首页 > 最新文献

Statistica Sinica最新文献

英文 中文
Measures of Uncertainty for Shrinkage Model Selection 收缩模型选择的不确定性度量
IF 1.4 3区 数学 Q2 Mathematics Pub Date : 2024-01-01 DOI: 10.5705/ss.202021.0281
Yuanyuan Li, Jiming Jiang
{"title":"Measures of Uncertainty for Shrinkage Model Selection","authors":"Yuanyuan Li, Jiming Jiang","doi":"10.5705/ss.202021.0281","DOIUrl":"https://doi.org/10.5705/ss.202021.0281","url":null,"abstract":"","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70937682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Systematic View of Information-Based Optimal Subdata Selection: Algorithm Development, Performance Evaluation, and Application in Financial Data 基于信息的最优子数据选择的系统观点:算法开发、性能评估及其在金融数据中的应用
IF 1.4 3区 数学 Q2 Mathematics Pub Date : 2024-01-01 DOI: 10.5705/ss.202022.0019
Li He, W. Li, Difan Song, Min-Seok Yang
A Systematic View of Information-Based Optimal
{"title":"A Systematic View of Information-Based Optimal Subdata Selection: Algorithm Development, Performance Evaluation, and Application in Financial Data","authors":"Li He, W. Li, Difan Song, Min-Seok Yang","doi":"10.5705/ss.202022.0019","DOIUrl":"https://doi.org/10.5705/ss.202022.0019","url":null,"abstract":"A Systematic View of Information-Based Optimal","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70937942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional Threshold Autoregressive Model 功能阈值自回归模型
IF 1.4 3区 数学 Q2 Mathematics Pub Date : 2024-01-01 DOI: 10.5705/ss.202022.0096
Yuanbo Li, Kun Chen, Xunze Zheng, C. Yau
: We propose a functional threshold autoregressive model for flexible functional time series modeling. In particular, the behavior of a function at a given time point can be described by different autoregressive mechanisms, depending on the values of a threshold variable at a past time point. Sufficient conditions for the strict stationarity and ergodicity of the functional threshold autoregressive process are investigated. We develop a novel criterion-based method simultaneously conducting dimension reduction and estimating the thresholds, autoregressive orders, and model parameters. We also establish the consistency and asymptotic distributions of the estimators of both thresholds and the underlying autoregressive models. Simulation studies and an application to U.S. Treasury zero-coupon yield rates are provided to illustrate the effectiveness and usefulness of the proposed methodology.
提出了一种用于柔性函数时间序列建模的函数阈值自回归模型。特别是,函数在给定时间点的行为可以通过不同的自回归机制来描述,这取决于阈值变量在过去时间点的值。研究了函数阈值自回归过程的严格平稳性和遍历性的充分条件。我们开发了一种新的基于准则的方法,同时进行降维和估计阈值、自回归阶数和模型参数。我们还建立了阈值和潜在的自回归模型的估计量的一致性和渐近分布。本文提供了模拟研究和美国国债零息利率的应用,以说明所提出方法的有效性和实用性。
{"title":"Functional Threshold Autoregressive Model","authors":"Yuanbo Li, Kun Chen, Xunze Zheng, C. Yau","doi":"10.5705/ss.202022.0096","DOIUrl":"https://doi.org/10.5705/ss.202022.0096","url":null,"abstract":": We propose a functional threshold autoregressive model for flexible functional time series modeling. In particular, the behavior of a function at a given time point can be described by different autoregressive mechanisms, depending on the values of a threshold variable at a past time point. Sufficient conditions for the strict stationarity and ergodicity of the functional threshold autoregressive process are investigated. We develop a novel criterion-based method simultaneously conducting dimension reduction and estimating the thresholds, autoregressive orders, and model parameters. We also establish the consistency and asymptotic distributions of the estimators of both thresholds and the underlying autoregressive models. Simulation studies and an application to U.S. Treasury zero-coupon yield rates are provided to illustrate the effectiveness and usefulness of the proposed methodology.","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70938567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Grouped Network Poisson Autoregressive Model 分组网络泊松自回归模型
IF 1.4 3区 数学 Q2 Mathematics Pub Date : 2024-01-01 DOI: 10.5705/ss.202022.0040
Yuxin Tao, Dongyu Li, Xiaoyue Niu
Grouped Network Poisson Autoregressive Model
虽然多元泊松自回归模型是流行的拟合计数时间序列数据,统计推断是相当具有挑战性的。网络泊松自回归(NPAR)模型通过将网络信息纳入依赖结构来降低推理复杂性,其中每个个体的响应可以用其滞后值和相邻个体的平均效应来解释。然而,NPAR模型强烈假设所有个体都是同质的,并且有一个共同的自回归系数。在此,我们提出了一个分组网络泊松自回归(GNPAR)模型,该模型将个体分为不同的组,使用组特定参数来描述异构节点行为。给出了GNPAR模型的平稳性和遍历性,并研究了极大似然估计的渐近性质。我们开发了一种期望最大化算法来估计未知的组标签,并使用模拟研究了我们的估计过程的有限样本性能。我们分析了芝加哥警方调查停止报告的数据,并在芝加哥不同的社区发现了不同的依赖模式,这可能有助于未来的犯罪预防。
{"title":"Grouped Network Poisson Autoregressive Model","authors":"Yuxin Tao, Dongyu Li, Xiaoyue Niu","doi":"10.5705/ss.202022.0040","DOIUrl":"https://doi.org/10.5705/ss.202022.0040","url":null,"abstract":"Grouped Network Poisson Autoregressive Model","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70938717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Dynamic Copula-Based Nonparametric Estimation of Rank-Tracking Probabilities With Longitudinal Data 纵向数据下基于动态copula的秩跟踪概率非参数估计
IF 1.4 3区 数学 Q2 Mathematics Pub Date : 2024-01-01 DOI: 10.5705/ss.202021.0422
Xiaoyu Zhang, Mixia Wu, Colin O. Wu
: The rank-tracking probability (RTP) is a useful statistical index for measuring the “tracking ability” of longitudinal disease risk factors in biomedical studies. A flexible nonparametric method for estimating the RTP is the two-step un-structured kernel smoothing estimator, which can be applied when there are time-invariant and categorical covariates. We propose a dynamic copula-based smoothing method for estimating the RTP, and show that it is both theoretically and practically superior to the unstructured smoothing method. We derive the asymptotic mean squared errors of the copula-based kernel smoothing estimators, and use a simulation study to show that the proposed method has smaller empirical mean squared errors than those of the unstructured smoothing method. We apply the proposed estimation method to a longitudinal epidemiological study and show that it leads to clinically meaningful findings in biomedical applications.
摘要:在生物医学研究中,Rank-Tracking probability (RTP)是衡量纵向疾病危险因素“跟踪能力”的一个有用的统计指标。估计RTP的一种灵活的非参数方法是两步非结构化核平滑估计器(Wu and Tian, 2013),它可以应用于存在时不变协变量和分类协变量的情况。本文提出了一种基于动态公式的平滑方法来估计RTP,并证明了该方法在理论和实践上都优于非结构化平滑方法。我们推导了基于copula的核平滑估计的渐近均方误差,并通过仿真研究证明了基于copula的平滑方法比非结构化平滑方法具有更小的经验均方误差。我们将提出的估计方法应用于纵向流行病学研究,并表明它在生物医学应用中导致临床有意义的发现。
{"title":"Dynamic Copula-Based Nonparametric Estimation of Rank-Tracking Probabilities With Longitudinal Data","authors":"Xiaoyu Zhang, Mixia Wu, Colin O. Wu","doi":"10.5705/ss.202021.0422","DOIUrl":"https://doi.org/10.5705/ss.202021.0422","url":null,"abstract":": The rank-tracking probability (RTP) is a useful statistical index for measuring the “tracking ability” of longitudinal disease risk factors in biomedical studies. A flexible nonparametric method for estimating the RTP is the two-step un-structured kernel smoothing estimator, which can be applied when there are time-invariant and categorical covariates. We propose a dynamic copula-based smoothing method for estimating the RTP, and show that it is both theoretically and practically superior to the unstructured smoothing method. We derive the asymptotic mean squared errors of the copula-based kernel smoothing estimators, and use a simulation study to show that the proposed method has smaller empirical mean squared errors than those of the unstructured smoothing method. We apply the proposed estimation method to a longitudinal epidemiological study and show that it leads to clinically meaningful findings in biomedical applications.","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70938132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Projection-Based Diagnostic Test for Generalized Functional Regression Models 基于投影的广义功能回归模型诊断测试
IF 1.4 3区 数学 Q2 Mathematics Pub Date : 2024-01-01 DOI: 10.5705/ss.202022.0083
Guizhen Li, Mengying You, Lingzhi Zhou, Hua Liang, Huazhen Lin
A Projection-Based Diagnostic Test for Generalized Functional Regression Models
我们提出了一种新的诊断检验来检查广义函数回归模型的拟合优度。建议的测试不需要对分布进行说明,并且可以应用于常用的函数回归模型。因为它是基于分布的独立性,所以它包括了基于均值和基于高阶矩的检验作为特例。特别地,我们通过沿一定方向投射函数来克服函数数据的无限大维数的问题。此外,为了避免这些方向的主观选择造成的偏差,我们对函数变量项目的方向进行了积分。结果表明,所提出的测试方法在提高局部幂的同时,克服了无穷维问题。开发了一个简单的实现程序。通过理论和仿真研究对所提出的测试方法的性能进行了评价。我们将提出的程序应用于分析加拿大的天气数据和中国的空气污染数据,得到了几个有趣的模型,它们比现有方法具有更高的可解释性和估计精度。
{"title":"A Projection-Based Diagnostic Test for Generalized Functional Regression Models","authors":"Guizhen Li, Mengying You, Lingzhi Zhou, Hua Liang, Huazhen Lin","doi":"10.5705/ss.202022.0083","DOIUrl":"https://doi.org/10.5705/ss.202022.0083","url":null,"abstract":"A Projection-Based Diagnostic Test for Generalized Functional Regression Models","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70938477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Test for Zero Mean of Errors In An ARMA-GGARCH Model After Using A Median Inference 使用中值推理的ARMA-GGARCH模型的零误差均值检验
IF 1.4 3区 数学 Q2 Mathematics Pub Date : 2024-01-01 DOI: 10.5705/ss.202022.0013
Yaolan Ma, Mo Zhou, Liang Peng, Rongmao Zhang
Test for Zero Mean of Errors In An ARMA-GGARCH Model After Using A Median Inference Abstract: The stylized fact of heavy tails makes median inferences appealing in fitting an ARMA model with heteroscedastic errors to financial returns. To ensure that the model still concerns the conditional mean, we test for a zero mean of the errors using a random weighted bootstrap method for quantifying estimation uncertainty. The proposed test is robust against heteroscedasticity and heavy tails as we do not infer the heteroscedasticity and need fewer finite moments. Simulations confirm the good finite sample performance in terms of size and power. Empirical applications caution the model interpretation after using a median inference.
中位数推理适用于将具有异方差误差的ARMA模型拟合到财务回报中,因为已知此类回报具有重尾。为了确保模型仍然与条件均值相关,我们使用随机加权自举方法来量化估计不确定性,以检验误差的均值是否为零。所提出的检验对异方差和重尾具有鲁棒性,因为我们不推断异方差,并且需要较少的有限矩。仿真验证了所提出的测试在尺寸和功率方面具有良好的有限样本性能。经验应用表明,我们在使用中位数推理后解释模型时需要谨慎。
{"title":"Test for Zero Mean of Errors In An ARMA-GGARCH Model After Using A Median Inference","authors":"Yaolan Ma, Mo Zhou, Liang Peng, Rongmao Zhang","doi":"10.5705/ss.202022.0013","DOIUrl":"https://doi.org/10.5705/ss.202022.0013","url":null,"abstract":"Test for Zero Mean of Errors In An ARMA-GGARCH Model After Using A Median Inference Abstract: The stylized fact of heavy tails makes median inferences appealing in fitting an ARMA model with heteroscedastic errors to financial returns. To ensure that the model still concerns the conditional mean, we test for a zero mean of the errors using a random weighted bootstrap method for quantifying estimation uncertainty. The proposed test is robust against heteroscedasticity and heavy tails as we do not infer the heteroscedasticity and need fewer finite moments. Simulations confirm the good finite sample performance in terms of size and power. Empirical applications caution the model interpretation after using a median inference.","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70937873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust Estimation of Covariance Matrices: Adversarial Contamination and Beyond 协方差矩阵的稳健估计:对抗污染及其他
IF 1.4 3区 数学 Q2 Mathematics Pub Date : 2024-01-01 DOI: 10.5705/ss.202021.0388
Stanislav Minsker, Lang Wang
{"title":"Robust Estimation of Covariance Matrices: Adversarial Contamination and Beyond","authors":"Stanislav Minsker, Lang Wang","doi":"10.5705/ss.202021.0388","DOIUrl":"https://doi.org/10.5705/ss.202021.0388","url":null,"abstract":"","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70937901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Scalable Estimation for High Velocity Survival Data Able to Accommodate Addition of Covariates 能够容纳协变量的高速生存数据的可扩展估计
IF 1.4 3区 数学 Q2 Mathematics Pub Date : 2024-01-01 DOI: 10.5705/ss.202022.0028
Ying Sheng, Yifei Sun, C. E. Mcculloch, Chiung-Yu Huang
Scalable Estimation for High Velocity Survival Data Able to Accommodate Addition of Covariates Abstract: With the rapidly increasing availability of large-scale streaming data, there has been a growing interest in developing methods that allow the processing of the data in batches without requiring storage of the full dataset. In this paper, we propose a hybrid likelihood approach for scalable estimation of the Cox model using individual-level data in the current data batch and summary statistics calculated from historical data. We show that the proposed scalable estimator is asymptotically as efficient as the maximum likelihood estimator calculated using the entire dataset with low data storage requirements and low loading and computation time. A challenge in analyzing survival data batches that is not accommodated in ex-tant methods is that new covariates may become available midway through data collection. To accommodate addition of covariates, we develop a hybrid empirical likelihood approach to incorporate the historical covariate effects evaluated in a reduced Cox model. The extended scalable estimator is asymptotically more efficient than the maximum likelihood estimator obtained using only the data batches that include the additional covariates. The proposed approaches are evaluated by numerical simulations and illustrated with an analysis of Surveillance, Epidemiology, and End Results breast data.
随着大规模流数据的可用性迅速增加,人们对批量处理数据而不需要存储完整数据集的方法越来越感兴趣。在本文中,我们提出了一种混合似然方法,利用当前数据批次中的个人数据和从历史数据计算的汇总统计数据对Cox模型进行可扩展估计。我们证明了所提出的可扩展估计器与使用完整数据集计算的最大似然估计器一样有效,具有低数据存储要求和低加载和计算时间。现有方法无法容纳的成批生存数据分析的一个困难是,在数据收集的中途可能出现新的协变量。为了适应协变量的增加,我们开发了一种混合经验似然方法,该方法结合了使用简化Cox模型评估的历史协变量效应。扩展可扩展估计量渐近地比最大似然估计更有效[j] .统计学报:预印本doi:10.5705/ss.202022.0028
{"title":"Scalable Estimation for High Velocity Survival Data Able to Accommodate Addition of Covariates","authors":"Ying Sheng, Yifei Sun, C. E. Mcculloch, Chiung-Yu Huang","doi":"10.5705/ss.202022.0028","DOIUrl":"https://doi.org/10.5705/ss.202022.0028","url":null,"abstract":"Scalable Estimation for High Velocity Survival Data Able to Accommodate Addition of Covariates Abstract: With the rapidly increasing availability of large-scale streaming data, there has been a growing interest in developing methods that allow the processing of the data in batches without requiring storage of the full dataset. In this paper, we propose a hybrid likelihood approach for scalable estimation of the Cox model using individual-level data in the current data batch and summary statistics calculated from historical data. We show that the proposed scalable estimator is asymptotically as efficient as the maximum likelihood estimator calculated using the entire dataset with low data storage requirements and low loading and computation time. A challenge in analyzing survival data batches that is not accommodated in ex-tant methods is that new covariates may become available midway through data collection. To accommodate addition of covariates, we develop a hybrid empirical likelihood approach to incorporate the historical covariate effects evaluated in a reduced Cox model. The extended scalable estimator is asymptotically more efficient than the maximum likelihood estimator obtained using only the data batches that include the additional covariates. The proposed approaches are evaluated by numerical simulations and illustrated with an analysis of Surveillance, Epidemiology, and End Results breast data.","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70938004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Estimation of the Logarithm of the Mean Squared Prediction Error of A Mixed-effect Predictor 混合效应预测器均方预测误差的对数估计
IF 1.4 3区 数学 Q2 Mathematics Pub Date : 2024-01-01 DOI: 10.5705/ss.202022.0043
Jianling Wang, Thuan Nguyen, Y. Luan, Jiming Jiang
: The mean squared prediction error (MSPE) is an important measure of uncertainty in small-area estimation. It is desirable to produce a second-order unbiased MSPE estimator, that is, the bias of the estimator is o ( m − 1 ), where m is the total number of small areas for which data are available. However, this is difficult, especially if the estimator needs to be positive, or at least nonnegative. In fact, very few MSPE estimators are both second-order unbiased and guaranteed to be positive. We consider an alternative, easier approach of estimating the logarithm of the MSPE (log-MSPE), thus avoiding the positivity problem. We derive a second-order unbiased estimator of the log-MSPE using the Prasad–Rao linearization method. The results of empirical studies demonstrate the superiority of the proposed log-MSPE estimator over a naive log-MSPE estimator and an existing method, known as McJack. Lastly, we demonstrate the proposed method by applying it to real data.
均方预测误差(MSPE)是小面积估计中不确定度的重要度量。期望产生二阶无偏MSPE估计量,即估计量的偏置为0 (m−1),其中m是可获得数据的小区域的总数。然而,这是困难的,特别是如果估计量需要是正的,或者至少是非负的。事实上,很少有MSPE估计量既二阶无偏又保证是正的。我们考虑了一种替代的,更容易的方法来估计MSPE的对数(log-MSPE),从而避免了正性问题。我们利用Prasad-Rao线性化方法得到了log-MSPE的二阶无偏估计。实证研究的结果表明,所提出的对数- mspe估计器优于朴素对数- mspe估计器和现有的McJack方法。最后,通过实际数据验证了该方法的有效性。
{"title":"On Estimation of the Logarithm of the Mean Squared Prediction Error of A Mixed-effect Predictor","authors":"Jianling Wang, Thuan Nguyen, Y. Luan, Jiming Jiang","doi":"10.5705/ss.202022.0043","DOIUrl":"https://doi.org/10.5705/ss.202022.0043","url":null,"abstract":": The mean squared prediction error (MSPE) is an important measure of uncertainty in small-area estimation. It is desirable to produce a second-order unbiased MSPE estimator, that is, the bias of the estimator is o ( m − 1 ), where m is the total number of small areas for which data are available. However, this is difficult, especially if the estimator needs to be positive, or at least nonnegative. In fact, very few MSPE estimators are both second-order unbiased and guaranteed to be positive. We consider an alternative, easier approach of estimating the logarithm of the MSPE (log-MSPE), thus avoiding the positivity problem. We derive a second-order unbiased estimator of the log-MSPE using the Prasad–Rao linearization method. The results of empirical studies demonstrate the superiority of the proposed log-MSPE estimator over a naive log-MSPE estimator and an existing method, known as McJack. Lastly, we demonstrate the proposed method by applying it to real data.","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70938735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Statistica Sinica
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1