervals including the Wald interval for binomial proportion could have erratic behaviors. In this article, we are motivated by the superior performance of the score interval for binomial proportion and propose a novel extension for the biomarker problem. Meanwhile, we develop exact bootstrap and establish consistency of the bootstrap variance estimator. Both single-biomarker evaluation and two-biomarker comparison are investigated. Extensive simulation studies were conducted, demonstrating competitive performance of our proposals. An illustration with aggressive prostate cancer diagnosis is provided.

接收器工作特征曲线(ROC)可对连续生物标记物在整个阈值范围内的性能进行全面评估。然而,医学检验往往需要在一定的高灵敏度或特异性水平上进行操作。直接针对临床效用的诊断准确性指标是受控灵敏度水平下的特异性,反之亦然。虽然在实践中很容易采用经验点估算,但非参数区间估算却面临挑战,因为方差涉及到估算阈值的密度函数。此外,即使阈值固定,许多标准置信区间(包括二项式比例的 Wald 区间)也可能表现不稳定。在本文中,我们从二叉比例得分区间的优越性能出发,提出了一种针对生物标记问题的新扩展方法。同时,我们开发了精确自举法,并建立了自举方差估计器的一致性。我们还研究了单生物标记评价和双生物标记比较。我们进行了广泛的模拟研究,证明了我们的建议具有竞争力。我们还以侵袭性前列腺癌诊断为例进行了说明。
{"title":"Interval estimation for operating characteristic of continuous biomarkers with controlled sensitivity or specificity.","authors":"Yijian Huang, Isaac Parakati, Dattatraya H Patil, Martin G Sanda","doi":"10.5705/ss.202021.0020","DOIUrl":"10.5705/ss.202021.0020","url":null,"abstract":"<p><p>The receiver operating characteristic (ROC) curve provides a comprehensive performance assessment of a continuous biomarker over the full threshold spectrum. Nevertheless, a medical test often dictates to operate at a certain high level of sensitivity or specificity. A diagnostic accuracy metric directly targeting the clinical utility is specificity at the controlled sensitivity level, or vice versa. While the empirical point estimation is readily adopted in practice, the nonparametric interval estimation is challenged by the fact that the variance involves density functions due to estimated threshold. In addition, even with a fixed threshold, many standard confidence intervals including the Wald interval for binomial proportion could have erratic behaviors. In this article, we are motivated by the superior performance of the score interval for binomial proportion and propose a novel extension for the biomarker problem. Meanwhile, we develop exact bootstrap and establish consistency of the bootstrap variance estimator. Both single-biomarker evaluation and two-biomarker comparison are investigated. Extensive simulation studies were conducted, demonstrating competitive performance of our proposals. An illustration with aggressive prostate cancer diagnosis is provided.</p>","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181819/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9485519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Joint Modeling of Change-Point Identification and Dependent Dynamic Community Detection 变化点识别与依赖动态群落检测联合建模
IF 1.4 3区 数学 Q2 Mathematics Pub Date : 2023-01-01 DOI: 10.5705/ss.202021.0182
Diqing Li, Yubai Yuan, Xinsheng Zhang, Annie Qu
: The field of dynamic network analysis has recently seen a surge of interest in community detection and evolution. However, existing methods for dynamic community detection do not consider dependencies between edges, which could lead to a loss of information when detecting community structures. In this study, we investigate the problem of identifying a change-point with abrupt changes in the community structure of a network. To do so, we propose an approximate likelihood approach for the change-point estimator and for identifying node membership that integrates marginal information and dependencies of network connectivities. We propose an expectation-maximization-type algorithm that maximizes the approximate likelihood jointly over change-point and community membership evolution. From a theoretical viewpoint, we establish estimation consistency under the regularity condition, and show that the proposed estimators achieve a higher convergence rate than those of their marginal likelihood counterparts, which do not incorporate dependencies between edges. We demonstrate the validity of the proposed method by applying it to the ADHD-200 data set to detect brain functional community changes over time.
动态网络分析领域最近出现了对社区检测和进化的兴趣激增。然而,现有的动态社区检测方法没有考虑边缘之间的依赖关系,这可能导致在检测社区结构时信息的丢失。在这项研究中,我们探讨了一个问题,即在一个网络的社区结构突变时,如何识别一个变化点。为此,我们提出了一种近似似然方法,用于变化点估计器和识别集成了边际信息和网络连接依赖性的节点隶属度。我们提出了一种期望最大化型算法,该算法在变化点和社区成员进化上共同最大化近似似然。从理论角度出发,我们建立了正则性条件下估计的一致性,并证明了所提估计比不考虑边间依赖性的边缘似然估计具有更高的收敛速度。我们通过将所提出的方法应用于ADHD-200数据集来检测大脑功能群落随时间的变化,从而证明了该方法的有效性。
{"title":"Joint Modeling of Change-Point Identification and Dependent Dynamic Community Detection","authors":"Diqing Li, Yubai Yuan, Xinsheng Zhang, Annie Qu","doi":"10.5705/ss.202021.0182","DOIUrl":"https://doi.org/10.5705/ss.202021.0182","url":null,"abstract":": The field of dynamic network analysis has recently seen a surge of interest in community detection and evolution. However, existing methods for dynamic community detection do not consider dependencies between edges, which could lead to a loss of information when detecting community structures. In this study, we investigate the problem of identifying a change-point with abrupt changes in the community structure of a network. To do so, we propose an approximate likelihood approach for the change-point estimator and for identifying node membership that integrates marginal information and dependencies of network connectivities. We propose an expectation-maximization-type algorithm that maximizes the approximate likelihood jointly over change-point and community membership evolution. From a theoretical viewpoint, we establish estimation consistency under the regularity condition, and show that the proposed estimators achieve a higher convergence rate than those of their marginal likelihood counterparts, which do not incorporate dependencies between edges. We demonstrate the validity of the proposed method by applying it to the ADHD-200 data set to detect brain functional community changes over time.","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70937729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Dimensional Behaviour of Some Two-Sample Tests Based on Ball Divergence 基于球散度的若干双样本试验的高维行为
IF 1.4 3区 数学 Q2 Mathematics Pub Date : 2023-01-01 DOI: 10.5705/ss.202023.0069
Bilol Banerjee, A. Ghosh
{"title":"High-Dimensional Behaviour of Some Two-Sample Tests Based on Ball Divergence","authors":"Bilol Banerjee, A. Ghosh","doi":"10.5705/ss.202023.0069","DOIUrl":"https://doi.org/10.5705/ss.202023.0069","url":null,"abstract":"","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70939954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automated Estimation of Heavy-Tailed Vector Error Correction Models 重尾向量误差修正模型的自动估计
3区 数学 Q2 Mathematics Pub Date : 2023-01-01 DOI: 10.5705/ss.202020.0177
Feifei Guo, Shiqing Ling, Zichuan Mi
{"title":"Automated Estimation of Heavy-Tailed Vector Error Correction Models","authors":"Feifei Guo, Shiqing Ling, Zichuan Mi","doi":"10.5705/ss.202020.0177","DOIUrl":"https://doi.org/10.5705/ss.202020.0177","url":null,"abstract":"","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135182927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The Identifiability of Copula Models for Dependent Competing Risks Data With Exponentially Distributed Margins 具有指数分布边际的依赖竞争风险数据的Copula模型的可辨识性
3区 数学 Q2 Mathematics Pub Date : 2023-01-01 DOI: 10.5705/ss.202020.0520
Antai Wang
{"title":"The Identifiability of Copula Models for Dependent Competing Risks Data With Exponentially Distributed Margins","authors":"Antai Wang","doi":"10.5705/ss.202020.0520","DOIUrl":"https://doi.org/10.5705/ss.202020.0520","url":null,"abstract":"","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135182938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Construction Method for Maximin L1-Distance Latin Hypercube Designs 最大l1距离拉丁超立方体设计的一种构造方法
IF 1.4 3区 数学 Q2 Mathematics Pub Date : 2023-01-01 DOI: 10.5705/ss.202022.0263
Ru Yuan, Yuhao Yin, Hongquan Xu, Min-Qian Liu
A Construction Method for Maximin L1-Distance Latin Hypercube Designs
最大距离设计是一种空间填充设计,在计算机实验中应用广泛。为了构建这样的设计,已经做了大量的工作。即便如此,构建具有较大行和列尺寸的最大距离设计仍然具有挑战性。在本文中,我们提出了一种生成最大l1距离拉丁超立方体设计的理论构造方法,其运行尺寸接近列数或列数的一半。理论结果表明,部分构造的设计是最大l1距离和等距设计,即它们的成对l1距离都相等,它们也是均匀投影设计;而另一些则在最大l1距离准则下渐近最优。此外,该方法可以有效地构造高维拉丁超立方体设计,并在最大l1距离准则下表现良好。
{"title":"A Construction Method for Maximin L1-Distance Latin Hypercube Designs","authors":"Ru Yuan, Yuhao Yin, Hongquan Xu, Min-Qian Liu","doi":"10.5705/ss.202022.0263","DOIUrl":"https://doi.org/10.5705/ss.202022.0263","url":null,"abstract":"A Construction Method for Maximin L1-Distance Latin Hypercube Designs","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70938819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A More Efficient Isomorphism Check for Two-Level Nonregular Designs 两级不规则设计的一种更有效的同构检验
IF 1.4 3区 数学 Q2 Mathematics Pub Date : 2023-01-01 DOI: 10.5705/ss.202022.0200
Chunyan Wang, Robert W. Mee
: In this paper, we propose some new necessary and sufficient conditions for identifying isomorphism in two-level fractional factorial designs, using a parallel flats structure. A new algorithm for checking isomorphism is provided accordingly. The proposed algorithm is simple and general, and can be used for either regular or nonregular designs. By taking advantage of the parallel flats structure when it exists, the method is much faster than current methods for assessing the isomorphism of nonregular two-level designs. Examples are given to illustrate the results. An efficient implementation of the proposed algorithm in Matlab can be found in the online Supplementary Material.
本文利用平行平面结构,给出了判别二水平分数阶乘设计同构的几个新的充要条件。据此提出了一种新的同构检验算法。该算法简单、通用,可用于规则或非规则设计。该方法利用平行平面结构存在时的优势,比现有的非规则两层设计的同构性评估方法快得多。最后给出了算例来说明结果。在在线补充材料中可以找到在Matlab中有效实现所提出算法的方法。
{"title":"A More Efficient Isomorphism Check for Two-Level Nonregular Designs","authors":"Chunyan Wang, Robert W. Mee","doi":"10.5705/ss.202022.0200","DOIUrl":"https://doi.org/10.5705/ss.202022.0200","url":null,"abstract":": In this paper, we propose some new necessary and sufficient conditions for identifying isomorphism in two-level fractional factorial designs, using a parallel flats structure. A new algorithm for checking isomorphism is provided accordingly. The proposed algorithm is simple and general, and can be used for either regular or nonregular designs. By taking advantage of the parallel flats structure when it exists, the method is much faster than current methods for assessing the isomorphism of nonregular two-level designs. Examples are given to illustrate the results. An efficient implementation of the proposed algorithm in Matlab can be found in the online Supplementary Material.","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70939010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semiparametric Estimation of Non-ignorable Missingness With Refreshment Sample 点心样本不可忽略缺失的半参数估计
IF 1.4 3区 数学 Q2 Mathematics Pub Date : 2023-01-01 DOI: 10.5705/ss.202022.0214
Jianfei Zheng, Jing Wang, L. Xue, A. Qu
{"title":"Semiparametric Estimation of Non-ignorable Missingness With Refreshment Sample","authors":"Jianfei Zheng, Jing Wang, L. Xue, A. Qu","doi":"10.5705/ss.202022.0214","DOIUrl":"https://doi.org/10.5705/ss.202022.0214","url":null,"abstract":"","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70939023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sparse and Low-Rank Matrix Quantile Estimation With Application to Quadratic Regression 稀疏低秩矩阵分位数估计及其在二次回归中的应用
3区 数学 Q2 Mathematics Pub Date : 2023-01-01 DOI: 10.5705/ss.202021.0140
Wenqi Lu, Zhongyi Zhu, Heng Lian
{"title":"Sparse and Low-Rank Matrix Quantile Estimation With Application to Quadratic Regression","authors":"Wenqi Lu, Zhongyi Zhu, Heng Lian","doi":"10.5705/ss.202021.0140","DOIUrl":"https://doi.org/10.5705/ss.202021.0140","url":null,"abstract":"","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135182933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Statistica Sinica
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1