首页 > 最新文献

Statistica Sinica最新文献

英文 中文
On Combining Individual-Level Data With Summary Data in Statistical Inferences 论统计推断中个体数据与汇总数据的结合
IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-01-01 DOI: 10.5705/ss.202022.0228
Lu Deng, Sheng Fu, J. Qin, Kai Yu
On Combining Individual-Level Data With Summary Data in Statistical Inferences
统计模型和推论通常基于对研究中个体参与者的测量(个人层面的数据)。然而,通过利用其他研究的汇总汇总数据(如用于元分析的统计数据)来改进统计推断的兴趣越来越大。尽管广义矩量法(GMM)提供了一种灵活的方法,但是集成外部摘要信息并不总是能提高效率。在此,我们提供了外部汇总信息能够发挥作用的充分必要条件。我们进一步扩展了GMM,以纳入从具有不同于个人水平数据的协变量分布的总体生成的汇总数据。中国统计:预印本doi:10.5705/ss.202022.0228
{"title":"On Combining Individual-Level Data With Summary Data in Statistical Inferences","authors":"Lu Deng, Sheng Fu, J. Qin, Kai Yu","doi":"10.5705/ss.202022.0228","DOIUrl":"https://doi.org/10.5705/ss.202022.0228","url":null,"abstract":"On Combining Individual-Level Data With Summary Data in Statistical Inferences","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"34 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70939106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Asymptotic Behavior of the Maximum Likelihood Estimator for General Markov Switching Models 一般马尔可夫切换模型的极大似然估计量的渐近性
IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-01-01 DOI: 10.5705/ss.202021.0336
C. Fuh, T. Pang
: Motivated by studying the asymptotic properties of the parameter estimator in switching linear state space models, switching GARCH models, switching stochastic volatility models, and recurrent neural networks, we investigate the maximum likelihood estimator for general Markov switching models. To this end, we first propose an innovative matrix-valued Markovian iterated function system (MIFS) representation for the likelihood function. Then, we express the derivatives of the MIFS as a composition of random matrices. To the best of our knowledge, this is a new method in the literature. Using this useful device, we establish the strong consistency and asymptotic normality of the maximum likelihood estimator under some regularity conditions. Furthermore, we characterize the Fisher information as the inverse of the asymptotic variance.
在本节中,我们将应用我们的结果来研究一些例子,包括例1中的线性切换状态空间模型,例2中的切换GARCH(p, q)模型,例3中的切换SV模型,以及例4中的变分rnn。Fuh(2006)讨论了马尔可夫切换模型、ARMA模型、(G)ARCH模型和SV模型。为简单起见,在这些例子中,我们在大多数情况下只考虑一个特定结构的正态误差假设。
{"title":"Asymptotic Behavior of the Maximum Likelihood Estimator for General Markov Switching Models","authors":"C. Fuh, T. Pang","doi":"10.5705/ss.202021.0336","DOIUrl":"https://doi.org/10.5705/ss.202021.0336","url":null,"abstract":": Motivated by studying the asymptotic properties of the parameter estimator in switching linear state space models, switching GARCH models, switching stochastic volatility models, and recurrent neural networks, we investigate the maximum likelihood estimator for general Markov switching models. To this end, we first propose an innovative matrix-valued Markovian iterated function system (MIFS) representation for the likelihood function. Then, we express the derivatives of the MIFS as a composition of random matrices. To the best of our knowledge, this is a new method in the literature. Using this useful device, we establish the strong consistency and asymptotic normality of the maximum likelihood estimator under some regularity conditions. Furthermore, we characterize the Fisher information as the inverse of the asymptotic variance.","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"23 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70937369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Threshold Estimation in Proportional Mean Residual Life Model 比例平均剩余寿命模型的阈值估计
IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-01-01 DOI: 10.5705/ss.202022.0017
Bing Wang, Xinyuan Song
of the main
主要的
{"title":"Threshold Estimation in Proportional Mean Residual Life Model","authors":"Bing Wang, Xinyuan Song","doi":"10.5705/ss.202022.0017","DOIUrl":"https://doi.org/10.5705/ss.202022.0017","url":null,"abstract":"of the main","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"1 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70937929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Perturbation Subsampling for Large Scale Data 大规模数据的扰动子抽样
IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-01-01 DOI: 10.5705/ss.202022.0020
Yujing Yao, Zhezhen Jin
Subsampling
在分析大规模数据时,子抽样方法和分治法很有吸引力,因为它们减轻了计算负担,同时保持了推断的有效性。在这种情况下,取样可以进行,也可以不进行更换。本文提出了一种基于独立同分布随机权重的扰动子抽样方法,用于分析大规模数据。通过建立估计量的渐近相合性和正态性,证明了基于优化凸目标函数的方法。该方法同时提供一致的点估计和方差估计。我们通过仿真研究和两个实际数据分析证明了所提出方法的有限样本性能。
{"title":"A Perturbation Subsampling for Large Scale Data","authors":"Yujing Yao, Zhezhen Jin","doi":"10.5705/ss.202022.0020","DOIUrl":"https://doi.org/10.5705/ss.202022.0020","url":null,"abstract":"Subsampling","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"1 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70937957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Homogeneity Tests for High-dimensional Mean Vectors and Covariance Matrices 高维均值向量和协方差矩阵的齐性检验
IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-01-01 DOI: 10.5705/ss.202022.0048
Wenwen Guo, Xinyuan Song, H. Cui
Homogeneity Tests
本研究旨在开发高维均值向量和协方差矩阵的同质性检验,其中特征数可能大于样本量。我们引入两种分类加权统计来检验均值和协方差矩阵的相等性。我们建立了所提出的检验统计量在一定温和条件下的渐近分布,并开发了简化算法以方便实现和应用。仿真研究表明,在经验尺度和功率方面,所提出的测试具有令人满意的性能。我们还将提出的测试程序应用于两个微阵列数据集。
{"title":"Homogeneity Tests for High-dimensional Mean Vectors and Covariance Matrices","authors":"Wenwen Guo, Xinyuan Song, H. Cui","doi":"10.5705/ss.202022.0048","DOIUrl":"https://doi.org/10.5705/ss.202022.0048","url":null,"abstract":"Homogeneity Tests","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"1 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70938322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Adaptive Weighted Component Test for High-Dimensional Means 高维均值的自适应加权分量检验
IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-01-01 DOI: 10.5705/ss.202022.0143
Yidi Qu, L. Shu, Jinfeng Xu
This supplementary materials provides detailed proofs of Theorem 1 and 2 and Proposition 1-3 as well as the power simulation results under the heteroscedastic condition.
最近两种针对高维数据的双样本测试流是基于平方和和的测试和基于最高的测试。前者对两个种群均值的密集差异有效,后者对稀疏差异有效。然而,在实践中,稀疏度和信号强度的水平往往是未知的,这使得不清楚使用哪种类型的测试。在这里,我们提出了一种自适应加权分量检验,该检验对具有未知稀疏度水平和变化信号强度的各种替代假设提供了良好的能力。其基本思想是首先在基于平方和的检验中为不同大小的分量分配不同的权重,然后将多个加权分量检验组合在一起,使底层检验能够适应均值差的不同稀疏度。我们检验了所提出的检验的渐近性质,并使用数值比较来证明所提出的检验在各种情况下的优越性能。
{"title":"An Adaptive Weighted Component Test for High-Dimensional Means","authors":"Yidi Qu, L. Shu, Jinfeng Xu","doi":"10.5705/ss.202022.0143","DOIUrl":"https://doi.org/10.5705/ss.202022.0143","url":null,"abstract":"This supplementary materials provides detailed proofs of Theorem 1 and 2 and Proposition 1-3 as well as the power simulation results under the heteroscedastic condition.","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"1 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70938686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semiparametric Reversed Mean Model for Recurrent Event Process with Informative Terminal Event 具有信息终端事件的循环事件过程的半参数反均值模型
IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-01-01 DOI: 10.5705/ss.202021.0353
Wen Su, Li Liu, G. Yin, Xingqiu Zhao, Ying Zhang
Semiparametric Reversed Mean Model for Recurrent Event Process with Informative Terminal Event Wen Su1∗ , Li Liu2∗, Guosheng Yin, Xingqiu Zhao and Ying Zhang Department of Statistics and Actuarial Science, University of Hong Kong, Hong Kong School of Mathematics and Statistics, Wuhan University, Wuhan, China Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
我们研究了具有信息终端事件的循环事件过程的半参数回归,其中观测仅在离散时间点进行,而不是连续时间。为了解释终端事件对循环事件过程的影响,我们提出了一种半参数反均值模型,为此我们开发了一种基于两阶段筛似然的方法来估计基线均值函数和协变量效应。我们的方法克服了在假设似然是基于泊松过程的情况下由讨厌的函数参数引起的计算困难。我们建立了一篇论文的一致性、收敛率和渐近正态性
{"title":"Semiparametric Reversed Mean Model for Recurrent Event Process with Informative Terminal Event","authors":"Wen Su, Li Liu, G. Yin, Xingqiu Zhao, Ying Zhang","doi":"10.5705/ss.202021.0353","DOIUrl":"https://doi.org/10.5705/ss.202021.0353","url":null,"abstract":"Semiparametric Reversed Mean Model for Recurrent Event Process with Informative Terminal Event Wen Su1∗ , Li Liu2∗, Guosheng Yin, Xingqiu Zhao and Ying Zhang Department of Statistics and Actuarial Science, University of Hong Kong, Hong Kong School of Mathematics and Statistics, Wuhan University, Wuhan, China Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"1 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70937462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Outlier Detection via a Minimum Ridge Covariance Determinant Estimator 基于最小脊协方差行列式估计的离群点检测
IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-01-01 DOI: 10.5705/ss.202022.0142
Chikun Li, B. Jin, Yuehua Wu
: In this paper, we propose an outlier detection procedure, based on a high-breakdown minimum ridge covariance determinant estimator that is especially useful for the large p/n scenario. The estimator is obtained from the subset of observations, after excluding potential outliers, by applying the so-called concentration steps. We explore the asymptotic distribution of the modified Mahalanobis distance related to the proposed estimator under certain moment conditions, and obtain a theoretical cutoff value for outlier identification. We also improve the outlier detection power by adding a one-step reweighting procedure. Lastly, we investigate the performance of the proposed methods using simulations and a real-data analysis.
在本文中,我们提出了一种基于高击穿最小脊协方差行列式估计的离群值检测方法,该方法对大p/n场景特别有用。通过应用所谓的集中步骤,在排除潜在的异常值后,从观测值的子集中获得估计量。在一定的矩条件下,我们研究了与所提估计量相关的修正马氏距离的渐近分布,并得到了一个用于离群值识别的理论截断值。我们还通过增加一步重加权过程来提高离群值检测能力。最后,我们通过仿真和实际数据分析来验证所提出方法的性能。
{"title":"Outlier Detection via a Minimum Ridge Covariance Determinant Estimator","authors":"Chikun Li, B. Jin, Yuehua Wu","doi":"10.5705/ss.202022.0142","DOIUrl":"https://doi.org/10.5705/ss.202022.0142","url":null,"abstract":": In this paper, we propose an outlier detection procedure, based on a high-breakdown minimum ridge covariance determinant estimator that is especially useful for the large p/n scenario. The estimator is obtained from the subset of observations, after excluding potential outliers, by applying the so-called concentration steps. We explore the asymptotic distribution of the modified Mahalanobis distance related to the proposed estimator under certain moment conditions, and obtain a theoretical cutoff value for outlier identification. We also improve the outlier detection power by adding a one-step reweighting procedure. Lastly, we investigate the performance of the proposed methods using simulations and a real-data analysis.","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"1 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70938675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Efficiency of Composite Likelihood Estimation for Gaussian Spatial Processes 高斯空间过程的复合似然估计效率研究
IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-01-01 DOI: 10.5705/ss.202020.0311
N. Chua, Francis K. C. Hui, A. Welsh
the Efficiency of Composite Likelihood
最大复合似然估计是标准最大似然估计的一种有吸引力且常用的替代方法,标准最大似然估计通常涉及牺牲统计效率以提高计算效率。这种统计效率可以通过评估最大复合似然估计量的三明治信息矩阵来量化,然后将其与最大似然估计量的类似Fisher信息矩阵进行比较。本文导出了一维指数协方差高斯过程的各种极大复合似然估计的渐近相对效率的新的封闭表达式。这些表达式基于一种抽样方案,该方案允许在三种常见的空间渐近框架下进行分析:扩展域、填充和混合。我们的结果证明了复合似然的选择如何影响估计的效率和一致性,特别是对于填充和混合框架。
{"title":"On the Efficiency of Composite Likelihood Estimation for Gaussian Spatial Processes","authors":"N. Chua, Francis K. C. Hui, A. Welsh","doi":"10.5705/ss.202020.0311","DOIUrl":"https://doi.org/10.5705/ss.202020.0311","url":null,"abstract":"the Efficiency of Composite Likelihood","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"1 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70936712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive Randomization via Mahalanobis Distance 基于马氏距离的自适应随机化
IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-01-01 DOI: 10.5705/ss.202020.0440
Yichen Qin, Y. Li, Wei Ma, Haoyu Yang, F. Hu
: In comparative studies, researchers often seek an optimal covariate balance. However, chance imbalance still exists in randomized experiments, and becomes more serious as the number of covariates increases. To address this issue, we introduce a new randomization procedure, called adaptive randomization via the Mahalanobis distance (ARM). The proposed method allocates units sequentially and adaptively, using information on the current level of imbalance and the incoming unit’s covariate. Theoretical results and numerical comparison show that with a large number of covariates or a large number of units, the proposed method shows substantial advantages over traditional methods in terms of the covariate balance, estimation accuracy, hypothesis testing power, and computational time. The proposed method attains the optimal covariate balance, in the sense that the estimated treatment effect attains its minimum variance asymptotically, and can be applied in both causal inference and clinical trials. Lastly, numerical stud-1
在比较研究中,研究人员经常寻求最佳协变量平衡。然而,随机实验中仍然存在机会不平衡现象,并且随着协变量数量的增加,机会不平衡现象更加严重。为了解决这个问题,我们引入了一种新的随机化程序,称为通过马氏距离(ARM)的自适应随机化。该方法利用当前不平衡水平和输入单元的协变量信息,自适应地顺序分配单元。理论结果和数值比较表明,在协变量较多或单位较多的情况下,本文提出的方法在协变量平衡、估计精度、假设检验能力、计算时间等方面都比传统方法有较大的优势。该方法实现了最优协变量平衡,即估计的治疗效果渐近地达到其最小方差,可以应用于因果推理和临床试验。最后,数值研究[中国统计:预印本doi:10.5705/ss.202020.0440]
{"title":"Adaptive Randomization via Mahalanobis Distance","authors":"Yichen Qin, Y. Li, Wei Ma, Haoyu Yang, F. Hu","doi":"10.5705/ss.202020.0440","DOIUrl":"https://doi.org/10.5705/ss.202020.0440","url":null,"abstract":": In comparative studies, researchers often seek an optimal covariate balance. However, chance imbalance still exists in randomized experiments, and becomes more serious as the number of covariates increases. To address this issue, we introduce a new randomization procedure, called adaptive randomization via the Mahalanobis distance (ARM). The proposed method allocates units sequentially and adaptively, using information on the current level of imbalance and the incoming unit’s covariate. Theoretical results and numerical comparison show that with a large number of covariates or a large number of units, the proposed method shows substantial advantages over traditional methods in terms of the covariate balance, estimation accuracy, hypothesis testing power, and computational time. The proposed method attains the optimal covariate balance, in the sense that the estimated treatment effect attains its minimum variance asymptotically, and can be applied in both causal inference and clinical trials. Lastly, numerical stud-1","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"1 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70936861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Statistica Sinica
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1