首页 > 最新文献

Statistica Sinica最新文献

英文 中文
On Estimation of the Logarithm of the Mean Squared Prediction Error of A Mixed-effect Predictor 混合效应预测器均方预测误差的对数估计
IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-01-01 DOI: 10.5705/ss.202022.0043
Jianling Wang, Thuan Nguyen, Y. Luan, Jiming Jiang
: The mean squared prediction error (MSPE) is an important measure of uncertainty in small-area estimation. It is desirable to produce a second-order unbiased MSPE estimator, that is, the bias of the estimator is o ( m − 1 ), where m is the total number of small areas for which data are available. However, this is difficult, especially if the estimator needs to be positive, or at least nonnegative. In fact, very few MSPE estimators are both second-order unbiased and guaranteed to be positive. We consider an alternative, easier approach of estimating the logarithm of the MSPE (log-MSPE), thus avoiding the positivity problem. We derive a second-order unbiased estimator of the log-MSPE using the Prasad–Rao linearization method. The results of empirical studies demonstrate the superiority of the proposed log-MSPE estimator over a naive log-MSPE estimator and an existing method, known as McJack. Lastly, we demonstrate the proposed method by applying it to real data.
均方预测误差(MSPE)是小面积估计中不确定度的重要度量。期望产生二阶无偏MSPE估计量,即估计量的偏置为0 (m−1),其中m是可获得数据的小区域的总数。然而,这是困难的,特别是如果估计量需要是正的,或者至少是非负的。事实上,很少有MSPE估计量既二阶无偏又保证是正的。我们考虑了一种替代的,更容易的方法来估计MSPE的对数(log-MSPE),从而避免了正性问题。我们利用Prasad-Rao线性化方法得到了log-MSPE的二阶无偏估计。实证研究的结果表明,所提出的对数- mspe估计器优于朴素对数- mspe估计器和现有的McJack方法。最后,通过实际数据验证了该方法的有效性。
{"title":"On Estimation of the Logarithm of the Mean Squared Prediction Error of A Mixed-effect Predictor","authors":"Jianling Wang, Thuan Nguyen, Y. Luan, Jiming Jiang","doi":"10.5705/ss.202022.0043","DOIUrl":"https://doi.org/10.5705/ss.202022.0043","url":null,"abstract":": The mean squared prediction error (MSPE) is an important measure of uncertainty in small-area estimation. It is desirable to produce a second-order unbiased MSPE estimator, that is, the bias of the estimator is o ( m − 1 ), where m is the total number of small areas for which data are available. However, this is difficult, especially if the estimator needs to be positive, or at least nonnegative. In fact, very few MSPE estimators are both second-order unbiased and guaranteed to be positive. We consider an alternative, easier approach of estimating the logarithm of the MSPE (log-MSPE), thus avoiding the positivity problem. We derive a second-order unbiased estimator of the log-MSPE using the Prasad–Rao linearization method. The results of empirical studies demonstrate the superiority of the proposed log-MSPE estimator over a naive log-MSPE estimator and an existing method, known as McJack. Lastly, we demonstrate the proposed method by applying it to real data.","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"1 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70938735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust Rank Canonical Correlation Analysis for Multivariate Survival Data 多变量生存数据的稳健性秩典型相关分析
IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-01-01 DOI: 10.5705/ss.202022.0069
Di He, Yong Zhou, H. Zou
{"title":"Robust Rank Canonical Correlation Analysis for Multivariate Survival Data","authors":"Di He, Yong Zhou, H. Zou","doi":"10.5705/ss.202022.0069","DOIUrl":"https://doi.org/10.5705/ss.202022.0069","url":null,"abstract":"","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"1 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70938442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Combining Individual-Level Data With Summary Data in Statistical Inferences 论统计推断中个体数据与汇总数据的结合
IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-01-01 DOI: 10.5705/ss.202022.0228
Lu Deng, Sheng Fu, J. Qin, Kai Yu
On Combining Individual-Level Data With Summary Data in Statistical Inferences
统计模型和推论通常基于对研究中个体参与者的测量(个人层面的数据)。然而,通过利用其他研究的汇总汇总数据(如用于元分析的统计数据)来改进统计推断的兴趣越来越大。尽管广义矩量法(GMM)提供了一种灵活的方法,但是集成外部摘要信息并不总是能提高效率。在此,我们提供了外部汇总信息能够发挥作用的充分必要条件。我们进一步扩展了GMM,以纳入从具有不同于个人水平数据的协变量分布的总体生成的汇总数据。中国统计:预印本doi:10.5705/ss.202022.0228
{"title":"On Combining Individual-Level Data With Summary Data in Statistical Inferences","authors":"Lu Deng, Sheng Fu, J. Qin, Kai Yu","doi":"10.5705/ss.202022.0228","DOIUrl":"https://doi.org/10.5705/ss.202022.0228","url":null,"abstract":"On Combining Individual-Level Data With Summary Data in Statistical Inferences","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"34 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70939106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Asymptotic Behavior of the Maximum Likelihood Estimator for General Markov Switching Models 一般马尔可夫切换模型的极大似然估计量的渐近性
IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-01-01 DOI: 10.5705/ss.202021.0336
C. Fuh, T. Pang
: Motivated by studying the asymptotic properties of the parameter estimator in switching linear state space models, switching GARCH models, switching stochastic volatility models, and recurrent neural networks, we investigate the maximum likelihood estimator for general Markov switching models. To this end, we first propose an innovative matrix-valued Markovian iterated function system (MIFS) representation for the likelihood function. Then, we express the derivatives of the MIFS as a composition of random matrices. To the best of our knowledge, this is a new method in the literature. Using this useful device, we establish the strong consistency and asymptotic normality of the maximum likelihood estimator under some regularity conditions. Furthermore, we characterize the Fisher information as the inverse of the asymptotic variance.
在本节中,我们将应用我们的结果来研究一些例子,包括例1中的线性切换状态空间模型,例2中的切换GARCH(p, q)模型,例3中的切换SV模型,以及例4中的变分rnn。Fuh(2006)讨论了马尔可夫切换模型、ARMA模型、(G)ARCH模型和SV模型。为简单起见,在这些例子中,我们在大多数情况下只考虑一个特定结构的正态误差假设。
{"title":"Asymptotic Behavior of the Maximum Likelihood Estimator for General Markov Switching Models","authors":"C. Fuh, T. Pang","doi":"10.5705/ss.202021.0336","DOIUrl":"https://doi.org/10.5705/ss.202021.0336","url":null,"abstract":": Motivated by studying the asymptotic properties of the parameter estimator in switching linear state space models, switching GARCH models, switching stochastic volatility models, and recurrent neural networks, we investigate the maximum likelihood estimator for general Markov switching models. To this end, we first propose an innovative matrix-valued Markovian iterated function system (MIFS) representation for the likelihood function. Then, we express the derivatives of the MIFS as a composition of random matrices. To the best of our knowledge, this is a new method in the literature. Using this useful device, we establish the strong consistency and asymptotic normality of the maximum likelihood estimator under some regularity conditions. Furthermore, we characterize the Fisher information as the inverse of the asymptotic variance.","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"23 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70937369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Perturbation Subsampling for Large Scale Data 大规模数据的扰动子抽样
IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-01-01 DOI: 10.5705/ss.202022.0020
Yujing Yao, Zhezhen Jin
Subsampling
在分析大规模数据时,子抽样方法和分治法很有吸引力,因为它们减轻了计算负担,同时保持了推断的有效性。在这种情况下,取样可以进行,也可以不进行更换。本文提出了一种基于独立同分布随机权重的扰动子抽样方法,用于分析大规模数据。通过建立估计量的渐近相合性和正态性,证明了基于优化凸目标函数的方法。该方法同时提供一致的点估计和方差估计。我们通过仿真研究和两个实际数据分析证明了所提出方法的有限样本性能。
{"title":"A Perturbation Subsampling for Large Scale Data","authors":"Yujing Yao, Zhezhen Jin","doi":"10.5705/ss.202022.0020","DOIUrl":"https://doi.org/10.5705/ss.202022.0020","url":null,"abstract":"Subsampling","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"1 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70937957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Adaptive Weighted Component Test for High-Dimensional Means 高维均值的自适应加权分量检验
IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-01-01 DOI: 10.5705/ss.202022.0143
Yidi Qu, L. Shu, Jinfeng Xu
This supplementary materials provides detailed proofs of Theorem 1 and 2 and Proposition 1-3 as well as the power simulation results under the heteroscedastic condition.
最近两种针对高维数据的双样本测试流是基于平方和和的测试和基于最高的测试。前者对两个种群均值的密集差异有效,后者对稀疏差异有效。然而,在实践中,稀疏度和信号强度的水平往往是未知的,这使得不清楚使用哪种类型的测试。在这里,我们提出了一种自适应加权分量检验,该检验对具有未知稀疏度水平和变化信号强度的各种替代假设提供了良好的能力。其基本思想是首先在基于平方和的检验中为不同大小的分量分配不同的权重,然后将多个加权分量检验组合在一起,使底层检验能够适应均值差的不同稀疏度。我们检验了所提出的检验的渐近性质,并使用数值比较来证明所提出的检验在各种情况下的优越性能。
{"title":"An Adaptive Weighted Component Test for High-Dimensional Means","authors":"Yidi Qu, L. Shu, Jinfeng Xu","doi":"10.5705/ss.202022.0143","DOIUrl":"https://doi.org/10.5705/ss.202022.0143","url":null,"abstract":"This supplementary materials provides detailed proofs of Theorem 1 and 2 and Proposition 1-3 as well as the power simulation results under the heteroscedastic condition.","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"1 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70938686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Threshold Estimation in Proportional Mean Residual Life Model 比例平均剩余寿命模型的阈值估计
IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-01-01 DOI: 10.5705/ss.202022.0017
Bing Wang, Xinyuan Song
of the main
主要的
{"title":"Threshold Estimation in Proportional Mean Residual Life Model","authors":"Bing Wang, Xinyuan Song","doi":"10.5705/ss.202022.0017","DOIUrl":"https://doi.org/10.5705/ss.202022.0017","url":null,"abstract":"of the main","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"1 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70937929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Homogeneity Tests for High-dimensional Mean Vectors and Covariance Matrices 高维均值向量和协方差矩阵的齐性检验
IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-01-01 DOI: 10.5705/ss.202022.0048
Wenwen Guo, Xinyuan Song, H. Cui
Homogeneity Tests
本研究旨在开发高维均值向量和协方差矩阵的同质性检验,其中特征数可能大于样本量。我们引入两种分类加权统计来检验均值和协方差矩阵的相等性。我们建立了所提出的检验统计量在一定温和条件下的渐近分布,并开发了简化算法以方便实现和应用。仿真研究表明,在经验尺度和功率方面,所提出的测试具有令人满意的性能。我们还将提出的测试程序应用于两个微阵列数据集。
{"title":"Homogeneity Tests for High-dimensional Mean Vectors and Covariance Matrices","authors":"Wenwen Guo, Xinyuan Song, H. Cui","doi":"10.5705/ss.202022.0048","DOIUrl":"https://doi.org/10.5705/ss.202022.0048","url":null,"abstract":"Homogeneity Tests","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"1 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70938322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SEMIPARAMETRIC REVERSED MEAN MODEL FOR RECURRENT EVENT PROCESS WITH INFORMATIVE TERMINAL EVENT. 具有信息终点事件的循环事件过程的半参数反均值模型。
IF 1.2 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-01-01 DOI: 10.5705/ss.202021.0353
Wen Su, Li Liu, Guosheng Yin, Xingqiu Zhao, Ying Zhang

We study semiparametric regression for a recurrent event process with an informative terminal event, where observations are taken only at discrete time points, rather than continuously over time. To account for the effect of a terminal event on the recurrent event process, we propose a semiparametric reversed mean model, for which we develop a two-stage sieve likelihood-based method to estimate the baseline mean function and the covariate effects. Our approach overcomes the computational difficulties arising from the nuisance functional parameter in the assumption that the likelihood is based on a Poisson process. We establish the consistency, convergence rate, and asymptotic normality of the proposed two-stage estimator, which is robust against the assumption of an underlying Poisson process. The proposed method is evaluated using extensive simulation studies, and demonstrated using panel count data from a longitudinal healthy longevity study and data from a bladder tumor study.

我们研究了具有信息终端事件的循环事件过程的半参数回归,其中观测仅在离散时间点进行,而不是连续时间。为了解释终端事件对循环事件过程的影响,我们提出了一种半参数反均值模型,为此我们开发了一种基于两阶段筛似然的方法来估计基线均值函数和协变量效应。我们的方法克服了在假设似然是基于泊松过程的情况下由讨厌的函数参数引起的计算困难。我们建立了所提出的两阶段估计量的一致性,收敛率和渐近正态性,它对潜在泊松过程的假设是鲁棒的。该方法通过广泛的模拟研究进行了评估,并通过纵向健康长寿研究和膀胱肿瘤研究的面板计数数据进行了验证。
{"title":"SEMIPARAMETRIC REVERSED MEAN MODEL FOR RECURRENT EVENT PROCESS WITH INFORMATIVE TERMINAL EVENT.","authors":"Wen Su, Li Liu, Guosheng Yin, Xingqiu Zhao, Ying Zhang","doi":"10.5705/ss.202021.0353","DOIUrl":"10.5705/ss.202021.0353","url":null,"abstract":"<p><p>We study semiparametric regression for a recurrent event process with an informative terminal event, where observations are taken only at discrete time points, rather than continuously over time. To account for the effect of a terminal event on the recurrent event process, we propose a semiparametric reversed mean model, for which we develop a two-stage sieve likelihood-based method to estimate the baseline mean function and the covariate effects. Our approach overcomes the computational difficulties arising from the nuisance functional parameter in the assumption that the likelihood is based on a Poisson process. We establish the consistency, convergence rate, and asymptotic normality of the proposed two-stage estimator, which is robust against the assumption of an underlying Poisson process. The proposed method is evaluated using extensive simulation studies, and demonstrated using panel count data from a longitudinal healthy longevity study and data from a bladder tumor study.</p>","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"1 1","pages":"1843-1862"},"PeriodicalIF":1.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12291165/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70937462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Outlier Detection via a Minimum Ridge Covariance Determinant Estimator 基于最小脊协方差行列式估计的离群点检测
IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2024-01-01 DOI: 10.5705/ss.202022.0142
Chikun Li, B. Jin, Yuehua Wu
: In this paper, we propose an outlier detection procedure, based on a high-breakdown minimum ridge covariance determinant estimator that is especially useful for the large p/n scenario. The estimator is obtained from the subset of observations, after excluding potential outliers, by applying the so-called concentration steps. We explore the asymptotic distribution of the modified Mahalanobis distance related to the proposed estimator under certain moment conditions, and obtain a theoretical cutoff value for outlier identification. We also improve the outlier detection power by adding a one-step reweighting procedure. Lastly, we investigate the performance of the proposed methods using simulations and a real-data analysis.
在本文中,我们提出了一种基于高击穿最小脊协方差行列式估计的离群值检测方法,该方法对大p/n场景特别有用。通过应用所谓的集中步骤,在排除潜在的异常值后,从观测值的子集中获得估计量。在一定的矩条件下,我们研究了与所提估计量相关的修正马氏距离的渐近分布,并得到了一个用于离群值识别的理论截断值。我们还通过增加一步重加权过程来提高离群值检测能力。最后,我们通过仿真和实际数据分析来验证所提出方法的性能。
{"title":"Outlier Detection via a Minimum Ridge Covariance Determinant Estimator","authors":"Chikun Li, B. Jin, Yuehua Wu","doi":"10.5705/ss.202022.0142","DOIUrl":"https://doi.org/10.5705/ss.202022.0142","url":null,"abstract":": In this paper, we propose an outlier detection procedure, based on a high-breakdown minimum ridge covariance determinant estimator that is especially useful for the large p/n scenario. The estimator is obtained from the subset of observations, after excluding potential outliers, by applying the so-called concentration steps. We explore the asymptotic distribution of the modified Mahalanobis distance related to the proposed estimator under certain moment conditions, and obtain a theoretical cutoff value for outlier identification. We also improve the outlier detection power by adding a one-step reweighting procedure. Lastly, we investigate the performance of the proposed methods using simulations and a real-data analysis.","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"1 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70938675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Statistica Sinica
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1