Recent technological advances have made it possible to measure multiple types of many features in biomedical studies. However, some data types or features may not be measured for all study subjects because of cost or other constraints. We use a latent variable model to characterize the relationships across and within data types and to infer missing values from observed data. We develop a penalized-likelihood approach for variable selection and parameter estimation and devise an efficient expectation-maximization algorithm to implement our approach. We establish the asymptotic properties of the proposed estimators when the number of features increases at a polynomial rate of the sample size. Finally, we demonstrate the usefulness of the proposed methods using extensive simulation studies and provide an application to a motivating multi-platform genomics study.
In this paper, we consider a class of partially linear transformation models with interval-censored competing risks data. Under a semiparametric generalized odds rate specification for the cause-specific cumulative incidence function, we obtain optimal estimators of the large number of parametric and nonparametric model components via maximizing the likelihood function over a joint B-spline and Bernstein polynomial spanned sieve space. Our specification considers a relatively simpler finite-dimensional parameter space, approximating the infinite-dimensional parameter space as n → ∞, thereby allowing us to study the almost sure consistency, and rate of convergence for all parameters, and the asymptotic distributions and efficiency of the finite-dimensional components. We study the finite sample performance of our method through simulation studies under a variety of scenarios. Furthermore, we illustrate our methodology via application to a dataset on HIV-infected individuals from sub-Saharan Africa.
This study has been motivated by cancer research, in which heterogeneity analysis plays an important role and can be roughly classified as unsupervised or supervised. In supervised heterogeneity analysis, the finite mixture of regression (FMR) technique is used extensively, under which the covariates affect the response differently in subgroups. High-dimensional molecular and, very recently, histopathological imaging features have been analyzed separately and shown to be effective for heterogeneity analysis. For simpler analysis, they have been shown to contain overlapping, but also independent information. In this article, our goal is to conduct the first and more effective FMR-based cancer heterogeneity analysis by integrating high-dimensional molecular and histopathological imaging features. A penalization approach is developed to regularize estimation, select relevant variables, and, equally importantly, promote the identification of independent information. Consistency properties are rigorously established. An effective computational algorithm is developed. A simulation and an analysis of The Cancer Genome Atlas (TCGA) lung cancer data demonstrate the practical effectiveness of the proposed approach. Overall, this study provides a practical and useful new way of conducting supervised cancer heterogeneity analysis.

